
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002)
D. Ebert, P. Brunet, I. Navazo (Editors)

© The Eurographics Association 2002.

Octreemizer:
A Hierarchical Approach for Interactive Roaming

Through Very Large Volumes

John Plate Michael Tirtasana Rhadamés Carmona1 Bernd Fröhlich2

Virtual Environments, Fraunhofer IMK, St. Augustin, Germany
1 Lab. Computacion Grafica, Facultad de Ciencias, Universidad Central de Venezuela

2 Media Faculty, Bauhaus-Universität Weimar, Weimar, Germany

Abstract

We have developed a hierarchical paging scheme for handling very large volumetric data sets at interactive
frame rates. Our system trades texture resolution for speed and uses effective prediction strategies. We have
tested our approach for datasets with up to 16GB in size and show that it works well with less than 500MB of
main memory cache for 64MB of 3D-texture memory. Our approach makes it feasible to deal with these volumes
on desktop machines.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
generation � Display algorithms

Additional Key Words and Phrases: Volume rendering, texture caching, out-of-core rendering

1. Introduction

Increasingly sophisticated data acquisition techniques and
complex simulations produces larger and larger volumetric
datasets. The oil and gas industry in particular acquires
enormous amounts of seismic data for the exploration of
potential new reservoirs. This data has to be sighted by
geologists and geo-physicists to discover the precious oil
and gas containing subsurface structures. Dealing with
these multi-gigabyte volumes has been really slow or even
impossible in most applications.

We have developed a system that allows users to roam
through multi-gigabyte volumetric data sets in real-time
with low memory requirements. In our application domain,
users typically explore their datasets using a set of slices
through the volume and local volume rendering lenses as
shown in Figure 1. Users browse through data sets by
moving around slices and volume rendering lenses at
different speeds. They quickly move through some areas
and slow down or pause in other regions to take a closer
look at local phenomena. Interactive frame rates are an
important issue in this context and our system gives users
the possibility to dynamically trade resolution for speed as
necessary.

Our multi-resolution approach focuses on exploring only
parts of a large volumetric dataset at a time and roaming
through the volume. Other approaches, e.g. LaMar et al. [8]
and Weiler et al. [11], use multi-resolution techniques to
render large volumetric datasets as a whole with the best
possible quality. Our work is based on similar multi-
resolution data structures and also uses 3D-texture
hardware. We augment these multi-resolution data
structures with a sophisticated caching scheme and
predictive paging techniques.

Our main contribution is the development of a hierarchical
paging scheme that guarantees interactive frame rates for
very large volumetric data sets by trading texture resolution
for speed. Our approach handles paging from main memory
into texture memory and paging from hard disk into main
memory efficiently. We describe our paging techniques in
detail and introduce effective prediction strategies. We
have tested our approach for datasets with up to 16GB in
size and show that it works well with less than 500MB of
main memory, which makes it feasible to deal with these
volumes on desktop machines.

5353

http://www.eg.org
http://diglib.eg.org

Plate et al. / Octreemizer

© The Eurographics Association 2002.

2. Related Work

3D-texture based volume rendering techniques and the
appropriate sampling schemes were introduced by Cullip
and Neumann[4]. Cabral et al.[1] were the first to show
interactive volume rendering of medical datasets on
graphics hardware with 3D-texturing capabilities.
Westermann and Ertl [12] developed these ideas further to
support efficient handling of clipping geometries and non-
polygonal surface rendering.

LaMar et al.[8] describe an octree-based multi-resolution
approach for interactive volume rendering. They filter the
volume to create levels-of-detail in an octree structure.
They propose the use of spherical shells to reduce visual
artifacts for 3D-texture based volume rendering. Based on
this work, LaMar et al. [9] introduce an adaptive scheme
that renders the data along a cutting plane at different
resolutions depending on the distance to a given center of
interest. The required volume tiles are loaded for each
frame. There is no explicit paging strategy introduced.
Artifacts are limited by blending between different levels of
resolution.

