

AUFLIC: An Accelerated Algorithm For
Unsteady Flow Line Integral Convolution

ZhanPing Liu Robert James Moorhead II

zhanping@erc.msstate.edu rjm@erc.msstate.edu

NSF Engineering Research Center, Mississippi State University, MS, USA

Abstract

UFLIC (Unsteady Flow Line Integral Convolution) is an effective texture synthesis technique to visualize unsteady flow with
enhanced temporal coherence, but it is time-consuming to generate. This paper presents an accelerated algorithm, called
AUFLIC (Accelerated UFLIC), to speed up the UFLIC generation. Our algorithm saves, re-uses, and updates pathlines in the
value scattering processes. A flexible seeding strategy is introduced so that a seed particle may be directly extracted from the
previous scattering processes to make best use of the saved pathline so as to reduce computationally expensive pathline
integration calculations. A dynamic activation-deactivation scheme is employed to maintain the fewest necessary pathlines.
Avoiding excessive pathlines achieves acceleration and nearly-constant memory consumption. With very low memory cost,
AUFLIC cuts UFLIC generation time nearly in half without any image quality degradation.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture / Image generation; 1.3.6 [Computer
Graphics]: Methodology and Techniques; 1.4.3 [Image Processing]: Enhancement.

Keywords: flow field, unsteady flow visualization, pathline, texture synthesis, convolution, LIC, UFLIC.

1. Introduction

Flow visualization is one of the most challenging issues in
scientific visualization and plays an important role in
computational fluid dynamics simulation, as well as
meteorological and oceanographic modeling. Arrows,
streamlines, and stream surfaces are straightforward
approaches for steady flow visualization. Commodity
graphics hardware can be exploited to accelerate primitive
rendering to achieve real time visualization. However,
inappropriate seed placement may either produce cluttered
images or display the field only at a local, discrete, and
coarse level. To address this problem, Wijk proposed a

texture synthesis technique, spot noise 1, to visualize flow
data by distributing tiny spots within the field and
transforming them along the underlying vector directions.
Furthermore, Cabral and Leedom 2 presented Line Integral
Convolution (LIC) to compute each output pixel value by
convolving a white noise texture along the windowed
streamline symmetrically advected in both directions from
the pixel. LIC takes advantage of a synthesized image to
provide a global and continuous view with finer details.
Since then, there have been many optimizations and
extensions to the original LIC method including fast and
resolution independent LIC 3, parallel LIC 4, LIC on
curvilinear grids 5, LIC on arbitrary 3D polygonal surface 6,
magnitude LIC based on multi-frequency noise 7, oriented
LIC 8, enhanced LIC with flow feature detection 9, LIC
incorporated with dye advection 10 and volume LIC 11, 12.

4343

http://www.eg.org
http://diglib.eg.org

 The increasingly rapid progress in computing power and
storage capacity enables numerical simulations of unsteady
flow fields which usually involve hundreds of time steps,
large-scale data sets, changing features and possibly moving
grids. Unsteady flow visualization provides more insight into
the evolving flow than can be revealed using instantaneous
visualization techniques. Streaklines and pathlines 13 are
basic time-dependent solutions to visualize unsteady flow by
continuously tracking released particles. Unsteady flow
volume 14, the adaptive tetrahedralization of streakline union,
is an effective method which can be applied to multi-zoned
curvilinear grids. Besides these traditional methods, there are
some texture-based techniques for unsteady flow
visualization. Forssell 5 extended LIC to unsteady flow fields
by using pathlines as convolution paths. Vivek 15 introduced
template textures to speed up LIC computations and applied
the PLIC method to unsteady flow. Furthermore, Bruno 16
presented a hardware-accelerated texture advection algorithm.

 The best known approach for unsteady flow
visualization is UFLIC (Unsteady Flow Line Integral
Convolution) proposed by Han-Wei Shen 17. UFLIC uses a
time-accurate value-scattering scheme and a successive feed
forward strategy to exploit both spatial and temporal
correlations. For each scattering process which usually
covers several time steps, a new seed is released from each
pixel and scatters its texture value to the succeeding pixels
along the newly advected pathline. A huge amount of UFLIC
computation time is poured into intensive pathline integration
calculations, which slows down the scattering processes. Up
to now there has been little research reported on UFLIC
acceleration.

 To speed up UFLIC, we present an optimized algorithm
called AUFLIC (Accelerated UFLIC). AUFLIC saves, re-
uses, and dynamically updates pathlines in the scattering
processes to reduce pathline integration calculations to the
minimum amount. AUFLIC is based on a flexible seeding
strategy that a seed particle, instead of being always released,
may be directly exacted from the previous scattering
processes to make best use of the saved pathline. A dynamic
activation-deactivation scheme which decides whether to
save the current pathline or not is used to ensure there is only
one seed particle from each pixel. The activation-deactivation
scheme also helps maintain nearly-constant memory
consumption.

