
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

Cell-Based First-Hit Ray Casting

A. Neubauer, L. Mrozy, H. Hauser, and R. Wegenkittl

VRVis Research Center, Vienna, Austria
mailto: {neubauer,hauser,wegenkittl}@vrvis.at

Abstract
Cell-based first-hit ray casting is a new technique for fast perspective volume visualization. This technique, based
on the well known ray casting algorithm, performs iso-surfacing and supports interactive threshold adjustment.
It is accelerated by the reduction of average ray path lengths to only a few steps per pixel. The volume is divided
into cubic sub volumes. Each sub volume that is intersected by an iso-surface is projected to the image plane.
A local ray casting step within the sub volume is performed for each pixel covered by the projection. Cell-based
first-hit ray casting is perfectly suited whenever fast perspective iso-surfacing is required. This paper describes the
basic algorithm, presents possible optimizations and evaluates the performance of the algorithm for one specific
application, the post-implantation assessment of endovascular stent placement. It will be shown that the algorithm,
though executed on a single processor machine without any hardware acceleration, performs well for view points
inside as well as outside the stented blood vessel and significantly outperforms an optimized, yet more conventional
ray casting technique.

1. Introduction and Related Work

Stent implantation is a powerful instrument for the treatment
of heart function deficiencies. A stent (see figure 1) is a small
tubular prosthesis that is inserted into an artery via an endo-
vascular procedure and used, for instance, to enlarge a steno-
sis, a local narrowing of the arterial lumen. In the past years,
the task of efficiently visualizing an inserted stent within the
blood vessel for exact assessment of the quality of inser-
tion became a new field of application of three-dimensional
medical computer visualization. This task includes the need
for interactive virtual angioscopy (virtual endoscopy 1 in-
side blood vessels) combined with the visualization of the
stent (see figure 2) as well as fast visualization with view
points outside the vessel to assess the position of the stent
with respect to certain landmarks of the body (e.g., heart,
lung, bones, etc.).

A feasible way of providing the prerequisites for clean vi-
sualizations in the virtual endoscopy application is to define
two iso-surfaces by stating two thresholds, one representing
the stent boundaries and one representing the vessel walls.
During virtual angioscopy investigations, the density value

y Tiani Medgraph, mailto: lukas.mroz@tiani.com

Figure 1: a stent

at the view point inside a blood-filled vessel is, due to an
injected contrast agent, usually on a higher level than the
surroundings of the vessel and lower than the density of the
metal stent. Therefore, provided a CT data set is used, both
iso-surfaces can be rendered.

For views from outside the vessel, when the density value
at the view point is below the density level of the visualized
environment, only one threshold is needed, which visualizes
the stent and/or the environment. It is important to provide
means of interactive threshold adjustment to allow the user

c The Eurographics Association 2002.

7777

http://www.eg.org
http://diglib.eg.org


Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

Figure 2: virtual angioscopy (a virtual flight through a
stented blood vessel

to select the visualized environment and its appearance on
the fly. Only then can the user obtain a reasonable under-
standing of the surroundings of the implanted stent. Tradi-
tional surface fitting methods (e.g., marching cubes 2) have
the disadvantage that the costly surface extraction procedure
must be repeated whenever the threshold changes, which
makes them non applicable for the described purposes. Thus,
a decision has to be made between iso-surfacing via direct
volume rendering (DVR) and a method which does dynamic
surface fitting (SF), extracting only visible parts of the iso-
surfaces during each frame and rendering the resulting mesh
using polygon rendering hardware.

Many DVR techniques have been proposed 3. As image
fidelity and perspective are of paramount importance in the
application described above, the most suitable DVR method
seems to be the volume ray casting algorithm 4. This tech-
nique which can easily be adapted to visualize iso-surfaces
(first-hit ray casting), suffers from the problem that it cannot
achieve interactive frame rates without multi-processor hard-
ware. Therefore, much work has been done to accelerate the
technique to allow for more interactive rendering. Most of
the proposed optimizations rely on one or more of the fol-
lowing principles:

fast empty space traversal Rays often have to travel many
steps through the volume until they either hit an iso-
surface or exit the volume. This can take a significant por-
tion of rendering time. Therefore, some techniques have
been developed, that aim at accelerating traversal through
empty regions. Prominent examples are Space Leaping 5; 6

and the Lipschitz method 7.
data reduction Portions of the data set that do not con-

tribute to the final image are identified and removed be-
fore the start of the rendering process. So the rendering

process can be speeded up, because rays do not have to
travel through non-interesting regions of the data set 8; 9.

improvement of caching behavior Data sets for volume
visualization are often large, for instance, between 200
and 1000 slices of 5122 voxels. In the traditional ray cast-
ing algorithm, rays travel, one by one, through the whole
data set. Therefore, cache coherency is hard to maintain.
By maximally utilizing cached data before they are re-
placed, thrashing can be minimized 10; 11; 12.