Weiler et al. [11] carefully address the avoidance of
interpolation errors in their multi-resolution model for
volumetric datasets. Their approach allows consistent
interpolation between levels even for adaptive slice
distances.

Cline and Egbert [2] also apply a two-level caching
mechanism for dealing with large two-dimensional
textures. They use a quadtree hierarchy to store their two-
dimensional terrain textures at different levels of detail.
The main differences to our approach are the following:
they deal only with two-dimensional textures, their
geometry is tiled according to the size of the texture tiles in
a pre-process, and they do not use any prediction schemes.

Our approach focuses on roaming at interactive frame rates
through three-dimensional volumes that do not fit into
texture memory or even into main memory. Our
hierarchical approach leads to paging and prediction
strategies that make effective use of frame-to-frame
coherence.

3. Volume Texture Paging

Our basic data structure for storing volumetric datasets is
an octree similar to the one used by LaMar et al. [8].
Original volumes are divided into bricks of a certain size,
typically in the range of 32x32x32 to 64x64x64 voxels
each. These bricks create the finest level in our octree
structure. Eight neighboring bricks are filtered into a single
brick of the next coarser level until only a single brick
remains on the top of the octree. We also deal with non-
powers of two volumes, since our octree structure does not
require the existence of all children for each node. For
bricks, which are only partially filled with voxels, we
maintain the boundaries of the original volume and clip
sampling geometries against these boundaries. We are able
to handle arbitrary polygonal meshes as sampling or proxy
geometries for volume rendering as well as for cutting and
slicing geometries.

Our approach is divided into two separate tasks, which are
typically performed in parallel: paging from main memory
into texture memory and paging from the hard disk into
main memory.

3.1. Paging From Main Memory Into Texture Memory

We adopt a two-step approach for finding the desired
bricks, which need to be loaded into texture memory for
each frame. First we create a list of bricks, which would
display the sampling geometry at the best possible
resolution under the constraint of the texture memory size.
In a second step, we optimize this list such that only a
given number of bricks gets loaded into texture memory
per frame. This step guarantees that the texture reload takes
only a certain amount of time and therefore avoids slowing
down the rendering process.

Figure 1: A seismic dataset. Two orthogonal slices
are shown and a volume rendering lens with a green
frame. The blue and red stripes show strong
reflections of the acoustic shock waves used to
acquire this data. The green, polygonal surface is a
horizon, which separates two earth layers.

54

Plate et al. / Octreemizer

© The Eurographics Association 2002.

The first step starts with the top-down insertion of the
sampling geometry into the octree. Figure 2 shows an
example for a single slice. This process stops, when the
finest level is reached or the number of required bricks
equals the texture memory size (or a given fraction
thereof). The refinement process works level by level and
prefers bricks closer to the viewer over those farther away.
This way we end up with only two different refinement
levels. The sampling geometry is clipped on the fly at the
boundaries of each brick. We call the list of bricks resulting
from this refinement process our wish list, since it contains
those bricks, we would like to have in our texture memory
to display the sampling geometry at its best resolution. The
brick wish list plus the path through the octree leading to
the bricks on the wish list is called wish list tree.

The second step takes the wish list and compares it with the
list of currently loaded texture bricks in texture memory.
Those bricks, that are loaded into texture memory and do
not belong to the wish list, are added to the list of unused
bricks. This list sorts bricks by their last access time and

does not remove bricks from texture memory. The
remaining bricks form the reload list. If the number of
bricks, which need to be reloaded, is larger than a given
reload limit, we need to collapse refinement levels. Here
we trade speed for resolution. We start the collapse process
with the currently finest level and farthest away from the
viewer. When the collapse process requests brick texture
memory from the list of unused bricks, it is first checked if
this brick is still in texture memory and unused, otherwise
the oldest brick from the list of unused bricks is assigned.
Figure 3 shows an example.

