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Abstract  

UFLIC (Unsteady Flow Line Integral Convolution) is an effective texture synthesis technique to visualize unsteady flow with 
enhanced temporal coherence, but it is time-consuming to generate. This paper presents an accelerated algorithm, called 
AUFLIC (Accelerated UFLIC), to speed up the UFLIC generation. Our algorithm saves, re-uses, and updates pathlines in the 
value scattering processes. A flexible seeding strategy is introduced so that a seed particle may be directly extracted from the 
previous scattering processes to make best use of the saved pathline so as to reduce computationally expensive pathline 
integration calculations. A dynamic activation-deactivation scheme is employed to maintain the fewest necessary pathlines. 
Avoiding excessive pathlines achieves acceleration and nearly-constant memory consumption. With very low memory cost, 
AUFLIC cuts UFLIC generation time nearly in half without any image quality degradation.  
  
CR Categories and Subject Descriptors:   1.3.3 [Computer  Graphics]: Picture / Image generation;  1.3.6 [Computer  
Graphics]: Methodology and Techniques;   1.4.3  [Image Processing]: Enhancement. 
 
Keywords:  flow field, unsteady flow visualization, pathline, texture synthesis, convolution, LIC, UFLIC. 
 

 
 
1.  Introduction 

Flow visualization is one of the most challenging issues in 
scientific visualization and plays an important role in 
computational fluid dynamics simulation, as well as 
meteorological and oceanographic modeling. Arrows, 
streamlines, and stream surfaces are straightforward 
approaches for steady flow visualization. Commodity 
graphics hardware can be exploited to accelerate primitive 
rendering to achieve real time visualization. However, 
inappropriate seed placement may either produce cluttered 
images or display the field only at a local, discrete, and 
coarse level. To address this problem, Wijk proposed a 

texture synthesis technique, spot noise 1, to visualize flow 
data by distributing tiny spots within the field and 
transforming them along the underlying vector directions. 
Furthermore, Cabral and Leedom 2 presented Line Integral 
Convolution (LIC) to compute each output pixel value by 
convolving a white noise texture along the windowed 
streamline symmetrically advected in both directions from 
the pixel. LIC takes advantage of a synthesized image to 
provide a global and continuous view with finer details. 
Since then, there have been many optimizations and 
extensions to the original LIC method including fast and 
resolution independent LIC 3, parallel LIC 4, LIC on 
curvilinear grids  5, LIC on arbitrary 3D polygonal surface  6, 
magnitude LIC based on multi-frequency noise 7, oriented 
LIC  8, enhanced LIC with flow feature detection  9, LIC 
incorporated with dye advection   10 and volume LIC   11, 12.   
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        The increasingly rapid progress in computing power and 
storage capacity enables numerical simulations of unsteady 
flow fields which usually involve hundreds of time steps, 
large-scale data sets, changing features and possibly moving 
grids. Unsteady flow visualization provides more insight into 
the evolving flow than can be revealed using instantaneous 
visualization techniques. Streaklines and pathlines 13  are 
basic time-dependent solutions to visualize unsteady flow by 
continuously tracking released particles. Unsteady flow 
volume  14, the adaptive tetrahedralization of streakline union, 
is an effective method which can be applied to multi-zoned 
curvilinear grids. Besides these traditional methods, there are 
some texture-based techniques for unsteady flow 
visualization. Forssell  5 extended LIC to unsteady flow fields 
by using pathlines as convolution paths. Vivek  15  introduced 
template textures to speed up LIC computations and applied 
the PLIC method to unsteady flow.  Furthermore, Bruno 16 
presented a hardware-accelerated texture advection algorithm.  

        The best known approach for unsteady flow 
visualization is UFLIC (Unsteady Flow Line Integral 
Convolution) proposed by Han-Wei Shen 17. UFLIC uses a 
time-accurate value-scattering scheme and a successive feed 
forward strategy to exploit both spatial and temporal 
correlations. For each scattering process which usually 
covers several time steps, a new seed is released from each 
pixel and scatters its texture value to the succeeding pixels 
along the newly advected pathline. A huge amount of UFLIC 
computation time is poured into intensive pathline integration 
calculations, which slows down the scattering processes. Up 
to now there has been little research reported on UFLIC 
acceleration. 

