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Abstract
We recently proposed a multiresolution representation for maximum intensity projection (MIP) volume rendering
based on morphological adjunction pyramids which allow progressive refinement and have the property of perfect
reconstruction. In this algorithm the pyramidal analysis and synthesis operators are composed of morphological
erosion and dilation, combined with dyadic downsampling for analysis and dyadic upsampling for synthesis. Here
we introduce an alternative pyramid scheme in which a morphological opening instead of an erosion is used for
pyramidal analysis. As a result, the approximation accuracy when rendering from higher levels of the pyramid is
improved.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Interaction techniques.
I.4.10 [Image processing and Computer vision]: Image Representation, Hierarchical, Morphological.

1. Introduction

This paper is concerned with multiresolution algorithms
for Maximum Intensity Projection (MIP) volume rendering,
where one computes the maximum value along lines through
a 3-D data set. This algorithm is widely used in the display
of magnetic resonance angiography (MRA) and ultrasound
data, both because of its computational simplicity, and also
since this method does not change the original data values,
since only maxima along viewing rays are computed.

When using interactive rendering of volume data sets,
data size presents a major problem. One solution to deal with
this is to introduce multiresolution models, which can be
used to visualize data in preview mode. As long as a user is
interacting with the data, only a coarse version of the data is
used, thus lowering rendering time. When interaction ceases,
details of the data are successively taken into account (‘pro-
gressive refinement’). The purpose of using multiresolution
models in this case is therefore improved user interaction,
since the response time of the system drops. The price to
pay is of course image quality, i.e. less detailed renderings,
in preview mode. Whether such loss of detail is acceptable

is a question which has to be answered in each specific ap-
plication.

In a previous paper [12] (see [11] for an expanded version)
we proposed a pyramid scheme for MIP volume rendering
with progressive refinement based on morphological pyra-
mids [3, 6]. Such pyramids, which involve nonlinear spatial
filtering by morphological operators [5, 14], systematically
split the volume data into approximation and detail signals.
That is, as the level of the pyramid is increased, spatial fea-
tures of increasing size are extracted. Even though the mor-
phological operators are nonlinear and non-invertible, the
pyramid scheme does allow perfect reconstruction as well
as progressive refinement. After the pyramid has been con-
structed the original volume data can be discarded, because
of the perfect reconstruction property. Also, only integer
computations are required.

Morphological pyramids are appropriate in the context of
MIP because the morphological operations of erosion and
dilation (involving the computation of minima and maxima
of voxel values in a local neighbourhood) are compatible
with the maximum computation involved in MIP, just as
linear pyramid [1] or wavelet [4, 7, 8, 10, 17, 18] represen-
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tations are the right tool for the case of linear X-ray ren-
dering. Also, the feature extraction capabilities of morpho-
logical operators are automatically incorporated within the
volume rendering process. This allows the extraction of fea-
tures based on spatial information. In this way, morpholo-
gical pyramids combine feature extraction with accelerated
rendering in preview mode.

In the algorithm as proposed in [12] the pyramidal analy-
sis and synthesis operators are composed of morphological
erosion and dilation, combined with dyadic downsampling
for analysis and dyadic upsampling for synthesis. Such pyra-
mids, in which the analysis and synthesis involve an ero-
sion/dilation pair, are calledadjunctionpyramids [3]. One
of the problems with this type of pyramid is that too few
small features present in the data are retained in higher lev-
els of the pyramid. To put it differently, the detail signals are
‘too large’. To improve the effectiveness of feature extraction
we introduce here an alternative pyramid scheme in which
a morphological opening instead of an erosion is used for
pyramidal analysis (the pyramidal synthesis operator is still
a dilation). This pyramid has been studied in morphologi-
cal image processing by Sun and Maragos [15], see also [3],
and therefore is referred to as theSun-Maragos pyramidbe-
low. In this paper, we only use so-calledflat pyramids, where
minima and maxima are computed in a local neighbourhood
of each voxel, so that no new grey values are introduced in
the analysis of the volume data.

