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Abstract

Thecomputationof goodviewpointsis importantin several fields: computergraphics,removal of degeneracies
in computationalgeometry, robotics,graphdrawing, etc.However, in areassuch as computergraphicsthere is
no consensuson what a good viewpoint meansand, consequently, each author useshis or her own definition
according to the requirementsof the application.In this paperwe presenta formal measure strongly basedon
InformationTheory, viewpoint entropy, that can be appliedto certain problemsof ComputerGraphicssuch as
automaticexplorationof objectsor scenesandSceneUnderstanding. Wealsodefinea new measure, theorthogonal
frustumentropy, in order to fulfill the requirementsneededto visualizemolecules.We designan algorithm that
makesuseof graphicshardware to acceleratecomputation,andwhosecomplexity dependsmainlyon thenumber
of views we want to analyze. Computationof goodviews of moleculesis usefulfor molecularscientists,a field
which includespractitioners fromCrystallography, Chemistry, andBiology.

1. Introduction

In thescientificworld we oftendealwith threedimensional
data.Unfortunately, in mostcases,we only have at our dis-
posal2D media(e. g. images)to inspectit. Thereforeit is
frequentlydesirableto obtain2D representationsthatallow
us to understandthe elementsbeingstudied.This problem
appearsin severalfields:computergraphics,graphdrawing,
datavisualization,knot theory, robotics,etc. Despitethat,
the goodnessof a 2D representation(a view or image)can
bedifferentlyevaluateddependingon theproblemwe have
in mind. As an example,certainviews which aregoodfor
Image-BasedModeling purposescanbe uselessfor object
recognition.

In this paperwe presenta measure,the viewpoint en-
tropy, that can be seenas the amountof information of a
scenethatcanbecapturedfrom a point. Viewpoint entropy
has beenusedin a previous work to addresssomeprob-
lemsin computergraphics,suchasSceneUnderstandingor
automaticexplorationof objectsor scenes16. Sceneunder-
standingtechniques2 deal with the problemof selectinga
setof imagesthat areenoughto make the userunderstand
thescenebeingrepresented.We will modify viewpoint en-

tropy in orderto copewith orthogonalprojections(thekind
of projectionsusedby molecularsciencepractitioners,who
belongto severalfields,suchasCrystallography, Chemistry,
andBiology) andseehow this measurecanbeappliedwith
molecules.A hardware-basedalgorithmwhich computesa
solutionwith user-definedapproximationis thenpresented.

Therestof thepaperis organizedasfollows: In Section2
we study the meaningof the term good view in different
fields andpresentthe main featuresof the problemwe ad-
dress:molecularvisualization.Section3 presentsthe mea-
sureof viewpointentropyandintroducestwo new measures
to dealwith imagesthatdo not cover 360degrees,the latter
speciallyadaptedfor thecaseof molecularmodels.In Sec-
tion 4 we presentour hardware-basedalgorithmandshow
theresults,andfinally, in Section5 we discussour achieve-
mentsandpoint out somelinesof futurework.

2. Previous Work

Scientificpractitionersfrequentlyneedto visualize3D data.
Generally, only a 2D displayingmethod,e. g. picturesor a
computerscreen,is available.Thisposessomedifficultiesin
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recognizingor understandingtheobjectsbeinganalyzedas
theprojected2D imagesmayhave differenttopologyto the
3D counterparts,or might not show enoughinformationof
the sceneor object.On the otherhand,certain2D projec-
tionshavesomecharacteristicsthatmakethemusefulfor in-
specting3D objects,whicharecalledeithernice, or regular,
or simply goodprojections.Therearea numberof different
criteria thatdescribethis notionof goodview dependingon
theapplicationin mind.

Automatic selection of good viewpoints has recently
startedto receive greatattentionin ComputerGraphicsdue
to the emergenceof Image-BasedRendering12� 6 � 10 tech-
niques.As the datais volumetric,thenthe occlusionprob-
lems that arise are harderto solve than in computational
geometry15.