        To speed up UFLIC, we present an optimized algorithm 
called AUFLIC (Accelerated UFLIC). AUFLIC saves, re-
uses, and dynamically updates pathlines in the scattering 
processes to reduce pathline integration calculations to the 
minimum amount. AUFLIC is based on a flexible seeding 
strategy that a seed particle, instead of being always released, 
may be directly exacted from the previous scattering 
processes to make best use of the saved pathline. A dynamic 
activation-deactivation scheme which decides whether to 
save the current pathline or not is used to ensure there is only 
one seed particle from each pixel. The activation-deactivation 
scheme also helps maintain nearly-constant memory 
consumption.  

        This paper is organized as the follows. We first give an 
overview of the underlying UFLIC method. Next, we present 
our AUFLIC algorithm in detail. Then we give some results 
to demonstrate AUFLIC’s acceleration. We finally conclude 
this paper with some ideas for future work. 

2.  Background 

LIC is  an image-space texture synthesis  technique  which  is  

widely used to visualize steady flow fields. For each pixel of 
the output image, the correlated pixels are first located along 
the windowed streamline which is symmetrically advected in 
both directions from the pixel. The corresponding noise 
texture values are then convolved to obtain the output pixel 
value. Spatial coherence along the vector direction is well 
characterized and visualized using one dimensional low pass 
filtering. However, LIC can not be directly applied to 
unsteady flow visualization because pathline convolution 
fails to support spatial coherence, and on the other hand, the 
phase-shift technique does not maintain temporal coherence.  

      UFLIC 17 is an object-space texture synthesis technique 
which is used for visualizing unsteady flow fields. The two 
important principles of UFLIC, the time-accurate value-
scattering scheme and the successive feed-forward strategy, 
are based on the obvious physical phenomenon that a flow in 
the real world advects only along the forward direction over 
time. Upstream particles deposit their contributions to 
downstream particles, but not vice versa. For each scattering 
process, a new seed is released from each pixel and keeps 
scattering its texture value to the succeeding pixels along the 
newly advected pathline for several time steps. At the same 
time, each pixel maintains several convolution ring-buckets 
associated with different time-stamps to receive scattered 
values from upstream seed particles. Each frame is obtained 
by computing the convolution for each pixel in the 
convolution bucket associated with the corresponding  time-
stamp. Spatial coherence is therefore maintained. To achieve 
temporal coherence, each resulting texture is post-processed 
using a noise-jittered high pass filter and then fed forward as 
the input texture to the next scattering process. Figure 1 
illustrates the UFLIC pipeline. 

        In the preprocessing stage, vector data is usually 
clamped and scaled, but not normalized, to produce a 
desirable visual effect. During several time steps, i.e., the life 
span in computational time, a seed advects a pathline with 
the length proportional to the particle’s velocity magnitude. 
Generally, tens of succeeding pixels have to be located along 
the pathline using numerical integration calculations that 
involve temporal-spatial vector interpolations. In fact, over 
90% of UFLIC computation time is spent on intensive 
pathline integration calculations, which slows down the 
scattering processes. It is worth mentioning that a large 
amount of pathline information potentially useful for 
subsequent scattering processes is neglected. This situation is 
illustrated in Figure 2 where t, t+1, t+2, t+3, and t+4 denote 
the consecutive integer computational time steps and the 
scattering life span is 4 time steps. The active seed particle, St, 
advects a pathline passing through the four key points, i.e., 
St+1, St+2, St+3, and St+4 at the integer computational time steps. 
The four key points are not further used by UFLIC as eligible 
seed particles during the subsequent scattering processes 
along the existing pathline. Instead, new seed particles are 
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Figure 1:  UFLIC pipeline 
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Figure 2: The key points, St+1, St+2, St+3 and St+4, are not 
used by UFLIC as eligible seed particles during the 
subsequent scattering processes along the existing pathline 
advected by St, the active seed during the current scattering 
process. 
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released again and hence more time has to be consumed to 
advect the new pathlines. 