Other principles of acceleration of ray casting like, for
instance, simulation of perspective projection 13, usage of
frame-to-frame coherency 14 or pixel-space coherency 15,
usually offer only reduced output image quality.

Hardware-based approaches have been presented, which
speed up ray casting significantly by performing parts of the
algorithm in hardware. These techniques, however, comprise
flexibility in one way or another. Westermann et al. 16 pre-
sented a texture based volume rendering algorithm which
finds the first intersection of a ray with the predefined object
(based on a transfer function) using texture-mapping hard-
ware. A completely software-based solution, on the other
hand, need not depend on transfer functions, but can be ex-
tended to visualize also manually segmented objects, which
can not be represented sufficiently well by transfer functions
(e.g., tumors). If a high level of flexibility is required, al-
gorithms completely executed in software seem to be most
applicable.

During the past few years, some surface fitting tech-
niques that execute a surface extraction procedure during
each frame have been introduced. They use elaborate visi-
bility determination algorithms which detect those cells in-
side the data volume at which surface extraction has to be
performed. Since the number of those cells is usually quite
small compared to the size of the whole volume, surface ex-
traction is not prohibitively expensive 17; 18. However, those
methods either do not yet perform convincingly well or else
provide functionality that is limited in one way or the other.
The fast technique proposed by Hietala et al. 18, for example,
does not allow for interactive threshold adjustment. Further-
more, these techniques also rely on dedicated acceleration
hardware. Thus, first-hit ray casting seems to be more appli-
cable for the purposes described above.

Cell-based first-hit ray casting, a new optimized ray cast-
ing technique which is introduced in section 2 combines fast
empty space traversal, data reduction and improvement of
caching behavior to maximize rendering performance while
keeping rendering quality at a high level.

2. Cell-Based First-Hit Ray Casting

Cell-based first-hit ray casting is a new and fast ray cast-
ing algorithm which is usable for interactive visualization,
for example, for the post-implantation assessment of stent

c The Eurographics Association 2002.

78



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

placement. This section gives a detailed description of the
algorithm and covers some possible optimizations.

2.1. Algorithm Overview

Cell-based first-hit ray casting performs iso-surfacing. The
data volume is divided into cubic sub volumes, so called
macro-cells. Each macro-cell consists of n3 cells, where n
is usually a number between four and ten. Each macro-cell
containing a part of one of the iso-surfaces is projected to the
image plane. A rasterization algorithm detects all pixels that
are covered by the projection. From each of those pixels that
have not yet been assigned a color, a ray is cast through the
macro-cell. Sampling starts at the point where the ray inter-
sects the closest face of the macro-cell and stops, when the
ray either hits an iso-surface or leaves the macro-cell. When-
ever, during its traversal, the ray hits a boundary cell, i.e., a
cell that contains data values above as well as below one of
the specified thresholds, a ray-surface intersection algorithm
is applied to see, if and at which position the ray intersects
the corresponding iso-surface. If the iso-surface is hit, the
gradient vector at the intersection point is calculated using
trilinear interpolation. A color value is then calculated from
the gradient and assigned to the corresponding pixel.

2.2. The Data Structure

In order to quickly find those macro-cells which contain a
part of at least one of the iso-surfaces, a min-max octree is
used 19. A leaf node of the octree represents a macro-cell.
For each node of a min-max octree, the minimum and the
maximum data value of the sub-space that it represents are
stored. Traversal starts at the root of the octree. A child node
is processed only, if one of the thresholds is between the min-
imum and the maximum value of this child node. As soon as
a leaf node is reached that passes the min-max check, the
corresponding macro-cell is projected and local rays are cast
from the covered pixels.

Rays are cut into segments by macro-cell boundaries.
During one local ray casting step, only one segment of a ray
is processed. Since the first intersection of a ray with an iso-
surface that is found, determines the final color of the pixel,
it is of utmost importance that ray segments are processed
in the correct viewing order. Because perspective projection
is used, each pixel is associated with a unique ray direction.
However, since all rays that intersect any two sub volumes,
intersect them in the same order, a representative ray which
intersects all sub volumes can be used to quickly establish a
correct order of child node traversal. At each octree traversal
step, the only ray that intersects all sub volumes represented
by child nodes is the one moving through the center point of
the sub volume represented by the parent node. The signs
of the components of its direction vector indicate, which
child node should be processed first and which should be
processed last. The remaining child nodes can be processed

in arbitrary order, since no ray can possibly pierce any two
of the sub volumes represented by them.