3.2. Adding Prediction

The described paging on demand strategy works quite well
in most cases. By trading resolution for speed, this strategy
will never stop the rendering process for longer than it
takes to download the required bricks, but in some cases
the displayed texture resolution can be quite low. Since
sampling geometries typically do not jump around in
texture space, a predictive paging strategy seems quite
promising. Since texture memory and main memory to
texture memory bandwidth are very scarce resources, we
need to carefully plan how much memory and bandwidth
we invest for predictive texture loading. One option is to
just add all the neighbors of the current wish list to the wish
list and performing the collapse operation based on this

Viewer

(a) (b)

(c) (d)

Figure 2: (a) � (d) show the hierarchical insertion
process of a slice into the octree structure. The dark
tiles are required for displaying the slice, while the
light colored tiles are ignored. The process stops,
when the texture memory limit is reached or no
further refinement is possible. In this example, we
limit the amount of available texture memory to 9
bricks. The viewer is assumed to be on the lower left
side of the dataset. Bricks closest to the viewer are
refined first, which can be seen in (d), when the
process stops.

previous
slice

current
slice

(a) (b) (c)

Figure 3: (a) � (c) show the process of collapsing
bricks to satisfy a given reload limit of 4 bricks. The
dashed line shows the position of a cutting plane
during the previous frame. The bricks that were
resident in texture memory during the previous frame
are shown in yellow. The dark bricks are those bricks
that need to be reloaded for the current position of
the slice. (a) 5 bricks need to be reloaded, which is
more than our reload limit. (b) the brick that is
farthest away from the viewer, which is assumed to
be on the lower left corner of the dataset, is
collapsed. Unfortunately, we still need to reload 5
bricks. (c) we then collapse the next brick and his
neighbor and this time we reduce the number of new
bricks to 4, which is our limit.

55

Plate et al. / Octreemizer

© The Eurographics Association 2002.

extended list. Unfortunately, this requires such a large
neighborhood that we often achieve only really coarse
resolutions even when the sampling geometry is not
moving at all. It soon became clear that we need a more
precise estimate of the potentially needed bricks for the
next frames. We decided to use linear extrapolation of the
positions of the current sampling geometry based on their
motion from the previous frame to the current frame.
Copies of the current sampling geometry moved to the
predicted locations are also inserted into the octree to create
a separate wish list. The refinement and collapse processes
work level by level as described in the previous chapter and
alternate now between the two wish lists. For a given level
in the octree, the refinement process takes the regular wish
list first and refines it. Then the predicted wish list is
refined. This process continues until the texture memory
limit is reached. The collapse process works in the reverse
order. It collapses the predictive wish list first and then the
regular wish list until the reload limit is reached.

This linear prediction method avoids loading of large
neighborhoods when the sampling geometry moves slowly
or stops. In such cases pre-paging is effectively turned off
and the maximum available detail for the actual sampling
geometry is displayed. There are two trade-offs implied by
this method. The displayed texture resolution is lower
while moving a sampling geometry through the volume
than without prediction and coarse texture bricks might be
displayed, when the sampling geometry starts to move.
Figures 10a and 10b show snapshots for texture memory
paging with and without prediction.

3.3. Paging From Hard Disk Into Main Memory

We allocate a certain amount of main memory for texture
caching from the hard disk. A separate process takes over
the wish list generated by the actual sampling geometry and
basically computes a hull around the bricks contained in the
wish list tree. This hull contains all the neighbors, fathers,
and neighbors of neighbors and so on of the current wish
list. Basic priorities for loading these bricks are assigned
based on distance to the bricks contained in the wish list
tree and on the level in the hierarchy. The distance is
measured in bricks. There are first order neighbors, 2nd
order neighbors and so on. The elements of the wish list
tree have neighborhood distance zero. An inner brick has
26 neighbors with a distance of one, 98 bricks with a
distance of two, and so on. The scheme is shown in Figure
4. It gives priority to coarser levels, which should always
be present before adding in finer detail.