In order to allow for compression domain rendering, it is
essential to use a fast MIP implementation which can work
directly on the data structures used to represent the pyra-
mid. Similar issues have been studied in the case of linear
(Laplacian) pyramids [2]. In the examples below we will
use a voxel projection method with an efficient volume data
storage scheme, by histogram-based sorting of ‘interesting’
voxels according to grey value, and storing these in a value-
sorted array of voxel positions; an additional array contains
the cumulative histogram values [9]. To maintain computa-
tional efficiency, a modification of the structure of the pro-
gressive rendering algorithm used for adjunction pyramids
is necessary, which will be described below.

The remainder of this paper is organized as follows. Sec-
tion 2 recalls a few preliminaries on morphological opera-
tors, and gives the definition of adjunction and Sun-Maragos
pyramids. In section 3 we first recall the MMIP algorithm
based on adjunction pyramids, and then introduce the new
MMIP algorithm based on Sun-Maragos pyramids. A com-
parison of the two types of pyramid is presented in section 4.
Section 5 contains a summary and discussion of future work.

2. Multiresolution volume rendering by morphological
pyramids

In this section we first define some elementary morpho-
logical operators [5, 14]. Next we summarize the basics

of (non)linear pyramids. Then we introduce morphological
pyramids, in particular adjunction and Sun-Maragos pyra-
mids.

2.1. Morphological operators

Let f be a signal with domainF ⊆ Zd, andA a subset of
Z

d called thestructuring element. The dilation δA( f ) and
erosionεA( f ) of f by A are defined by

δA( f )(x) = max
y∈A,x−y∈F

f (x−y), (1)

εA( f )(x) = min
y∈A,x+y∈F

f (x+ y). (2)

Dilation and erosion simply replace each signal value by the
maximum or minimum in a neighbourhood defined by the
structuring elementA. TheopeningαA( f ) andclosingφA( f )
of f by A are defined by

αA( f )(x) = δA(εA( f ))(x),

φA( f )(x) = εA(δA( f ))(x).

So openings and closings are products of a dilation and an
erosion. The opening has the property that it is increasing
( f ≤ g implies thatαA( f )≤αA(g)), anti-extensive (αA( f )≤
f ) and idempotent (αA(αA( f )) = αA( f )). Similar properties
hold for the closing, with the difference that closing is exten-
sive (φA( f ) ≥ f ). The opening eliminates signal peaks, the
closing valleys.

2.2. Pyramids

Consider signals in ad-dimensional signal spaceV0, which
is assumed to be the set of functions on (a subset of) the
discrete gridZd, whered = 2 or d = 3 (image and volume
data), that take values in a finite set of nonnegative integers.

The general structure of linear as well as nonlinear pyra-
mids is as follows. From an initial data setf0, approxima-
tions { f j} of increasingly reduced size are computed by a
reduction operation:

f j = REDUCE( f j−1), j = 1,2, . . .L.

Here j is called the level of the decomposition. The set
{ f0, f1, . . . , fL} is referred to as anapproximation pyramid.
In the case of a Gaussian pyramid, theREDUCE operation
consists of Gaussian low-pass filtering followed by down-
sampling [1]. An approximation error associated tof j+1
may be defined by taking the difference betweenf j and an
expanded version off j+1:

d j = f j −̇ EXPAND( f j+1). (3)

The setd0,d1, . . . ,dL−1, fL is referred to as adetail pyra-
mid. Here−̇ is a generalized subtraction operator. Assuming
there exists an associated generalized addition operatoru
such that, for allj,

f̂ j u ( f j −̇ f̂ j ) = f j , where f̂ j = EXPAND( REDUCE( f j )),
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we haveperfect reconstruction, that is, f0 can be exactly re-
constructed by the recursion

f j = EXPAND( f j+1)ud j , j = L−1, . . . ,0. (4)

For the linear case, the detail pyramid is called a Laplacian
pyramid,u and−̇ are ordinary addition and subtraction, and
the EXPAND operation consists of upsampling followed by
Gaussian low-pass filtering [1].