2.3. Local Rays

A local ray is cast for each pixel that is covered by the pro-
jection of the currently processed macro-cell. Voxel traversal
inside the macro-cell is started by calculating the entry point
of the ray into the macro-cell. Then, according to the method
presented by Amanatides and Woo 20, all cells that are inter-
sected by the ray inside the macro-cell are detected. For each
of those cells it has to be determined, whether it is a bound-
ary cell. If this is the case, a ray-surface intersection test is
executed.

2.4. Ray-Surface Intersection

There are some techniques for performing ray-surface inter-
sections, that differ in quality and, especially, in complexity.
A very accurate approach was introduced by Lin et al. 21 and
by Parker et al. 12. This intersection algorithm inverts trilin-
ear interpolation. It finds, for a given data value, all points
of a given ray that are assigned this data value by trilinear
interpolation. If one or more of those points are inside the
investigated cell, the first of them along the ray is the in-
tersection point. This technique performs exact intersection,
but is computationally very expensive.

A faster algorithm which also yields good results works
as follows: The data values at the end points (entry point and
exit point) of the path that a ray takes through a boundary
cell are calculated. If one data value is greater and one is
smaller than the threshold, it is concluded that a ray-surface
intersection must exist along the path. This intersection point
is estimated using linear interpolation. This process can be
repeated recursively: The data value at the estimated inter-
section point is calculated and, depending on whether this
value is greater or smaller than the threshold, a second inter-
polation is performed either between the entry point and the
estimated intersection point or between the estimated inter-
section point and the exit point. Usually, two such interpola-
tion steps are enough to come sufficiently close to the actual
intersection point. This technique produces images whose
differences to correct images created by using the exact tech-
nique can no more be recognized by the human eye. If only
one interpolation step is performed, images are also close to
correct, but now and then slightly visible artefacts occur.

Figure 3 displays result images for different ray-surface
intersection strategies. The leftmost image was rendered us-
ing the exact intersection technique, the image in the middle
was rendered using the fast technique (2 interpolations). The
rightmost image was created using a trivial method, where
simply the center point of the boundary cell is taken as the
intersection point. Figure 4 shows two error maps, the left
one depicting the differences between the (correct) leftmost
image and the center image of figure 3 and the right one

c The Eurographics Association 2002.

79



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

depicting the difference between the leftmost and the right-
most image of figure 3. It can be seen that there are hardly
any differences between images created using exact intersec-
tions and images created using fast intersection. The trivial
intersection test, however, causes clearly visible errors.

Exact intersection tests take about 2:9 times as long as fast
intersection tests using two interpolation steps. Therefore, it
is a good decision to trade an unneeded amount of accuracy
for speed and perform fast intersections.

2.5. Reduction of the Number of Local Rays

Casting a whole ray from the eye point until it either exits the
volume or intersects an iso-surface is in general faster than
casting many of its segments as local rays, since for each
local ray a rather expensive additional initialization process,
consisting of the determination of the ray direction, the en-
try point calculation and the initialization of variables used
for cell traversal, has to be performed. Time is only saved, if
only few local rays are cast per pixel. Macro-cell trimming
and early scan line termination are two optimization tech-
niques that reduce the number of local rays.

2.5.1. Macro-Cell Trimming

Very often, only a small part of a macro-cell is intersected
by an iso-surface. Therefore, to prevent unnecessary calcu-
lations, each macro-cell is, before being projected, trimmed
to the smallest cuboid containing the macro-cell’s portions
of the iso-surfaces. Since the projection of this cuboid cov-
ers fewer pixels than the projection of the whole macro-cell,
the number of local rays is reduced. Also, local rays be-
come shorter, as they only have to move through the final
cuboid, not through the complete macro-cell. Macro-cells
are trimmed during each frame, not only if the iso-value
has been changed. This saves memory and does not induce
much additional overhead, since the most costly part, iterat-
ing through all cells to find boundary cells, has to be per-
formed anyway to do early scan line termination, an op-
timization technique described in section 2.5.2. If macro-
cell trimming is used, about 28 percent of overall render-
ing time is saved on average, compared to the pure algo-
rithm which does not require iteration through all cells of
surface-containing macro-cells. The time gain, however, is
very much dependent on the data set and the position of the
view point.