KamadaandKawai9 andRobertsandMarshall13 consider
a directionto begoodif it minimizesthenumberof degen-
eratedfaceswhenthesceneis projectedorthogonally. How-
ever, this condition is not sufficient becauseit fails when
comparingsceneswith equalnumberof degeneratedfaces
andit doesnot ensurethat theuserwill seea largeamount
of detail, asdiscussedin2. Barral et al2 andDorme5 mod-
ify Kamada’s coefficient in order to copewith perspective
projections.Thenthey createaheuristicwith someotherpa-
rametersthatweighboththenumberof facesseenfrom each
point and the projectedarea,moreover they addan explo-
ration parameterwhich accountsfor the facesalreadyvis-
ited. However, they admit that they have not beenable to
determineagoodweightingschemefor thedifferentfactors.
Thiscausessomeproblemswith objectscontainingholes,as
thesearenotcapturedproperlyby thealgorithm.Vázquezet
al16 presentan Information Theory-basedmeasurecalled
viewpoint entropy which can be usedto determinewhich
pointsof view in a sceneshow higherinformation.

In roboticsliterature,the goal of selectinga small setof
cameraswhichallow usto observe thewholeobjecthasalso
beenstudiedunderthenameof sensorplanningor next best
view selection.Differentassumptionsaremadein next best
view systemsto simplify the problem.Several systemsre-
quire a CAD modelof the sceneto be known a priori. The
two mainapproachesare:search-basedandsilhouette-based.
Search-basedmethodsuseoptimizationcriteria to searcha
groupof potentialviewpointsof thenext bestview. Many of
thesemethodsemploy rangeimagesto carveawayvoxelsin
a volumetricspace.Wong et al17 presentan algorithmthat
searchesall possibleviewpoints,and selectsthe next best
view asthe onethat cancarve away the mostemptyspace
voxels.This systemis effective, but aspointedout by Mas-
siosandFisher11, suchanapproachmayresultin views that
observe surfacesat very obliqueangles.Otherapproaches
usethe silhouettesof objects.For example,Abidi1 devel-
opsa methodthatemploys informationtheory. For a given
view, a silhouetteis divided into segmentsof equallengths.
Then,an informationmeasurethat computesthegeometric

andphotometricentropy is foundfor eachsegment.Theseg-
mentwith the minimal entropy is chosento selectthe next
bestview. This methodassumesthat by moving the cam-
erato observe thesegmentcontainingthe leastinformation
better, more informationaboutthe scenewill be captured.
Silhouette-basedmethodscanoftencomputenext bestviews
morequickly thansearch-basedapproaches.However, it is
not alwayspossibleto generateanaccuratesilhouettein an
imagefor anarbitrary(for exampleindoor)scene.

There are few paperswhich refer to the viewpoint se-
lection processfor Image-BasedModeling, however, most
papersselect a fixed set of camerasplaced in arbitrary
positions7� 12� 10. Stürzlinger14 createsa methodfor sampling
all visible surfacesbut doesnot addresstheproblemof ad-
equatecoverage.Fleishmanet al6 presentanalgorithmthat
adequatelysamplesthesurfacesvisible from acertainwalk-
ing region by placingthe cameraon a largenumberof po-
sitionson the boundaryof the walking zone.Thecoverage
quality criterionfor a polygonis basedon its projectedarea
onahemispherefor acameraposition.Thesetof camerasis
selectedby choosingthecamerasthatsamplea highernum-
berof polygonsatanappropriaterate,whichdoesnotensure
that theamountof informationthey provide from thescene
is high. If we hada scenewith certainregionscoveredwith
a lot of very smallpolygons,this methodcouldfirst sample
partsof thescenethatcover smallareasinsteadof choosing
otherregionswhich cover largerportionsof an imagewith
less(or closer)polygons2 � 5 � 16. Hlavacet al8 usea setof im-
agesto representan object.They choosea setof reference
imagespositionedaroundtheobjectin intervalsthatguaran-
teeerror boundsbelow somethresholdwhen interpolating
intermediateviews. This methodis not intendedto measure
the quality of a view, aseachimageis comparedwith the
previous oneandonly chosenif the degreeof dissimilarity
is highenough.Soit is notpossibleto evaluatethegoodness
of completelydifferentprojectionsfrom thesamescene.