        In the following section, we present an optimized 
algorithm, AUFLIC, to speed up UFLIC. AUFLIC is based 

on the flexible seeding strategy by which it is not necessary 
to release a new seed from the pixel if a particle on the 
pathline saved in the previous scattering processes can be 
chosen as the seed. Pathlines are therefore saved, re-used, 
and updated during the scattering processes. Additionally, we 
employ a dynamic activation-deactivation scheme to ensure 
there is no more than one active seed from each pixel in a 
scattering process. Our algorithm reduces intensive pathline 
integration calculations to the minimum amount and hence 
accelerates UFLIC computation. 
 
3.  Optimized Algorithm 

In this section, we present AUFLIC, an accelerated UFLIC 
algorithm. We first introduce the flexible seeding strategy 
followed by the dynamic activation-deactivation scheme. We 
then discuss how to save, re-use, and update pathlines during 
the scattering processes. Finally we  give the algorithm 
description. 
 
3.1.  Flexible Seeding 

The time-accurate value-scattering scheme is aimed at 
releasing seed particles at a time step and then checking 
where they will leave their footprints during the life span. 
The original UFLIC method always releases a new seed 
particle from each pixel at the beginning of each scattering 
process (at a time step) even if the seed particles released 
during the previous scattering processes have not yet died. 
Additionally, a pathline will be terminated as soon as the 
seed particle stops value scattering even if the pathline has 
not run outside the field or encountered any critical points. 
Suppose the vector field resolution is nXRes × nYRes and the 
scattering life span is N, there are nearly N × nXRes × nYRes 
seed particles simultaneously active at time step n (n >= N-1). 
However, nXRes × nYRes seed particles at any time step are 
just enough to evaluate the flow evolution provided that there 
is a seed particle from each pixel. It is not necessary to 
release a new seed if a seed can be directly extracted from the 
pathlines advected during the previous scattering processes. 
The extracted seed can take advantage of re-using the saved 
pathline to reduce integration calculations. In Figure 2, the 
seed particle St will stop the current scattering process when 
the life span expires. However, St+1, St+2, St+3 and St+4, the key 
points through which the pathline passes at the integer 
computational times (time steps) may be further used as seed 
particles during the following scattering processes. Such key 
points are called potential seeds. They will be either activated 
or canceled in the subsequent scattering processes by the 
dynamic activation-deactivation scheme to be discussed in 
section 3.2. Potential seeds may not be located at pixel 
centers. The texture value of a potential seed can be obtained 
by bilinear interpolation or the nearest neighbor access. The 
flexible seeding strategy is based on as-long-as-possible 
pathline advection. A pathline will advect forward until one 
of the following cases occurs: 
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(a) the pathline in  the 1st  scattering process.         (b) the  pathline  in  the 2nd  scattering process. 

Figure 3: Save, re-use, and update pathlines (value scattering life span = 4 time steps). 
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it reaches the field boundaries, 
it encounters a critical point, or 
it is killed by the dynamic activation-deactivation scheme. 

3.2.  Dynamic Activation-Deactivation   

As pathlines are saved, re-used, and advected forward, an 
unavoidable situation is that there are many potential seeds 
passing through some pixels simultaneously while there are 
many pixels not visited by any potential seed. To visualize all 
flow features, new seed particles have to be released from the 
un-visited pixels. Gradually there may be more and more 
seeds simultaneously active in a scattering process, which 
will inevitably degrade the performance. Also, there will not 
be enough physical memory to save excessive pathlines. 