2.5.2. Early Scan Line Termination

Early scan line termination is a technique that reduces the
number of local rays cast through a macro-cell by taking
into account properties of iso-surface geometry inside this
macro-cell. It is based on heuristics and can therefore pro-
duce errors. These errors, however, can efficiently be de-
tected and corrected in a post-processing step for each frame.

After a macro-cell has been projected, the set of pixels at

which local rays are to be cast is detected by identifying all
scan lines that intersect the macro-cell projection and iterat-
ing through the pixels of each of those scan lines from one
boundary of the projection to the other. Depending on the ge-
ometry of the iso-surfaces inside the macro-cell, scan lines
can be either rows or columns of pixels and can be processed
in either direction (vertical scan lines, for example, can be
processed top-down or bottom-up). The reason for this is
that, again depending on the geometry of the iso-surfaces,
very often, processing of a scan line can be stopped as soon
as a local ray through a pixel of this scan line did not inter-
sect any of the iso-surfaces. This technique will be referred
to as early scan line termination. Here, without limitation
of generality, macro-cell projections for which scan lines are
processed from left to right will be discussed as an example.
Let the image of a (macro-)cell be the set of all pixels in the
final image, that obtained their colors through ray-surface
intersections within that (macro-)cell. Analogously, the im-
age of a part of an iso-surface is the collection of all pixels
that obtained their colors through ray intersections with that
part of an iso-surface. Early scan line termination will lead
to errors and should therefore not be applied, if the poten-
tially dropped part of the scan line intersects the image of the
current macro-cell. The macro-cell whose projection is de-
picted in the left image of figure 5 allows early termination
of all scan lines. The example scan line drawn in the figure is
rasterized only up to the first pixel that remains clear (label
"EST"). The scan line drawn in the image on the right should
not be terminated early during processing of the illustrated
macro-cell, since ray-surface intersections would be missed.
There are two possible causes for early scan line termination
being disallowed:

The first cause are left-facing surface normals. Parts of the
iso-surfaces, which have surface normals that point, when
projected to the image plane, towards the left hand side of the
screen, confine the applicability of early scan line termina-
tion. The reason is that, as can be seen in the example on the
right hand side of figure 5, images of parts of an iso-surface
facing towards the origin of a scan line are likely to mark an
entry point of the scan line into the macro-cell image. Scan
line rasterization, of course, should not be terminated before
this entry point.

The second possible cause is related to the notion of so-
called dangerous macro-cell faces. A macro-cell face is re-
ferred to as dangerous, if it contains the macro-cell vertex
which has been projected farthest left and the neighboring
macro-cell sharing this face will be processed later than the
current macro-cell. If the distance between the two leftmost
vertex images in X direction is very small (there is a differ-
ence of only a few pixels), only the hidden face shared be-
tween the vertices belonging to the two leftmost projection
points, is considered dangerous.

The consequence of a dangerous macro-cell face being in-
tersected by an iso-surface is that, although there are no left

c The Eurographics Association 2002.

80



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

Figure 3: comparison of three ray-surface intersection techniques. Left: exact intersection, middle: fast intersection, right:
trivial intersection (right)

Figure 4: Differences between exact and fast intersection (left) and between exact and trivial intersection

Macro-cell image

Scan line processed
from left to right

EST

Macro-cell projection

Scan line processed
from left to right

Macro-cell image

Left facing surface
normals

No EST
here

These pixels
must have been
finished already

These pixels
must have been
finished already

Local rays are
cast at these pixels
(bold part of scan line)

Local rays are cast
at these pixels
(bold part of scan
line)

Figure 5: 2 macro-cell projections: left: early scan line termination (EST) is possible for all scan lines; right: an example for
a scan line which should not be terminated early due to left facing surface normals

c The Eurographics Association 2002.

81



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

Macro-cell image

Dangerous face
(dotted)

Local rays are
cast at these pixels
(bold part of scan line)

EST
No EST

Scan line processed
from left to right

Figure 6: an example for a dangerous macro-cell face con-
fining the applicability of early scan line termination

facing surface normals, scan lines might intersect the macro-
cell image only after some pixels have remained clear (see
figure 6). The reason for this is that rays through those pixels
exit the macro-cell through the dangerous face before they
intersect an iso-surface. The applicability of early scan line
termination is, in this case, confined to the part of the scan
line following the first intersection of the scan line with the
macro-cell image.