To guarantee that information lost during analysis can be
recovered in the synthesis phase in a non-redundant way, one
needs the so-calledpyramid condition:

REDUCE(EXPAND( f )) = f for all f . (5)

2.3. Morphological pyramids

In the case of morphological pyramids, theREDUCE and
EXPAND operations involve morphological filtering instead
of linear Gaussian filtering [3,6]. We first review the case of
adjunction pyramids as used in [12] for MIP rendering, and
then define the Sun-Maragos pyramid.

2.3.1. Adjunction pyramid

Morphological adjunction pyramids [3] involve the morpho-
logical operators of dilationδA( f ) and erosionεA( f ) with
structuring elementA defined in (1) and (2), respectively. In
this case theREDUCEandEXPAND operators are denoted by
ψ↑A andψ↓A, respectively, and have the form

REDUCE : ψ↑A( f ) = DOWNSAMPLE(εA( f )), (6)

EXPAND : ψ↓A( f ) = δA (UPSAMPLE( f )), (7)

where the arrows indicate transformations to higher
(coarser) or lower (finer) levels of the pyramid. Here
DOWNSAMPLE and UPSAMPLE denote downsampling and
upsampling by a factor of 2 in each spatial dimension. The
pyramid condition (5) is satisfied, if there exists ana ∈ A
such that the translates ofaover an even number of grid steps
are never contained in the structuring elementA; see [3] for
more details.

The generalized addition and subtraction operatorsu and
−̇ appearing in the definition (3) of the detail signals and
the reconstruction equation (4) may be taken as ordinary ad-
dition and subtraction. However, the following alternative
definition is possible. In an adjunction pyramid, the prod-
uctψ↓Aψ↑A is anopening, i.e. an operator which is increasing,
anti-extensive and idempotent. The anti-extensivity property
means thatψ↓Aψ↑A( f )≤ f . Therefore, we can define the gen-
eralized addition and subtraction operators by (cf. [3]):

tus= t ∨s= max(t,s), t −̇s=

{
t, if t > s

0, if t = s
(8)

where 0 is the smallest image or voxel value possible. As a

consequence, the detail signals are nonnegative:

d j (n) = f j (n) −̇ψ↓A( f j+1)(n) = f j (n) −̇ψ↓Aψ↑A( f j )(n)≥ 0.
(9)

Note that the definition of−̇ in (8) implies that the de-
tail signald j (n) equals f j (n), except at pointsn for which

f j (n) = ψ↓A ψ↑A ( f j )(n), whered j (n) = 0. So, detail signals
are not ‘small’ in regions where the structuring element does
not fit well to the data.

For an adjunction pyramid with the generalized addition
being defined as the maximum operation (see (8)), the recon-
struction takes a special form. Making use of the fact thatψ↓A
is a dilation, hence commutes with the maximum operation,
we derive from (4) and (8):

f = ψ↓A
L( fL)∨

L−1∨
k=0

ψ↓A
k(dk), (10)

where L is the decomposition depth,ψ↓A
k denotesk-fold

composition ofψ↓A with itself, and
∨N

k=0 gk is shorthand
notation for the maximum of the functionsgk, i.e. its
value at a pointx equalsg0(x) ∨ g1(x) ∨ . . . ∨ gN(x) =
max(g0(x),g1(x), . . . ,gN(x)). This representation is quite
similar to the (linear) Laplacian pyramid representation [1].
The main difference is that sums have been replaced by max-
ima.

2.3.2. Sun-Maragos pyramid

Now the analysis operator is an openingαA. In this case the
REDUCEandEXPAND operators are given by:

REDUCE : ψ↑A( f ) = DOWNSAMPLE(αA( f )), (11)

EXPAND : ψ↓A( f ) = δA (UPSAMPLE( f )). (12)

Note that theEXPAND operator is identical to that of the ad-
junction pyramid, cf. (7). In this case we cannot use (8), so
we defineu and−̇ as ordinary addition and subtraction. The
pyramid condition (5) is satisfied if the structuring element
A contains the origin ofZd and the translates of the origin
over an even number of grid steps are never contained inA;
see [3].