Knot theory, graphdrawing, andcomputationalgeometry
usuallydealwith ideal objectsconsistingof segmentsand
points15. This is not suitablefor moleculesasthevolumeof
thedifferentatomsencodesits actualcovalentradius.

2.1. Molecular Visualization

Molecular scientistsare concernedwith obtaining good
viewsof molecules,whichallow themto infer theirchemical
or physicalproperties.In thiscase,wehavethreeconditions:

1. Moleculesarerigid objects.
2. Atoms(vertices)andbonds(edges)have a volume,they

arethereforerepresentedasspheresandcylindersrespec-
tively.

3. Informationis encodedin thecolourof theatomsandthe
sizeof their radius.

Unlike computationalgeometry approaches,where a
goodview is enough,we seekfor anoptimalprojection,as
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wewantto seeall theelementsof amoleculeunderthebetter
projection.Thegoodviewpointsof a moleculeconsistboth
of the points wherewe seemost of the atomsand bonds
and the oneswhich show how the moleculeis orderedin
space.We will show in Section3.3 that they correspondto
thepointswith maximumandminimumorthogonalentropy
(theoneswhichprovidemaximumandminimumamountof
informationrespectively).

3. New Measures

In this sectionwe presentan Information Theory3 � 4 mea-
sure,viewpoint entropy. It wasfirst introducedby Vázquez
etal16 andcanbeinterpretedastheamountof informationof
a scenewhich canbeseenfrom a point. Viewpoint entropy
takesinto accountthenumberof facesandtheprojectedarea
in a virtual scene.Our conceptof information is basedon
visibility.

3.1. Viewpoint Entropy

Viewpoint entropy is basedon anInformationTheorymea-
sure,theShannonEntropy3 � 4. TheShannonEntropy of adis-
creterandomvariableX with valuesin theset{ a1 	 a2 	�
�


�	 an}
is definedas

H � X �����
n

∑
i � 1

pi log pi

where pi � Pr �X � ai � , the logarithmsare taken in base2
andwhenpi � 0, pi logpi is 0 for continuity reasons3 � 4. As
� logpi representstheinformationassociatedwith theresult
ai , the entropy givesthe average informationor the uncer-
taintyof arandomvariable.Theunit of informationis called
a bit. Let sceneS consistof a setof Nf faces.We arego-
ing to useasprobabilitydistribution therelative areaof the
projectedfacesover thesphereof directionscenteredin the
viewpoint p, asin Figure1. Thus,theviewpointentropyof a
point p from a sceneS is definedas16:

I � S	 p�����
Nf

∑
i � 0

Ai

4Π
log

Ai

4Π
(1)

whereAi is the projectedareaof facei and4Π is the solid
angleof the sphere.Hence,Ai � 4Π representsthe visibility
of facei with respectto the point p. When i � 0, the area
projectedis thebackground.This is neededto have a well-
built probabilitydistribution function(cf. Vázquezetal16).