A macro-cell can be checked for both problem cases by
calculating a representative surface normal for each bound-
ary cell of the macro-cell and testing its direction. The dot
product of each of those representative surface normals and
one reference vector for each problem case is calculated. A
negative result indicates that scan lines must not be termi-
nated before entering the projection of the corresponding
boundary cell, otherwise errors might occur. The reference
vector for detecting left facing surface normals is common
to all boundary cells. It is parallel to the vector from the up-
per left corner of the screen in object space to the upper right
corner of the screen in object space. Only if a dangerous
macro-cell face has been found, boundary cells adjacent to it
have to be checked also for the second problem case: First,
the scan line, to which the center point of the currently in-
vestigated boundary cell is projected, is identified. The vec-
tor, which is associated with this scan line in object space
and points to the right in image space, is then projected to
the plane of the dangerous macro-cell face. The result serves
as reference vector for the second problem case. Whenever
a boundary cell that prohibits early scan line termination is
found, the cell is projected to the image plane. The collec-
tion of all those projections yields a critical region for the
current macro-cell. Early scan line termination can only be
executed outside the critical region. Figure 7 shows two ex-
amples of critical regions. Critical surface normals which de-
fine the critical regions and reference vectors are depicted as

well. Curves connecting those pixels at which early scan line
termination takes place, are labelled "EST".

Early scan line termination usually saves another 22 per-
cent of overall rendering time on average. The two rightmost
images in figure 8 display the numbers of local rays per pixel
without, respectively with, the usage of early scan line ter-
mination during the computation of the frame shown in the
image on the left. The lighter the color of a pixel, the more
rays were cast through it. The image in the middle was gen-
erated using 2.803 local rays per pixel, the image on the right
was generated using 1.143 local rays per pixel.

It has been pointed out that early scan line termination
is based on heuristics: Surface normals of parts of the iso-
surfaces contained within one boundary cell can vary quite
significantly. So, representative normal vectors might de-
scribe the iso-surfaces inadequately. It is, for example, pos-
sible that a boundary cell contains left facing surface parts,
although its representative normal vector does not point left-
ward. Therefore, critical regions may be too small and errors
can occur. Although these errors are very rare (about 1 out
of 1000 pixels is erroneous on an average), they are possible
and they have a disturbing effect on image quality. They re-
sult in holes in the surface, which are clearly visible. There-
fore, these holes have to be identified and filled with correct
color values after completion of the frame.

2.5.3. Hole Recovery

A pixel that is covered by a hole due to erroneous early scan
line termination will be left blank until the end of the frame,
because either no other part of an iso-surface is projected to
it until the end of the frame, or the ray that is cast through
that pixel intersects the same iso-surface one more time, but
in the wrong direction (e.g., from high to low density, if the
iso-surface represents a stent and a CT data set is used), in
which case the pixel is left blank and marked erroneous.

There are two sequence flags per pixel indicating whether
the pixel has recently been dropped due to horizontal, re-
spectively vertical, early scan line termination. This means
that every time that early scan line termination is applied,
the appropriate sequence flag has to be set for all empty pix-
els which are dropped. The bounds of each new sequence
of dropped pixels must be marked by setting the sequence
flag of the pixel immediately preceding the sequence and
the pixel immediately following the sequence to zero. Also,
a pixel through which a regular local ray has been cast can,
at this time, not be part of an erroneously dropped sequence,
thus its sequence flags must be set to zero. It can be con-
cluded from the properties of erroneous pixels described in
the previous paragraph, that pixels which are erroneously
dropped, will after that never be part of a dropped sequence
again. Therefore, after the frame is completed, a sequence of
blank pixels with the according sequence flags set, which is
bounded on both sides by non blank pixels whose sequence
flags are not set, has been dropped erroneously.

c The Eurographics Association 2002.

82



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

Critical region

EST

Macro-cell image

Left facing surface
normals

Macro-cell image

Critical region

EST

Dangerous face
(dotted)

Reference vector

Critical surface
normals

Reference vector
(example)

Figure 7: two examples of the applicability of early scan line termination being confined by critical regions

Figure 8: ray numbers without (middle) and with (right) the usage of early scan line termination

To fill the holes, rays can be cast from those pixels through
the complete volume. As only few pixels will be erroneous,
this will mostly take only a small part of the time that was
saved by early scan line termination.