      To deal with this problem, we employ a dynamic 
activation-deactivation scheme by applying two mutexes, 
CurMutex and NxtMutex, to each pixel.  A mutex has two 
possible values (0 or 1) for exclusion purposes. A cleared 
mutex indicates there has been yet no active seed from the 
pixel while a set mutex means there has already been an 
active seed from the pixel. A CurMutex implies the pixel 
status in the ongoing scattering process and determines 
whether to release a new seed from the pixel or not. A 
NxtMutex indicates the pixel status in the next scattering 
process and checks whether to activate a potential seed and 
hence save the current pathline for the next scattering process 
or just to cancel it. The CurMutexes are refreshed with the 
NxtMutexes before each scattering process begins while the 
NxtMutexes are dynamically updated during the scattering 
process. Excessive potential seeds can be effectively 
deactivated by NxtMutexes and the corresponding pathlines 
are then deleted. The dynamic activation-deactivation scheme 
helps maintain the fewest necessary pathlines in a scattering 
process. Excessive pathlines are prevented from consuming 
memory or affecting acceleration performance. Given the 

field resolution nXRes × nYRes, memory consumption can be 
predetermined because there is never more than nXRes × 
nYRes pathlines which need to be saved for any scattering 
process. 

3.3.  Save, Re-use, and Update Pathlines 

The portion of a pathline advected during one time step is 
called a pathlet. A pathlet begins with an active seed or a 
potential seed followed by some non-seed particles (pixels). 
Once a potential seed is activated, the subsequent pathlets 
previously saved will be directly re-used during the current 
scattering process without on-the-fly pathline integration. All 
that needs to be done is to advect the existing pathline 
forward by only one pathlet. The saved and re-used pathline 
reduces  computationally expensive integration calculations 
and therefore  accelerates the scattering process. 

        Figure 3 illustrates how to save, re-use, and update 
pathlines. The CurMutex is cleared at the beginning of the 
first scattering process and a seed is therefore released from 
the pixel to advect four pathlets.  The seed scatters the texture 
value (white noise) to the succeeding pixels along the 
pathline and refreshes their convolution ring-buckets. Once 
the first potential seed is encountered, the corresponding 
NxtMutex is checked. If the NxtMutex is cleared, the 
following three pathlets are saved for the second scattering 
process as the first scattering process continues. The 
NxtMutex is then set to refuse other potential seeds and the 
release of a new seed from the pixel center. All pixel indices 
and integration step sizes are saved in a pixel ring-buffer. 
Other information to be saved includes: 

 all seeds’ buffer-indices:  to demarcate pathlets in a pixel 
ring-buffer by potential seeds and a tail seed. 

 pathline status:  whether the pathline runs outside the field, 
meets a critical point, or neither. 
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 tail seed coordinates:  to advect the pathline one pathlet 
forward during the next scattering process.  

        Finally, the saved pathline is added to a pathline list 
which maintains those pathlines to be re-used in the 
following scattering processes. 

        In the second scattering process, the saved pathline is 
accessed from the pathline list. The active seed, once the first 
potential seed in the first scattering process, scatters the 
noise-jittered high-pass-filtered texture value to the re-used 
pixels which are directly extracted from the pixel ring-buffer 
and to the pixels along the extended pathlet which is newly 
advected by the tail seed, once the last potential seed in the 
first process. The first potential seed, once the second 
potential seed in the first scattering process, is checked with 
the corresponding NxtMutex. If the NxtMutex is set, the 
pathline is deleted from the pathline list when the scattering 
process ends. Otherwise, the pathline remains in the pathline 
list and is updated by deleting the first pathlet and 
concatenating the newly extended pathlet. The NxtMutex is 
then updated with a set flag. The tail seed, pixel ring-buffer, 
and seeds’ buffer-indices are updated accordingly. 

        After the whole pathline list is accessed and updated, 
new seeds are then released from the un-seeded pixels. As the 
subsequent scattering processes continue, pathlines are 
dynamically saved, re-used, and updated  in the same routine 
as described above. 
 