Many bricks might have the same priority, because they
have the same distance to a brick on the wish list. Here we
prioritize those bricks, which were created by the most
recent entries on the wish list. This means essentially that
we are assigning higher priorities to bricks that we are
moving towards than to those we are moving away from,

even if they have the same neighborhood distance. This is a
very important point, since it adds direction-dependent
prediction to the paging process. Figure 10c shows an
example.

When the available main memory cache is full, we need to
decide which bricks should be discarded. We adopted a
modified LRU strategy, which is based on the following
discard priority p:

),,(dlafp =

a denotes the number of frames since the brick has been
accessed, l is the octree level of the brick, and d is the
neighborhood distance to the wish list tree. Currently we
use a weighted sum of the parameters:

dklkakdlaf dla ++=),,(

with the following parameter settings:

1;16;1 === dla kkk

This discard function and the empirically chosen
parameters prefer to discard finer levels for bricks with the
same age as well as bricks with higher neighborhood
distance and the same age. The discard priority does not
seem to have a really crucial effect on the performance of
the system as long as there is a reasonable amount of main
memory cache allocated, but nevertheless there might be
better discard priority functions, which reduce the main
memory requirements.

4. Implementation

The Octreemizer code has been developed in C++ and on
top of OpenGL. There are only very few graphics calls in
the core library, which could be easily ported to support

19

1

18

2 3

16 15 13 12 9 8 9 12 13 15 16 18 19 20

14 11 7 6 7 11 14 17

5 4 5 10

level
4

3

2

1

0
brick size in one direction

Figure 4: Paging priorities given to bricks based on
their level in the octree and their neighborhood dis-
tance to bricks in the wish list tree. The bricks with a
gray background are elements of the wish list tree.

56

Plate et al. / Octreemizer

© The Eurographics Association 2002.

other graphics libraries. The original development took
place on SGI Onyx2 machines with Infinite Reality
graphics running SGI�s IRIX operating system. In the
meanwhile, Octreemizer has been ported to Windows and
Linux platforms.

The latest version of our software has been tightly
integrated with our virtual environment framework Avango
(Tramberend [10]), which is based on SGI�s Performer
graphics tool kit. Performer uses multi-processing to
pipeline application processing, view frustum culling, and
rendering. Our software makes effective use of this process
model to avoid stalling the graphics pipeline by performing
too much computation during the rendering process. Our
most time consuming task, the creation of brick wish list,
happens in the application process, which runs in parallel
with the culling and drawing process. This list is handed
over to the drawing process, which optimizes the list to
satisfy the reload limit, loads the required bricks (manual
texture paging), and draws the geometry. Another separate
process handles paging from the hard disk into main
memory.

We have integrated the described algorithms into our geo-
scientific prototype (Fröhlich et al.[5]). We use the system
to drive stereoscopic display devices like workbenches
[6,7], surround screen systems [3], and large multi-
projector wall displays. Users interactively manipulate
cutting planes and volume lenses as well as other data types
and visualization primitives.

5. Results

One of the most important parameters for texture paging is
the texture download rate. Figure 5 shows the results of our
benchmarks. We compared a SGI Onyx2 system with IR2
graphics with currently available PC graphics boards,
which support 3D-textures. The results show a strong
dependency of the download rate from the brick size. The
Onyx2 in particular reaches only a very small percentage of
the maximal download rate of 320 MB/s. The start up time
and the general overhead for block transfers seems quite
large and gets amortized only with larger blocks. The PC
boards perform quite well for smaller block sizes and the
dependency on the block size is less pronounced. These
results suggest to use large block sizes, but the trade-off is
that the actual number of bricks fitting into texture memory
gets less and less. The texture memory range from
approximately 45 MB on the ATI Radeon, which has a
combined frame buffer and texture memory of 64MB, to
actual 64MB on the Wildcat and InfiniteReality2 boards.
For practical applications, we found that brick sizes of
32x32x32, 64x32x32, 64x64x32, and 64x64x64 voxels are
a decent trade off between download rate and the
partitioning of the texture memory.