2.6. Screen Regions

One problem of cell-based first-hit ray casting is that vis-
ibility determination is done on a per pixel basis. So, for
instance, after the projection of a macro-cell which is com-
pletely hidden behind closer parts of the iso-surfaces, each
pixel covered by the projection has to be tested, whether a
local ray has to be cast through it, or not. One way to reduce
this overhead is the so called screen regions method. The
image space is divided into equal-sized squares, each con-
sisting of n�n pixels. For each square the number of pixels
which have already been assigned a color, is known. During
the rasterization of the projection of a macro-cell, whenever
a screen region boundary is crossed, the pixel number of the
entered screen region is checked. If the screen region is full,

rasterization can move on to the next screen region boundary.
This approach saves another 3 percent of overall rendering
time on an average.

2.7. Early End of Computation

Intuitively, computation of a frame is ended as soon as
the complete octree has been traversed and all macro-cells
which include parts of the iso-surfaces, have been processed.
However, some time can be saved by terminating the render-
ing process as soon as all pixels are covered, as this reduces
the number of macro-cells having to be projected and tested
for dangerous surface normals as well as the number of pix-
elwise visibility tests. This approach saves another 5 percent
of overall rendering time on average.

3. Results

The algorithm described above was implemented and timed
on an Intel P4 1900 MHz single processor machine. A

c The Eurographics Association 2002.

83



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

512� 512� 266 data set of a chest was used for the ex-
periments. To test the performance, a reference ray caster
which creates images of the same quality as cell-based first-
hit ray casting, was implemented and timed on the same ma-
chine. This reference program tracks rays from the eye point
to those points where they first intersect an iso-surface or
leave the data volume. It uses the fast voxel traversal algo-
rithm 20 and performs fast ray-surface intersection tests as
described in section 2.4 Additionally, a buffer is used to ex-
ploit inter ray coherency. It stores cells that were encoun-
tered along the most recent ray, and a flag which indicates,
if a portion of an iso-surface is contained there. This abol-
ishes the need, during traversal of the next ray, to check the
data values of cells which are already stored in the buffer.
This technique accelerates rendering by about 60 percent.
Distance coding was not used, because it would require re-
computation for each new iso-value. Timings were taken for
two scenarios, virtual angioscopy inside the stented aorta
and visualization of the stent from outside the chest with
various thresholds. Table 1 contains timings obtained dur-
ing a virtual flight through the aorta. It states the minimum,
maximum and average frame times of both techniques for
an image resolution of 512� 512. It can be seen that cell-
based first-hit ray casting is significantly faster in the virtual
angioscopy application than more conventional (but still op-
timized) ray casting. Two frames taken from fly-through an-
imations are depicted in figure 10 <see color section>.

The diagram in figure 9 compares the performances of
the two techniques in the second scenario, visualization of
the stent from a view point outside the chest. The threshold
in the experiment varied between 0 Haunsfield Units (soft
tissue, e.g., the lung) and 1100 HU (stent), the image res-
olution was 512� 512. Conventional ray casting is signifi-
cantly faster than cell-based first-hit ray casting only when
soft tissue hides the stent. In this case, distances between
the eye point and the ray-surface intersection points are in
general very short, thus conventional ray casting does not
spend much time traversing empty spaces. Cell-based first-
hit ray casting, on the other hand, suffers from the problem
that in this case, almost all macro-cells must be processed,
and, since the tissue is very fine-structured and there are
some "peep holes" into regions farther away, it takes a long
time until all pixels have been assigned a color and render-
ing can be stopped. As the threshold is raised and soft tis-
sue fades out, frame times for cell-based first-hit ray casting
decrease, because fewer macro-cells have to be processed,
while those for conventional ray casting increase rapidly,
because ray lengths increase. With a threshold of 450 HU,
when bones and the stent are visible, the frame time of cell-
based first-hit ray casting is 1.953 seconds, the one of con-
ventional ray casting is 8.563 seconds (speedup factor 4.38).
With a threshold of 1100 HU, when only the stent is visi-
ble, the frame time of cell-based first-hit ray casting shrinks
to 0.609 seconds, while that of conventional ray casting rises

to 12.781 seconds (speedup factor 20.98). Three frames from
this experiment are depicted in figure 11 <see color section>.

3.1. Discussion

The most important advantage of cell-based first-hit ray cast-
ing are the short paths that rays have to traverse. Rays are
tracked only through macro-cells containing a part of the
iso-surface. Local rays through parts of macro-cells, which
do not contain any boundary cells, are avoided by macro-
cell trimming (see section 2.5.1). Early scan line termination
eliminates local rays, which are not guaranteed, but highly
probable not to find any intersections with an iso-surface
(see section 2.5.2). Those techniques result in a very short
average ray path length per pixel. Table 2 shows, how cell
projection reduces the effort for ray tracking compared to
conventional ray casting as well as the effects of the opti-
mizations mentioned above. The values in this table stem
from a typical frame of the fly-through animation. A ray step
is one iteration of the voxel traversal algorithm. The term mt
stands for macro-cell trimming and est for early scan line
termination.