3. Multiresolution MIP algorithms

The basic idea of multiresolution MIP is to use a pyramid
representation in which it is possible to interchange the MIP
operator (computing maxima along the line of sight) with the
pyramidal synthesis operator. Then the MIP operation can be
performed on a coarse level, where the size of the data is re-
duced, before performing a 2-DEXPAND operation to a finer
level, thus leading to a computationally efficient algorithm.
For the pyramids defined above, such commutativity of MIP
and pyramid synthesis holds because both the upsampling
operation and the dilationδA commute with the maximum
operation [11,12].
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In the following, the MIP operation is denoted byMΘ,
where the viewing coordinates are denoted by a vectorΘ =
(θ,φ,α). Here θ and φ are two angles defining the pro-
jection direction vector which is perpendicular to the view
plane, and the angleα gives the orientation of the view
plane with respect to this projection direction. Successive

approximations of the MIP off are denoted byM
∧

Θ
( j)( f ),

j = L,L−1, . . . ,0. These approximations all have the same
size in the image plane, because they are reconstructed from
higher levels in the pyramid to the size of the MIP off .
We now summarize the progressive refinement algorithms
for the different pyramids.

Algorithm 3.1 Multiresolution MIP algorithm based on de-
tail pyramid. Synthesis operator must be a dilation.
1: INPUT: detail pyramid sequenced0, d1, . . ., dL−1, fL of input

data setf .
2: OUTPUT: progressively refined approximation images.
3:
4: Choose an orientationΘ of the viewing coordinate system.

5: M
∧

Θ
(L)( f ) = ψ↓

Ã
L(MΘ( fL)) (∗Coarsest approximation∗)

6:
7: for j = L to 1 do (∗Progressively refine∗)
8: f j−1 = ψ↓A( f j )ud j−1

9: M
∧

Θ
( j−1)( f ) = ψ↓

Ã
j−1(MΘ( f j−1))

10: end for

Algorithm 3.2 Multiresolution MIP algorithm based on an
adjunction pyramid.
1: INPUT: adjunction detail pyramid sequenced0, d1, . . ., dL−1, fL

of input data setf .
2: OUTPUT: progressively refined approximation images.
3:
4: Choose an orientationΘ of the viewing coordinate system.

5: M
∧

Θ
(L)( f ) = ψ↓

Ã
L(MΘ( fL)) (∗Coarsest approximation∗)

6:
7: for j = L to 1 do (∗Progressively refine∗)
8: M

∧

Θ
( j−1)( f ) = ψ↓

Ã
j−1(MΘ(d j−1))∨M

∧

Θ
( j)( f ).

9: end for

Algorithm 3.3 Multiresolution MIP algorithm based on ap-
proximation pyramid. Synthesis operator must be a dilation.
1: INPUT: approximation pyramid sequencef0, f1, . . ., fL−1, fL

of input data setf .
2: OUTPUT: progressively refined approximation images.
3:
4: Choose an orientationΘ of the viewing coordinate system.
5: for j = L to 0 do (∗Progressively refine∗)
6: M

∧

Θ
( j)( f ) = ψ↓

Ã
j (MΘ( f j )).

7: end for

3.1. Refinement from a detail pyramid

In the general case, when performing progressive refinement
one must first do a one-level 3-D reconstruction off j−1 from
f j , see (4). Then the MIP operator can be applied to the vol-
ume data, and the resulting 2-D image is finally expanded
j−1 times by a 2-DEXPAND operator which has the same
form as (7), that is, 2-D upsampling followed by a 2-D di-
lation, but with a structuring element̃A which is the MIP
of A [11,12]. This algorithm is applicable for all detail pyra-
mids where the synthesis operator is a dilation. The steps are
as follows (please refer to the pseudocode in Algorithm 3.1).
In line 5 a coarse approximation is computed by first letting
the MIP operatorMΘ act on the level-L approximation data
fL, and thenL times applying the 2-D expand operatorψ↓

Ã
.