Another important factor is the bandwidth from the hard
disk into main memory. We performed some experiments
to assess which structure would be best for storing the
octree data structure on the hard disk. Our first option was
to store the whole octree in a single random access file. The
second option was to store each brick separately in a file. It
turned out that we got much better performance for random
brick access with the single octree file under the SGI IRIX
6.5 operating system. We stored the octree file on a 4-way
stripe set and on a single hard disk. The stripe set delivered
random bricks at about 18MB/s and the single disk at about
7 MB/s. Disk caching was turned off. The main memory to
texture memory bandwidth is much higher than the hard
disk to main memory bandwidth, but in typical applications
we do not want to spend the entire frame time with
downloading textures. This means that the effective
bandwidth for both transfers is approximately the same,
which keeps the main memory cache size within a
reasonable range.

We have done a set of performance tests with data sets of
120MB (64x64x32 bricks), 2.1GB (64x64x64 bricks), and
16GB(64x64x64 bricks). We moved a volume lens on a
circular track through the volume. There were 64 sampling
planes inside the volume lens for the first two tests (figure
6 and 7). The size of the volume lens varied between
0.15x0.15x0.15 and 0.3x0.3x0.3. The size of the volume
was 1.0x1.0x1.0 in each case. The texture memory reload
limit was set to 0.5 MB/frame. The window size was
600x600. We recorded the frame time for the static lens
and for the moving lens on an SGI Onyx2 system with IR2
graphics.

Bandwidth vs. brick size

0
20
40
60
80

100
120
140
160
180

16 32 64 128
brick size

do
w

nl
oa

d
ra

te
 M

B/
s

3D Labs Wildcat 4110 / AGP2
ATI Radeon DDR / AGP4

SGI Onyx2 InfiniteReality2

Figure 5: The download rates for texture bricks with
different sizes. Cubic bricks were used with the same
number of voxels in each direction.

57

Plate et al. / Octreemizer

© The Eurographics Association 2002.

Data set size 120 MB 2.1GB 16GB

Texture memory size 10 MB 64MB 64MB

Main memory cache 120 MB 400MB 400MB

Time per frame static 3.7ms 5.3ms 10ms

Time per frame moving 35ms 40ms 41ms

Figure 6: Performance measurements for a volume
rendering lens of size 0.15x0.15x0.15.

Data set size 120 MB 2.1GB 16GB

Texture memory size 10 MB 64MB 64MB

Main memory cache 120 MB 400MB 400MB

Time per frame static 7ms 15ms 14ms

Time per frame moving 48ms 45ms 46ms

Figure 7: Performance measurements for a volume
rendering lens 0.3x0.3x0.3.

Data set size 120 MB 2.1GB 16GB

Texture memory size 10 MB 64MB 64MB

Main memory cache 120 MB 400MB 400MB

Number of slices 128 47 56

Time per frame static 13ms 13ms 13ms

Time per frame moving 56ms 43ms 45ms

Figure 8: Performance measurements for a volume
rendering lens 0.3x0.3x0.3 and a variable slice number to
keep the time per frame constant for the static case.

The texture memory size was artificially reduced for the
smallest volume with 120MB to force texture paging. Hard
disk paging was only necessary at the beginning, because
the whole volume fit into the main memory cache. For the
2.1GB and 16GB volumes the measurements were pretty
similar as expected. The time per frame for the moving
volume rendering lens is dominated by the texture
downloads and the overhead associated with collapsing the
wish list. We found that 400MB of main memory seem to
be enough for manual movement of the lens through the
volume. Our system did not produce any cache misses
when running off a local hard disk. This is mainly due to
the limited bandwidth into the graphics card, which needs
to be shared between downloading triangles and volume
bricks.