The technique introduced by Parker et al., which also re-
lies on an approach based on macro-cells, spends about 60
percent of computation time for ray traversal 12. Cell-based
first-hit ray casting uses only about 25 percent of the frame
time for initializing and tracking local rays.

We believe that cell-based first-hit ray casting also man-
ages to exploit cache-coherency to improve performance. As
each macro-cell is processed and accessed only once dur-
ing the calculation of a frame, the phenomenon of thrashing
can not occur. However, the algorithm trades computational
complexity against memory access, thus the CPU has more
time to fill its caches and the system might not be memory
bandwidth bound anymore. So, whether the higher level of
caching coherency does really yield significant performance
improvements will be subject to further research.

The disadvantage of cell-based first-hit ray casting is that
some parts of the algorithm entail costs that are constant with
respect to image resolution and depend on the size of the
data set and/or macro-cell size (see following paragraph).
Examples of such parts of the algorithm are octree traver-
sal, macro-cell trimming and macro-cell projection (see sec-
tion 2.1). These costs must be compensated by exploiting the
short average ray paths to yield smaller per-pixel overhead.
Therefore, cell-based first-hit ray casting performs poorly
compared to more conventional ray casting when rendering
low-resolution previews. To render lower-quality previews,
either some conventional ray casting scheme or a different
preview strategy, like the progressive rendering method that
was used in the AlVis 22 project, should be employed.

Frame times can depend very much on the macro-cell
size. Ideal macro-cell sizes differ from data set to data set

c The Eurographics Association 2002.

84



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

algorithm used minimum frame time maximum frame time average frame time

cell-based first-hit ray casting 1.032 1.289 1.228

conventional ray casting 1.783 2.271 2.119

Table 1: frame times in seconds for virtual angioscopy

Figure 9: frame times in seconds for various thresholds

and even from frame to frame. Both big and small macro-
cells have their advantages and disadvantages. A small
macro-cell size results in a large number of macro-cells and
therefore an increase in the time needed for octree traversal
and projection of macro-cells. As there are more macro-cell
boundaries, rays are split up into more ray segments. This
results in an increase in the number of local rays and thus
in an increase in the number of expensive ray initialization
steps for rays which travel along an iso-surface without in-
tersecting it for a long time. On the other hand, small macro-
cell sizes can lead to more significant reductions of local ray
numbers through early scan line termination, as small criti-
cal regions become more likely. Also, smaller macro-cells
yield shorter local rays, boosting rendering for especially
those pixels at which only one local ray is cast.

3.2. Conclusion

Cell-based first-hit ray casting, a new algorithm which
proved to be a feasible and fast visualization technique for
perspective volume visualization, has been presented in this
paper. It was successfully tested in the application of post-
implantation assessment of stent placement. It has been

shown that cell-based first-hit ray casting manages to outper-
form conventional but still optimized ray casting quite sig-
nificantly, for view points both inside and outside the stented
blood vessel.

More result images and animations are available
on http://www.VRVis.at/vis/resources/DA-ANeubauer/. A
more detailed description of the algorithm can be found in
the master’s thesis Cell-Based First-Hit Ray Casting 23.

Acknowledgments

Thanks to M. E. Gröller for his support and to
Markus Hadwiger for valuable hints. This work has
been done as part of the basic research on visualization
(http://www.VRVis.at/vis/) at the VRVis research center
in Vienna, Austria (http://www.VRVis.at). Thanks also to
Tiani Medgraph (http://www.tiani.com) for providing medi-
cal data sets.

References

1. R. A. Robb, “Virtual (computed) endoscopy: Develop-
ment and evaluation using the visible human dataset”,

c The Eurographics Association 2002.

85



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

algorithm used no of rays no of rays per pixel no of ray steps per pixel

conventional ray casting 262,144 1 35.494

cell-based first-hit ray casting 1,147,347 4.376 15.626

cell-based first-hit ray casting with mt,est 396,808 1.364 3.541

Table 2: contribution of optimization techniques to ray path reduction

in Proc. of Visible Human Project Conference ’95,
pp. 221–230, (1995).