3.2. Perspective frustum entropy and orthogonal
frustum entropy

In many caseswhatwereallywantto measureis theamount
of informationprovided from a single imagethat doesnot
cover all thesphereof directions,asthis is theway we usu-
ally obtain the 2D representations.In order to do this we

sphere of directions

viewpoint

Figure 1: Computationof theviewpointentropyby project-
ing theobjectsontoa boundingsphere of theviewing point.

viewpoint

projection plane

Figure 2: Only the objectsinside the frustumvolumeare
consideredfor theentropycomputation.

mustconsidertwo cases,theonewherewe have a perspec-
tiveprojection(eithercomingfrom realworld or from avir-
tualscene),andtheonewherewedealwith orthographically
projectedimages(whichareequivalentto aperspective pro-
jectionwith thepoint of view placedat infinity). To obtain
suchmeasures,we usetheviewpoint entropy asa basis.For
the perspective case,the measureis the sameandwe only
have to changethe total solid angleof thesphereto the to-
tal areaof the intersectionof the frustumpyramid with the
sphere.For the orthogonalcasewe have the sameformula
but the pixels mustnot be weightedby the anglethey sub-
tend.Thus,to measuretheorthogonal frustumentropyof a
view wecanapplythefollowing formula:

IO � S	 p�����
Nf

∑
i � 0

Npixi

NpixF

� log
Npixi

NpixF

	 (2)

whereNpixi is the numberof the projectedpixels of facei,
andNpixF is the total numberof pixels of the image.This
measureis appearance-basedin the sensethat it only mea-
sureswhatwe canreally see.This meansthatwe will apply
formula (2) to the objectsthat projectat leastonepixel on
thescreen,thus,perceivableby anobserver.

3.3. Good viewpoints of a molecule

In this sectionwe analyzetherequirementsof molecularvi-
sualizationandseehow they canbe fulfilled using the or-
thogonalviewpointentropy measure.

A good viewpoint can be definedas the one that gives
more information about the scene(Vázquezet al16). Two
casesarespeciallyimportantfor molecularscientists:

1. Projections with high orthogonal entropy of single
molecules: they give a lot of information about the
moleculesbeingobserved.Thus,theseprojectionsallow
usto seemostof theatomscomposingthemoleculeand
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(a) Io � 0� 413 (b) Io � 0 � 197

(c) Io � 4 � 5550 (d) Io � 2 � 0805

Figure 3: Figures (a) and (c) show the points of maxi-
mumorthogonal entropy of a molecular representationof
Ru(III) trichloro-2,2’:6’,2"-terpyridineandan arrangement
of thesamemolecule. Figures(b) and (d) showthe respec-
tive pointsof minimumorthogonalviewpointentropy.

thedistancesandanglesof thebonds.Thesefeaturesare
relevant for molecularscientistsbecausethey help to in-
fer chemicalpropertiesof themolecule.

2. Projectionswith low orthogonalentropy of arrangements
of thesamemolecule:Theorderingin spacedetermines
physicalpropertiesof the molecules,which canthenbe
discoveredby scientistsfrom theseviews.

A single projectionof maximumentropy might not be
enoughto representall atomsandbonds.In Section4 we
presenta hardware-basedalgorithmthatfindstheminimum
setof imagesthatshowsall thesefeatures.Thebestimageis
theonewhich maximizesthe informationprovided.In Fig-
ure3a wecanseearepresentationof aRuteniumcompound
seenfrom thepositionof maximumentropy, andin 3b seen
from thepoint of minimumviewpoint entropy. Note that in
3a all the componentsof the moleculearevisible. The re-
spective arrangementsof several of thesemoleculesappear
in 3c and3d. Note that in 3c it is easyto perceive a regular
orderingin somedirection.

4. Hardware-based orthogonal entropy computation

With today’s technology, powerful graphicscardsareafford-
ablefor low-endpersonalcomputers.They permitthedesign
of algorithmsusingOpenGLand,consequently, rendering
canbedonein realtime.In thissectionweshow ahardware-
acceleratedalgorithmwhich enablesus to computethe or-
thogonalentropy of animagein millisecondswithoutmajor
optimizations.