Then follows the progressive refinement: in line 8 the level-
j data is expanded one level downwards byψ↓A and the re-
sult ‘added’ to the detail signald j−1 on level j−1, yielding
an approximationf j−1; in line 9 this approximation is pro-

jected byMΘ, and finally the 2-D expand operatorψ↓
Ã

is
applied j−1 times.

3.2. Adjunction pyramid

For an adjunction pyramid where detail signals and recon-
structions are computed by using ordinary addition and sub-
traction, Algorithm 3.1 is applicable. However, when using
(8) we can refine directly in the image plane, as follows from
(10). This case has been treated in [11,12]. The pseudo-code
of this algorithm is given in Algorithm 3.2.

The structure of the algorithm is as follows. From a level-
j approximation, the next approximation on levelj − 1 is
obtained by first computing the MIP ofd j−1, then j − 1

times applying the 2-D pyramid synthesis operatorψ↓
Ã

to
the projection, and finally taking the maximum of the image
so obtained with the previous approximation. It is clear that

M
∧

Θ
( j−1)( f ) ≥ M

∧

Θ
( j)( f ), since from (9) the details signals

d j−1 are nonnegative. So the projections increase pointwise
as one goes down the pyramid. This algorithm is very simi-
lar to that of wavelet splatting [7,8,16]. The main differences
are that (i) linear summation of voxel values is replaced by
maximum computation, and (ii) linear wavelet filters are re-
placed by morphological filters.

3.3. Sun-Maragos pyramid

When performing progressive refinement with a Sun-
Maragos pyramid, Algorithm 3.1 is in principle applicable.
But here a difficulty arises. For efficiency reasons, one would
like to store the data in a value-sorted array of voxel posi-
tions, where the ‘non-interesting’ voxels have been removed,
see Section 3.4. In particular, zero voxels should be deleted,
because usually these make up a very large fraction of the to-
tal data. The problem now is that during reconstruction, one
must first do a one-level 3-D reconstruction off j−1 from f j
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which involves a 3-D dilation (see line 8 in Algorithm 3.1),
and there is no obvious way to efficiently compute dilations
of data stored as value-sorted arrays. One solution would be
to convert the data first to 3-D array format, compute the di-
lation, and then revert back to value-sorted array format. But
this requires a considerable computation time, thus obviat-
ing the advantage of pyramids to give a quick preview of the
volume data. Storing the data in 3-D array format is not a
good alternative because data size and hence rendering time
goes up dramatically because of the need to process large
amounts of zero voxels.

So, we resort to the solution of performing progressive
refinement from an approximation pyramid, instead of a de-
tail pyramid. The corresponding algorithm is given in Algo-
rithm 3.3. Here the MIP operatorMΘ acts directly on the
level-j approximation dataf j , j = L,L− 1, . . . ,0, followed

by j-fold application of the 2-D expand operatorψ↓
Ã
.

For the morphological pyramids used here, storing the ap-
proximation dataf0, f1, . . ., fL−1, fL does require memory
storage of the same order of magnitude as storing the detail
and coarsest approximation datad0, d1, . . ., dL−1, fL (see
Section 4).

3.4. Implementation

The MIP operations required in the MMIP algorithms can
be implemented by a simple object order voxel projection
method [9]. In this method, one loops through the volume,
projects all voxels to the image plane with each voxel con-
tributing to exactly one pixel, and accumulates values at
pixel locations by maximum computation. The final result is
independent of the order in which the voxels are visited. This
method also uses an efficient volume data storage scheme,
by histogram-based sorting of ‘interesting’ voxels accord-
ing to grey value, and storing these in a value-sorted array
of voxel positions. An additional array contains the cumula-
tive histogram values. In the experiments to be discussed in
Section 4, all levels of the pyramid were created and stored
as value-sorted arrays. We define interesting voxels simply
as those with a nonzero grey value (zero voxel values never
contribute to pixel maxima). In practice, especially for an-
giographic data, a substantial reduction (sometimes more
than 95%) in the amount of voxels to be processed is thus
obtained. It is essential to observe that compression domain
rendering is possible: the only operation required on the ap-
proximation and/or detail volume data is MIP, and this can
be directly carried out on data in value-sorted array format.
Moreover, since the voxels are available in sorted order, one
may project voxels from low to high value, so that old values
in the 2-D image array can simply be overwritten by current
values.