3.4.  Algorithm Description 

AUFLIC is designed to accelerate the time-accurate value-
scattering process by reducing computationally expensive 
pathline integration calculations to the minimum amount. 
Pathlines are saved, re-used, and updated using the flexible 
seeding strategy and the dynamic activation-deactivation 
scheme. The algorithm is described as the follows. 

typedef    struct    tagPATHLINE    //pathline information 
{struct{int index; float size;} pixels[SIZE];//pixel ring-buffer 
  short  nSeedIndex[N]; //seed buffer-index: to locate pathlets 
  short  nTailIndex;    //tail buffer-index: to wrap-insert pixels    
  short  bDead;//vector==0? outside the field? or neither?(0,1)  
  struct{float x,   y;}  mTailSeed; //for further advection           
   tagPATHLINE       *next;         //pointer to the next pathline 
} *PATHLINE;         //added to the pathline list 

void      AUFLIC(int     nFrameIndex)    //produce a frame 
{if(nFrameIndex==0){NxtMutexes[]=0; PathlineList=NULL;}          
  CurMutexes[]=NxtMutexes[];                NxtMutexes[]=0;  
  if (nFrameIndex != 0)     /**re-use and update pathlines**/ 
  { for any pathline from PathlineList 
     { extract ActiveSeed from pathline and use LastTexture;  
        for(i = pathline->nSeedIndex[0];  i %SIZE < pathline-> 
        nTailIndex; i++)scatter ActiveSeed to pathline->pixels[i]; 
        for(i=0; i<N-1; i++) pathline->nSeedIndex[i]=pathline-> 
        nSeedIndex[i+1];     pathline->nSeedIndex[N-1]= -1; 

        int *pNxtMutex= &(NxtMutexes[the first potential seed]);         
        if( pathline->bDead == 0 )   //further advect the pathline 
       { let pathline->mTailSeed advect pathline for a pathlet;     
          while(∆t<1 time step & within the field & vector!=0) 
         {integrate 1 step,find a pixel; scatter ActiveSeed to pixel;                         
             if(*pNxtMutex==0)//remain active in the next process 
               {  wrap_insert pixel;      if (pixel is a potential seed)   
                 {pathline->mTailSeed=pixel;save tail buffer-index;}  
               } 
          }     //END while( ∆t<1……)          
        }       //END if( pathline->bDead == 0 ) 
       if( (*pNxtMutex==1) || ( pathline->nSeedIndex[0]== -1) )  
       delete pathline from PathlineList;   else *pNxtMutex = 1;     
     }          //END for any pathline from PathlineList                
  }             //END if (nFrameIndex != 0)   
  for(any pixel with CurMutex==0)   /**release new seeds**/ 
 { if (nFrameIndex==0)useWhiteNoise;  else use LastTexture;  
    release a NewSeed from the pixel;        pathline = NULL;              
    while(within the value scattering life span) 
    { if (vector==0) {if (pathline) pathline->bDead=1; break;}         
      integrate and check potential seeds,      then enter a pixel; 
      if(out of the field){if(pathline)pathline->bDead=1; break;}                            
      scatter NewSeed  texture value to pixel; 
      if((pixel is 1st potential seed)&(pixel’s NxtMutex== 0)) 
       { pixel’s NxtMutex=1;        pathline = new PATHLINE; 
          pathline->nSeedIndex[0]=0; 
          pathline->nSeedIndex[1…N-1]=-1;pathline->bDead=0;      
          save pixel to pathline;   insert pathline  to PathlineList;   
        }  else  if(pathline != NULL) {  save pixel to pathline;    
           if(pixel is a potential seed)  save seed’s buffer-index;  
           if(pixel is a  tail        seed)  save tail seed’s coordinates; 
        }   //END if(…) 
     }      //END while(within the value scattering life span)           
  }         //END for(any pixel with CurMutex == 0)       
   bucket convolution;          output frame = resulting texture;  
   LastTexture=NoiseJitteredHighPassFilter(resulting texture); 
}           //END AUFLIC 
 
4.  Results And Discussions  

To demonstrate AUFLIC acceleration, we apply both UFLIC 
and AUFLIC to two 2D unsteady flow data sets. The weather 
data set has 41 time steps and the resolution is 576 × 291. 
The vortex data set has 101 time steps and the resolution is 
397 × 397. The machine used for the experiments is a SGI 
Onyx2 with four 400MHZ MIPS R12000 processors and 
4GB memory.  