Selectasetof pointsplacedin regularpositionsall around
theobject
for all thepointsdo

Computetheorthogonalentropy andstoreit
Storeabitmapencodingthevisibility of thefacesfrom
thepoint

end for
Orderthepointsin decreasingviewpointentropy
Selectthefirst point {the onewith maximumorthogo-
nalentropy}
Accumulatethevisitedfacesin a bitmap
i  0
while i ! totalPointsand not finisheddo

if numFacesNotSeen(i) " thresholdthen
Selectpoint i
Accumulatethevisitedfacesin abitmap
finished  isFinished(numberofVisitedFaces)

end if
i  i # 1

end while

Figure 4: Algorithmthat computesthesetof view with high
entropyof a moleculeandwhich covers all theelements.

4.1. Data representation

Wehaveamodelcomposedby spheresandcylinders,andin
equations(1) and(2) theelementswe projectarefaces.We
usuallyassumethatwe have scenescomposedby polygons,
and elementssuchas spheresor cylinders are discretized.
This is dueto thefact that theusualscenescanhave differ-
entopticalpropertiesfor differentpolygons,andthusweare
interestedin capturingthe informationof the wholescene.
In MolecularVisualization,atomsandbondslook thesame
from all pointsof view. Consequently, whenweseeanatom
weknow how it will look from thebackside.That’swhy we
donotneedto discretizethescene.Equivalentresultsareob-
tainedif wediscretizein equalsizedtrianglesfor samesized
objects(otherwiseit would leadto errorsastheorthogonal
entropy of two facesdiscretizedin differentmannershasalso
differentvalues).The finer the discretizationthe betterthe
resultswould be.

We assumethe molecule is centeredat point $ 0 % 0 % 0& .
To computethe bestviewpoints we usethe algorithm that
appearsin Figure 4. Orthogonalentropy is computedby
colour-coding the facesin an item buffer. The imagesare
capturedby a cameraplaced in the current position and
pointing to the origin. Then, orthogonalentropy is calcu-
latedby summingupall thepixelswith thesamecolour(i.e.
all thepixelscomingfrom thesameface)andapplying(2).
Then,theviewpointsareorderedin decreasingentropy and
a loop selectsthepointswith high entropy which seea cer-
tainnumberof faces(above a threshold)notyet visited.The
thresholdcandependon thenumberof notyet visitedfaces,
to ensurewe cover all the facesandto avoid addingviews
whichshow only onenew atomor bond.
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4.2. Results

We have evaluatedour algorithmwith differentmolecules.
Molecularscientistsneedto visualizefirst the moleculeall
aloneandthena groupof themorderedin space.Two kinds
of viewings areinteresting,the onesthat show a lot of de-
tails on the moleculeand the oneswhich allow us to see
how it is orderedin space,thesecorrespondto the ones
which presentlow entropy. Consequently, our implementa-
tion searchesthepointsof high orthogonalentropy andalso
thepointsof low orthogonalentropy. In Figure5a we seea
molecularrepresentationof atetrabromicsaltfrom thepoint
of maximumorthogonalentropy. Thisview allowsto seethat
this crystalpackinggenerateschannelsbetweenmolecules.
Theirproximity permitsto infer thepresenceof intermolecu-
lar hydrogenbridges.Althoughhigherresolutionwould ob-
tain slightly betterimages(with thebackatomscompletely
occluded)this is nota severedrawbackastheonesobtained
arealreadygoodenoughfor theusers,asthey alsoenableus
to seethattherearesomemoreatomsin thebackside.Fig-
ure5b shows thesamemoleculefrom theminimumentropy
view. Figures5c and5d show the pointsof maximumand
minimumentropy for anarrangementof thesamemolecule.
In Figure6 two formsof Carbonareshown. Figure6a shows
a graphiteandFigure6b a diamond.Note that thearrange-
mentinto layersof graphitemay indicatethat thereis a di-
rectionof easyexfoliation of the molecule(as it really oc-
curs)while thestructureof diamondwith bondsin different
directionsof spacemake it a strongmolecule.