For non-axial views, that is, projections where the axes of
the viewing coordinate system are not parallel to the axes of
the original grid of volume data, the above algorithm needs

to be adapted. To prevent the formation of holes in the pro-
jection image due to undersampling, a continuous function
has first to be reconstructed from the discrete data. For that
purpose, morphological sampling can be used, an interpola-
tion method well adapted to the nonlinear character of MIP.
As shown in [11], the result of this analysis is that after voxel
projection a final morphological closing of the projection
images has to be applied.

4. Experiments

Experiments were carried out on a PC with a 1.9 GHz Pen-
tium 4 processor and 512 Mb memory. We performed MMIP
rendering using a 2-level adjunction and Sun-Maragos pyra-
mid, respectively, with a 2×2×2 structuring element. Three
data sets were used, all of size 2563: MRA angiography
data (1.25% nonzero voxels), CT data of a human head
(29.4% nonzero voxels), and CT data of a bonsai tree (16.5%
nonzero voxels). The sampling distance in the view plane
was taken equal to the sampling distance of the original vol-
ume data. Creation of the pyramid took about 5 seconds in
all cases. To remove some uniform background noise, vox-
els with value below a small threshold (4% of the maxi-
mum grey value) were first set to zero. Rendering times were
found to be almost independent of view angle. Sizes of ap-
proximation and detail data in value-sorted array format and
rendering times (averages over 50 runs) of the successive
levels of the pyramid are given in Tables 1-3. For compar-
ison, the numbers for direct MIP rendering of the full-size
volume data are given as well. All times are excluding I/O.
The table also shows the relativeL2-error E( j) between a

level-j approximation imageM
∧

Θ
( j) and the full imageM

∧

Θ
(0):

E( j) = ‖MΘ( f )−M
∧

Θ
( j)( f )‖2/‖MΘ( f )‖2. (13)

The timings show that computing a level-2 or level-1 approx-
imation takes considerably less time than a full-size MIP.

Figures 1-3 show successive approximations, for both the
adjunction and Sun-Maragos pyramid. For enhanced display
purposes, we show the images in reverse-video mode (high
intensity corresponding to low grey value). From visual in-
spection of the figures, it is clear that in higher levels of the
adjunction pyramid small details are quickly removed. In
contrast, the Sun-Maragos pyramid preserves small details
much better, as is also evident from the behaviour of theL2-
error in Tables 1-3. Note that this accuracy improvement is
possible with rendering times and memory usage compara-
ble to those of adjunction pyramids.

5. Discussion

We have discussed two types of morphological pyramid for
multiresolution maximum intensity projection (MMIP) vol-
ume rendering with progressive refinement and perfect re-
construction, which can be used to visualize data in pre-
view mode. Such pyramids combine the feature extraction

c© The Eurographics Association 2002.

65



Roerdink / Multiresolution MIP Volume Rendering

Table 1: Data sizes (value-sorted array format) and render-
ing times of MIP (full image) and MMIP (progressive ren-
dering) of MRA angiography data (cf. Fig. 1) using an ad-
junction pyramid (Algorithm 3.2) and a Sun-Maragos pyra-
mid (Algorithm 3.3), respectively. Error denotes the relative
L2-error, as defined in (13), between approximation image
and full image.

Adjunction rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 0.85 0.02 0.96
add detail level 1 d1 30.2 0.03 0.57
add detail level 0 d0 801.6 0.26 0.0
full image f0 838.5 0.27

Sun-Maragos rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 5.04 0.02 0.74
level 1 approx. f1 63.4 0.04 0.40
level 0 approx. f0 838.5 0.27 0.0
full image f0 838.5 0.27

Table 2: Same as Table 1, but for CT head data, see Fig. 2.