2. W. E. Lorensen and H. E. Cline, “Marching cubes: a
high resolution 3d surface construction algorithm”, in
Proc. of SIGGRAPH’87, pp. 163–169, (1987).

3. M. Meissner, J. Huang, D. Bartz, K. Mueller, and
R. Crawfis, “A practical evaluation of popular volume
rendering algorithms”, in Proc. of Volume Visualization
2000, pp. 81–88, (2000).

4. M. Levoy, “Display of surfaces from volume data”,
IEEE Computer Graphics and Applications, 8(5),
pp. 29–37 (1988).

5. D. Cohen and Z. Shefer, “Proximity clouds - an acceler-
ated technique for 3D grid - traversal”, The Visual Com-
puter, 11, pp. 27–38 (1994).

6. J. Freund and K. Sloan, “Accelerated volume rendering
using homogeneous region encoding”, in Proc. of IEEE
Visualization ’97, pp. 191–196, (1997).

7. B. T. Stander and J. C. Hart, “A Lipschitz method for
accelerated volume rendering”, in Proc. of IEEE Visu-
alization ’95, pp. 107–114, (1995).

8. W. Li, M. Wan, B. Chen, and A. Kaufman, “Vir-
tual colonoscopy powered by VolumePro.” Indexed at
http://www.cs.sunysb.edu/.

9. H. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson,
“Isosurfacing in span space with utmost efficiency”, in
Proc. of IEEE Visualization ’96, pp. 287–294, (1996).

10. A. Law and R. Yagel, “Multi-frame thrashless ray cast-
ing with advancing ray-front”, in Proc. of Graphics In-
terfaces 1996, pp. 70–77, (May 1996).

11. K. L. Novins, F. X. Sillion, and D. P. Greenberg, “An
efficient method for volume rendering using perspec-
tive projection”, Computer Graphics, 24(5), pp. 95–100
(1990).

12. S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan,
“Interactive ray tracing for isosurface rendering”, in
Proc. of IEEE Visualization ’98, pp. 233–238, (1998).

13. A. V. Bartroli, R. Wegenkittl, A. König, and E. Gröller,
“Perspective projection through parallely projected

slabs for virtual endoscopy”, in Proc. of SCCG ’01-
Spring Conference on Computer Graphics, pp. 287–
295, (April 2001).

14. H. Qu, M. Wan, J. Qin, and A. Kaufman, “Image based
rendering with stable frame rates”, in Proc. of IEEE Vi-
sualization 2000, pp. 251–258, (2000).

15. M. Levoy, “Volume rendering by adaptive refinement”,
The Visual Computer, 6(1), pp. 2–7 (1990).

16. R. Westermann and B. Sevenich, “Accelerated volume
ray-casting using texture mapping”, in Proc. of IEEE
Visualization 2001, pp. 271–278, (2001).

17. J. Gao and H. Shen, “Parallel view-dependent isosur-
face extraction using multi-pass occlusion culling”, in
proc. of IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, (October 2001).

18. R. Hietala and J. Oikarinen, “A visibility determination
algorithm for interactive virtual endoscopy”, in Proc. of
IEEE Visualization 2000, pp. 29–36, (2000).

19. J. Wilhelms and A. V. Gelder, “Octrees for faster isosur-
face generation (extended abstract)”, Computer Graph-
ics, 24(5), pp. 57–62 (1990).

20. J. Amanatides and A. Woo, “A fast voxel traversal al-
gorithm for ray tracing”, in Proc. of Eurographics ’87,
pp. 3–10, (1987).

21. C. Lin and Y. Ching, “An efficient volume rendering
algorithm with an analytic approach”, The Visual Com-
puter, 12(10), pp. 515–526 (1996).

22. A. Neubauer and A. Kanitsar, “AlVis - meeting the
tremendous requirements arising with the visualiza-
tion of aluminium foam samples investigated by high
resolution industrial CT - modalities”, in Proc. of
CESCG 2000- Central European Seminar on Computer
Graphics, pp. 229–242, (May 2000).

23. A. Neubauer, “Cell-based first-hit ray casting”, Mas-
ter’s thesis, VRVis Research Center, (2001). Indexed
at http://www.VRVis.at/.

c The Eurographics Association 2002.

86



Neubauer, Mroz, Hauser, and Wegenkittl / CBFH Ray Casting

Figure 10: two snap shots from virtual flights through a stented aorta

Figure 11: stent, bones and soft tissue (left), stent and bones (middle), only stent (right)

c The Eurographics Association 2002.

268