We have just received a new computer which allowed us to
provide some more interesting and detailed results. The

hardware is a dual processor Xeon4 1.7GHz computer
equipped with 2GB RAM, and an ATI FireGL4 graphics
board with 128MB shared video and texture memory. As a
test case we used our 2.1GB seismic data with a resolution
of 1250x1300x1400 voxels (8 bit). The total size of the
octree is about 11000 bricks of size 643, which results in a
data set size of 2.7 GB. We used a window size of 600x600
with the view of the whole volume just fitting into the
window.

The volume lens had a size of 0.2x0.2x0.2 or 0.8% of the
total volume. We used 256 slices inside the volume lens.
The main memory cache was set to 1500MB. We reserved
90MB of the 128MB memory on the graphics board for
our volume bricks. The reload limit from main memory
into texture memory was set 2 MB / frame, since this
graphics card provides more than 300MB/s download from
main memory into texture memory. We achieved an
average frame rate of about 10 frames per second with this
configuration when moving the lens through the data set.
The frame time of 100ms consists of about 20ms for sorting
the 256 slices into the octree structure, 8ms for reloading
the bricks, and about 75ms for drawing the slices. All the
other operations necessary require less than 1ms in total.
An interesting observation was the following: We could
reduce the download time to 4ms, when we were
alternating between drawing slices and reloading bricks
instead of loading all the new bricks before drawing the
slices. This clearly shows that this graphics card is able to
interleave these operations and perform them in parallel.

For providing quantitative information about the influence
of our prediction strategy, we used the following two test
cases with and without prediction: the volume lens was
moved at two speeds through the volume on a circular track
taking 10 seconds respectively 40 seconds for one round.
Figure 9 shows a table with the minimum, maximum,
average, and standard deviation of the octree depth of all
the bricks contained in texture memory. It can be clearly
seen that the average brick depth is higher with prediction,
but more importantly the standard deviation is much
smaller resulting in a much more even appearance.

 min max average dev

slow / no P 3.6 5.0 4.85 0.18

slow / P 4.6 5.0 4.99 0.017

fast / no P 3.2 4.5 4.18 0.15

fast / P 4.1 4.4 4.22 0.05

Figure 9: The minimum, maximum, average, and standard
deviation of the octree depth of all the bricks contained in
texture memory for four test cases: the slow and fast moving
volume lens with and without prediction (abbreviated as P).
The maximum octree depth was 5.

58

Plate et al. / Octreemizer

© The Eurographics Association 2002.

Another convenient side effect of the system is that start up
times have been reduced to a minimum. Without the main
memory caching, the whole volume was loaded at start up
time, which took about two minutes for the 2GB volume.
Now the application starts up immediately and loads the
volume on demand.

6. Conclusions and Future Work

We have presented efficient paging and caching techniques
for dealing with multi-gigabyte volumes on small and
medium scale computers. Fill and download rates of
current and next generation PC graphics cards are very
encouraging and reach far beyond those available on the
very high end graphics engines today. In addition, full
support of 3D-texturing on these cards is just becoming
available. This makes porting to Linux systems and IA32
platforms worthwhile. Current and next generation high
end hardware provide larger texture memory in the range of
256MB to 1GB, which allows more detailed presentations.

Our current system does not provide an explicit frame rate
control mechanism. Users need to specify a fixed limit for
the texture download in megabytes per frame. By
dynamically updating this limit depending on the current
frame rate, we could provide a frame rate control
mechanism, which keeps the frame rate stable. This is an
important feature for interactive virtual environment
applications.

Currently, we have only done tests, where the volume data
resides on a local hard disk. We need to investigate how
our prediction techniques and caching strategies work for
larger data sets over network connections, since data bases
are often maintained on large file servers.