(a) Io � 0 � 7844 (b) Io � 0 � 4582

(c) Io � 2 � 593 (d) Io � 1� 104

Figure 5: Figures (a) and (b) showa molecularrepresen-
tation of a tetrabromicsalt of a hexaazamacrocyclic ligand
seenfromthepointsof maximumandminimumentropy re-
spectively. Figures(c) and (d) showthe views of maximum
andminimumentropyfor a setof thesemolecules.

(a) (b)

Figure 6: Figures (a) and (b) showthe minimumentropy
viewsof themolecularrepresentationsof twoCarbonforms,
graphiteanddiamondrespectively. Fromtheseviewsmolec-
ular scientistscan infer theresistanceto physicalpressure.
Whilediamondis verystrongdueto thebondsin threedirec-
tions,graphite’s layeredstructuremakesthemoleculeeasily
exfoliable.

4.3. Performance

Thecomplexity of ourapproachdependsmainlyonthenum-
berof views beingevaluatedandtheimagesize.It depends
only weaklyon thenumberof facesof themodel,andmod-
els with several hundredsof facesbehave like modelswith
severalthousands.Our algorithmhasseveraladvantages:

( Thenumberof views selectedfor evaluationcanbecho-
senby theuser.( Thenumberof resultingviewscanbealsosetby theuser.( Adaptive methodscanbeappliedto find betterresults.

As theentropy is definedasa continuousfunction,adap-
tive methodscouldbeusedto improve theresultsproduced
by a sparselysampledfirst evaluation.For a resolutionof
400 ) 400pixels,we obtaina performanceof 17-18fps on
a AMD-K7 processorat 700 MHz. We useda Riva TNT2
graphicscardandthe algorithmworked in the front buffer,
andno optimizationsaremade.Several improvementscan
be appliedif we areseekingfor betterframerates,suchas
theuseof boundingboxesto accelerateimageanalysis,vis-
ibility preprocess,etc.

Theprocessof synthesizinga moleculeis very complex.
It consistsof two main steps:Synthesisandpurificationof
themolecule,andthecharacterizationstepwherean X-ray
diffractionprocessgeneratesthecrystallographicdata.This
is themodelwe visualize.Thewholeprocesscantake sev-
eral years,but the characterizationstepcanbe obtainedin
a period which variesfrom several hoursup to more than
oneweek.Whenthemodelhasbeencreated,our algorithm
cancomputetheoptimalviews in a coupleof minutes,soif
weaddourmethodto thecharacterizationpipelineits costis
negligible. As anautomatedprocessdid not exist, scientists
hadto spendup to severalhoursto obtaina goodview with
thecommontools.
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5. Conclusions and Future Work

Visualizationof moleculesis relevantfor molecularscience,
a discipline which falls in several areassuch as Crystal-
lography, Chemistry, andBiology. Obtainingsuchviews is
time consumingfor molecularscientists.In this paperwe
have presenteda new approachthatcomputesautomatically
goodviewpointsof a molecule.First, we have introduceda
new measure,the orthogonal viewpoint entropy. Then we
have designeda hardware-basedalgorithm that automati-
cally obtainsgoodviews in a coupleof minutesusingthis
measure.The resultsobtainedby the algorithm are a set
of views which fulfill the requirementsof molecularvisu-
alization:they revealmostof thedetailof themolecule,and
show how it is orderedin the space.The usercan set the
level of approximationof thealgorithm,aswell asthenum-
ber of resultingimageshe or shewantsto obtain. In most
casestheviewsgeneratedby ourapplicationcancompletely
replacehumaninvolvement,otherwise,for highly complex
compounds,they area goodstartingpoint. It alsoprovides
several views that could be missedby scientistsandit has
provento greatlysimplify thechemistwork.

In thefuturewe will studytheparticularrequirementsof
thevisualizationof DNA models,asthey have severalsimi-
laritieswith theproblemaddressedin thispaper. Besides,we
will studyadaptive methodsto computeorthogonalentropy.
Moreover, someimprovementsthathave beensuggestedare
thecomputationof rotationsaroundcertainaxesandthevi-
sualizationof bondingangles.
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