        AUFLIC is designed to speed up UFLIC computation 
by accelerating the time-accurate value-scattering process in 
the UFLIC pipeline (Figure 1). AUFLIC and UFLIC use 
exactly the same code for data loading, bucket convolution, 
noise-jittered high pass filtering, color mapping, and image 
output, but not for value scattering. In the data loading 
process, we do not normalize vectors in order to produce a 
desirable visual effect. Instead, we scale and clamp the 
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Figure 4:  AUFLIC compared with UFLIC in image quality. Unsteady weather data set (576 × 291). 

(b) AUFLIC image.  

(a) UFLIC image.  

original data to a limited magnitude range so that a seed 
particle scatters the texture value to a limited number of 
succeeding pixels along the pathline during the life span. A 
maximum number is therefore obtained for the AUFLIC 
pixel ring-buffer size. In all the experiments, we set the life 
span to 4 time steps for both UFLIC and AUFLIC. AUFLIC 
pixel ring-buffer size is set to 72.  For the two unsteady flow 
data sets, 37 frames and 97 frames are produced respectively.  

        Figure 4 shows the images of the unsteady weather data 
set produced by UFLIC and AUFLIC respectively (see color 
section). Figure 5 shows the images of the unsteady vortex 
data set generated by UFLIC and AUFLIC respectively (see 
color section). All the images are color mapped based on 
vector magnitude with blue being lowest and red highest. The 
images produced by AUFLIC are nearly the same as those 
produced by UFLIC. No flow features in the UFLIC images 
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(a) UFLIC image. 

Figure 5: AUFLIC compared with UFLIC in image quality. Unsteady vortex data set (397 × 397). 

(b) AUFLIC image. 

are missing in the AUFLIC images and no additional artifacts 
are introduced by AUFLIC. The reason is that AUFLIC saves 
all that is needed in the scattering process: the contributed 
pixels along the pathline and the corresponding integration 
step sizes as the convolution weights. Furthermore, the 

fading effect factors can also be computed from the saved 
integration step sizes. AUFLIC uses the flexible seeding 
strategy, so seed particles extracted directly from saved 
pathlines may not be located at pixel centers and therefore 
they are not evenly distributed in a scattering process.  
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Method Load data Scattering Convolution Filtering Color & Output Total AUFLIC/UFLIC 
UFLIC 13.19 1551.17 9.32 8.42 2.39 1584.49 

AUFLIC 12.58  869.89 9.05 8.64 2.35 902.51 
56.96 % 

Resolution: 397 × 397.    Frames: 97.    Life span: 4 time steps.    AUFLIC pixel ring-buffer size: 72. 
Table 2: AUFLIC compared with UFLIC in breakdown of the computation time (in seconds) for the vortex data set. 

Method AUFLIC UFLIC 
released        pathlines 1762823 6201792 
release          percentage 28.42 % 100 % 
un-reused     pathlines 568155 6201792 
re-used         pathlines 1194668 0 
re-use           percentage 67.77 % 0 % 
total  re-use  times 4438969 0 
average re-use times 3.72 0 
deactivated  pathlines 561402 0 
total             pixels 146728381 309044731 
average pathline length 83.23pixels 49.83pixels 

(a) Weather data set. 

Method AUFLIC UFLIC 
released        pathlines 3500366 15288073 
release          percentage 22.90 % 100 % 
un-reused     pathlines 1263664 15288073 
re-used         pathlines 2236702 0 
re-use           percentage 63.90 % 0 % 
total  re-use   times 11787707 0 
average re-use times 5.27 0 
deactivated  pathlines 1511223 0 
total             pixels 357898668 739725898 
average pathline length 102.25pixels 48.39pixels 

(b) Vortex data set. 