For real world applications, it is often necessary to support
multi-attribute volumes and several independent volumes at
once. These volumes need to share the available memory
and bandwidth. We are extending our caching and paging
strategies to be able to handle these cases efficiently.
Visualization techniques for multi-attribute data and several
volumes also need further development.

We are currently working on an interactive volume editing
system based on the described multi-resolution structure. In
this system, we support typical image processing operations
such as delete, enhance, filter, and shade. These are very
important operations to facilitate the exploration and
understanding of complex volumetric datasets.

Acknowledgments

This work was partially supported by the VRGeo
consortium. We thank the members of the consortium for
their valuable feedback during our meetings.

References

1. Brian Cabral, Nancy Cam, and Jim Foran.
Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware.
1994 Symposium on Volume Visualization, 91-98,
October 1994.

2. David Cline and Parris K. Egbert. Interactive display
of very large textures. Proceedings of IEEE
Visualization '98, 343-350, October 1998.

3. Cruz-Neira, C., Sandin, D.J., and DeFanti, T.A.
Surround-screen Projection-based Virtual Reality:
The Design and Implementation of the CAVE.
Proceedings of SIGGRAPH '93, 135-142, 1993.

4. T. J. Cullip and U. Neumann. Accelerating volume
reconstruction with 3d texture mapping hardware.
Technical Report TR93-027, Department of
Computer Science,University of North Carolina,
Chapel Hill, 1989.

5. B. Fröhlich, S. Barrass, B. Zehner, J. Plate, M.
Göbel: Exploring Geo-Scientific Data in Virtual
Environments, Proceedings IEEE Visualization
1999, 169-173, October 1999

6. Krüger, W., Bohn, C.-A., Fröhlich, B., Schüth, H.,
Strauss, W., and Wesche, G. The Responsive
Workbench. IEEE Computer, 42-48, July 1995

7. Krüger, W., and Fröhlich B. The Responsive
Workbench. IEEE Computer Graphics and
Applications, 12-15, May 1994

8. Eric LaMar, Bernd Hamann, and Kenneth I. Joy.
Multiresolution Techniques for Interactive Hardware
Texturing-based Volume Visualization. In IEEE
Visualization 99, 355-361, November 1999.

9. Eric LaMar, Mark A. Duchaineau, Bernd Hamann,
and Kenneth I. Joy. Multiresolution Techniques for
Interactive Texture-based Rendering of Arbitrarily
Oriented Cutting Planes, VisSym2000, 105-114,
2000.

10. Tramberend, H. Avocado: A Distributed Virtual
Reality Framework. Proceedings of VR�99
Conference, Houston, Texas, 14-21, March 1999.

11. Manfred Weiler, Ruediger Westermann, Chuck
Hansen, Kurt Zimmerman, Thomas Ertl. Level-Of-
Detail Volume Rendering via 3D Textures, IEEE
Symposium on Volume Visualization '00, 7-13,
2000

12. R. Westermann and T. Ertl. Efficiently using
graphics hardware in volume rendering applications.
In Computer Graphics (SIGGRAPH 98
Proceedings), 291�294, 1998

59

Plate et al. / Octreemizer

© The Eurographics Association 2002.

Figure 10: This figure shows snapshots from moving a volume rendering lens from left to right through a larger volume.
Texture paging from main memory into texture memory is shown in (a) and (b). No prediction is applied for (a). Prediction
is applied for (b). The green and red bricks are requested by the current wish list. Green bricks show the finest level. Red
bricks show a coarser level. The blue bricks are requested by the predictive wish list. It is easy to see that prediction
provides more detail and the pre-paging happens only in the direction of the movement. (c) shows the texture paging from
the hard disk into main memory. Green bricks contain actual geometry. Green and blue bricks are in main memory. Blue
bricks show the hull generated around the wish list. The brightness of the lines shows the age of the bricks. Bright colors
show younger bricks, darker colors show older bricks.

(a) (b) (c)

60