Adjunction rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 277 0.13 0.39
add detail level 1 d1 2052 0.70 0.15
add detail level 0 d0 17231 5.86 0.0
full image f0 19715 6.64

Sun-Maragos rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 316 0.12 0.22
level 1 approx. f1 2454 0.81 0.10
level 0 approx. f0 19715 6.32 0.0
full image f0 19715 6.64

capabilities of morphological operators with the accelera-
tion gained by rendering multiresolution data. Of course,
the speed-up gained by rendering coarser approximations is
counterbalanced by a loss in image quality. The morpho-
logical operators used in constructing these pyramids re-
move spatial details of size proportional to 2j , where j is
the level of the pyramid. However, in contrast to linear mul-
tiresolution approaches, such as those based on wavelets, no
smoothing of data takes place. Typical use of such pyramids
in in preview mode, where the user is continuously rotating
the viewpoint. For such interactive display, some loss in im-
age quality is generally acceptable. When interaction ceases,
details of the data can then be successively taken into ac-
count to quicly generate a high resolution view.

Table 3: Same as Table 1, but for CT data of a bonsai tree,
see Fig. 3.

Adjunction rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 89 0.05 0.44
add detail level 1 d1 922 0.31 0.18
add detail level 0 d0 9606 3.04 0.0
full image f0 11061 3.51

Sun-Maragos rendered size time error
pyramid data (kbytes) (s)

level 2 approx. f2 130 0.06 0.34
level 1 approx. f1 1245 0.42 0.20
level 0 approx. f0 11061 3.51 0.0
full image f0 11061 3.51

A first MMIP algorithm, discussed in [11, 12], is based
upon morphological adjunction pyramids, where the pyra-
midal analysis and synthesis operators are composed of
morphological erosion and dilation, combined with dyadic
downsampling for analysis and dyadic upsampling for syn-
thesis. In this paper we introduced an alternative pyramid
scheme, the so-called Sun-Maragos pyramid, in which an
morphological opening instead of an erosion is used for
pyramidal analysis. As a result, effectiveness of feature ex-
traction in higher levels of the pyramid is substantially im-
proved, as indicated by enhanced visual quality as well as
smaller mean-squared errors. In order to maintain efficient
rendering of the Sun-Maragos pyramid, we use an approxi-
mation pyramid instead of a detail pyramid. Experiments in-
dicated that this accuracy improvement is possible with ren-
dering times and memory usage comparable to those of the
adjunction pyramid.

A property of the morphological operators (erosion, dila-
tion, opening, closing) used in constructing these pyramids
is that they remove spatial details without regard to the con-
nectivity properties of the volume data. For example, in the
case of angiography data, both small veins and small parts
of larger veins are removed in higher levels of the pyramid.
One could imagine situations where one would prefer that
the morphological operations are shape-preserving, i.e. spa-
tial structures should be either removed completely or re-
tained completely. This would require the use of so-called
connected operators [13], a topic we plan to study in future
work.
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Figure 1: MMIP reconstruction of MR angiography data
from a 2-level morphological pyramid using a2× 2× 2
structuring element. (a): original; (b) and (c): adjunction
pyramid; (d) and (e): Sun-Maragos pyramid.

c© The Eurographics Association 2002.

67



Roerdink / Multiresolution MIP Volume Rendering

(a) originalM
∧

Θ
(0)

(b) level 1 approx.M
∧

Θ
(1)

(c) level 2 approx.M
∧

Θ
(2)

(d) level 1 approx.M
∧

Θ
(1)

(e) level 2 approx.M
∧

Θ
(2)

Figure 2: MMIP reconstruction of CT head data (courtesy
D. C. Hemmy, Medical College of Wisconsin) from a 2-level
morphological pyramid using a2× 2× 2 structuring ele-
ment. (a): original; (b) and (c): adjunction pyramid; (d) and
(e): Sun-Maragos pyramid.
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Figure 3: MMIP reconstruction of CT data of a bonsai tree
(courtesy S. Roettger, University of Stuttgart) from a 2-level
morphological pyramid using a2× 2× 2 structuring ele-
ment. (a): original; (b) and (c): adjunction pyramid; (d) and
(e): Sun-Maragos pyramid.
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