Method Load data Scattering Convolution Filtering Color & Output Total AUFLIC/UFLIC 
UFLIC 5.00 635.35 3.77 3.37 1.06 648.55 

AUFLIC 4.77 330.35 3.86 3.43 0.93 343.34 
52.94 % 

Resolution: 576 × 291.    Frames: 37.    Life span: 4 time steps.    AUFLIC pixel ring-buffer size: 72. 
Table 1: AUFLIC compared with UFLIC in breakdown of the computation time (in seconds) for the weather data set. 

*: deactivated pathlines: those re-used and later deleted from the pathline list by the dynamic activation-deactivation scheme. 
Table 3: Pathline statistics for UFLIC and AUFLIC.  

Figure 6: The nearly-constant and low memory consumption of  AUFLIC for saving pathlines. 
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Fortunately, we have not noticed any side effects even 
without using texture interpolation. We have also considered 
saving only pixel indices without integration step sizes. For 
this case, value scattering is simplified by using a unit 
weighting scheme. Greater acceleration can be achieved and 
less memory is needed while the images produced are still 
comparable with UFLIC images. Note that all the 
experiments here are based on the standard AUFLIC.  

        Table 1 and Table 2 show the breakdowns of the 
computation time used by UFLIC and AUFLIC for 
visualizing the two data sets. Theoretically, AUFLIC should 
consume the same amount of time as UFLIC in data loading, 
bucket convolution, noise-jittered high pass filtering, color 
mapping and image output, because they use the same code 
for these processes. However, AUFLIC uses much less time 
in the scattering process than UFLIC. As for the whole 
pipeline, AUFLIC cuts UFLIC generation time nearly in half 
without any image quality degradation.  

        Table 3 shows various statistics for both UFLIC and 
AUFLIC. Compared with UFLIC, AUFLIC releases 
significantly less pathlines because many pathlines are re-
used for several times. The pathlines are therefore advected 
longer than those in UFLIC. The dynamic activation-
deactivation scheme effectively prevents excessive pathlines 
from consuming memory or degrading the performance. 
Figure 6 illustrates the additional memory AUFLIC requires 
for saving pathlines. Since we use a fixed-size pixel ring-
buffer to save a pathline, the memory cost is proportional to 
the number of the saved pathlines which is never more than 
the resolution (nXRes × nYRes) of the field because of the 
dynamic activation-deactivation scheme. Thus the memory 
requirements are reasonable. Generally, after three or four 
time steps (ie., after three or four scattering processes), 
memory consumption is small and varies little. The small 
memory footprint makes it possible to apply AUFLIC to 
large-scale unsteady flow visualization. 

 
5.  Conclusions And Future Work 

We have presented AUFLIC, an Accelerated Unsteady Flow 
Line Integral Convolution algorithm, to speed up UFLIC 
computation for unsteady flow visualization. Our optimized 
algorithm uses a flexible seeding strategy and a dynamic 
activation-deactivation scheme to save, re-use, and update 
pathlines. A large amount of computationally-expensive 
integration calculations are avoided and the time-accurate 
value-scattering process is therefore accelerated. AUFLIC 
can produce the same quality images using half the time of 
UFLIC at very low memory cost.  

        As for future work, we would like to further enhance 
AUFLIC and apply it to three-dimensional unsteady flow 
data sets. How to efficiently encode pathline information to 

reduce memory cost is a challenging problem for three-
dimensional AUFLIC.  
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(a) UFLIC image.  

Figure 4: AUFLIC compared with UFLIC in image quality. Unsteady weather data set (576 × 291). 

(b) AUFLIC image.  

AUFLIC: An Accelerated Algorithm For Unsteady Flow Line Integral Convolution: ZhanPing Liu, Robert James Moorhead II 

                             (a) UFLIC image                                                                             (b) AUFLIC image 
Figure 5: AUFLIC compared with UFLIC in image quality. Unsteady vortex data set (397 × 397). 
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