 This paper is organized as the follows. We first give an
overview of the underlying UFLIC method. Next, we present
our AUFLIC algorithm in detail. Then we give some results
to demonstrate AUFLIC’s acceleration. We finally conclude
this paper with some ideas for future work.

2. Background

LIC is an image-space texture synthesis technique which is

widely used to visualize steady flow fields. For each pixel of
the output image, the correlated pixels are first located along
the windowed streamline which is symmetrically advected in
both directions from the pixel. The corresponding noise
texture values are then convolved to obtain the output pixel
value. Spatial coherence along the vector direction is well
characterized and visualized using one dimensional low pass
filtering. However, LIC can not be directly applied to
unsteady flow visualization because pathline convolution
fails to support spatial coherence, and on the other hand, the
phase-shift technique does not maintain temporal coherence.

 UFLIC 17 is an object-space texture synthesis technique
which is used for visualizing unsteady flow fields. The two
important principles of UFLIC, the time-accurate value-
scattering scheme and the successive feed-forward strategy,
are based on the obvious physical phenomenon that a flow in
the real world advects only along the forward direction over
time. Upstream particles deposit their contributions to
downstream particles, but not vice versa. For each scattering
process, a new seed is released from each pixel and keeps
scattering its texture value to the succeeding pixels along the
newly advected pathline for several time steps. At the same
time, each pixel maintains several convolution ring-buckets
associated with different time-stamps to receive scattered
values from upstream seed particles. Each frame is obtained
by computing the convolution for each pixel in the
convolution bucket associated with the corresponding time-
stamp. Spatial coherence is therefore maintained. To achieve
temporal coherence, each resulting texture is post-processed
using a noise-jittered high pass filter and then fed forward as
the input texture to the next scattering process. Figure 1
illustrates the UFLIC pipeline.

 In the preprocessing stage, vector data is usually
clamped and scaled, but not normalized, to produce a
desirable visual effect. During several time steps, i.e., the life
span in computational time, a seed advects a pathline with
the length proportional to the particle’s velocity magnitude.
Generally, tens of succeeding pixels have to be located along
the pathline using numerical integration calculations that
involve temporal-spatial vector interpolations. In fact, over
90% of UFLIC computation time is spent on intensive
pathline integration calculations, which slows down the
scattering processes. It is worth mentioning that a large
amount of pathline information potentially useful for
subsequent scattering processes is neglected. This situation is
illustrated in Figure 2 where t, t+1, t+2, t+3, and t+4 denote
the consecutive integer computational time steps and the
scattering life span is 4 time steps. The active seed particle, St,
advects a pathline passing through the four key points, i.e.,
St+1, St+2, St+3, and St+4 at the integer computational time steps.
The four key points are not further used by UFLIC as eligible
seed particles during the subsequent scattering processes
along the existing pathline. Instead, new seed particles are

44

Time-accurate value-scattering process

Figure 1: UFLIC pipeline

 if within life span

t =
 t

+
1

refresh convolution ring-buckets

pathline integration

Vector data buffer

Bucket convolution

Noise-jittered high pass filter

Fe
ed

 te
xt

ur
e

fo
rw

ar
d

Frame

Input texture

Disk files White noise

always release new seeds

St St+1

Figure 2: The key points, St+1, St+2, St+3 and St+4, are not
used by UFLIC as eligible seed particles during the
subsequent scattering processes along the existing pathline
advected by St, the active seed during the current scattering
process.

●

St+3

St+4

● ● St+2

●

●

released again and hence more time has to be consumed to
advect the new pathlines.

 In the following section, we present an optimized
algorithm, AUFLIC, to speed up UFLIC. AUFLIC is based

on the flexible seeding strategy by which it is not necessary
to release a new seed from the pixel if a particle on the
pathline saved in the previous scattering processes can be
chosen as the seed. Pathlines are therefore saved, re-used,
and updated during the scattering processes. Additionally, we
employ a dynamic activation-deactivation scheme to ensure
there is no more than one active seed from each pixel in a
scattering process. Our algorithm reduces intensive pathline
integration calculations to the minimum amount and hence
accelerates UFLIC computation.

3. Optimized Algorithm

In this section, we present AUFLIC, an accelerated UFLIC
algorithm. We first introduce the flexible seeding strategy
followed by the dynamic activation-deactivation scheme. We
then discuss how to save, re-use, and update pathlines during
the scattering processes. Finally we give the algorithm
description.

3.1. Flexible Seeding

The time-accurate value-scattering scheme is aimed at
releasing seed particles at a time step and then checking
where they will leave their footprints during the life span.
The original UFLIC method always releases a new seed
particle from each pixel at the beginning of each scattering
process (at a time step) even if the seed particles released
during the previous scattering processes have not yet died.
Additionally, a pathline will be terminated as soon as the
seed particle stops value scattering even if the pathline has
not run outside the field or encountered any critical points.
Suppose the vector field resolution is nXRes × nYRes and the
scattering life span is N, there are nearly N × nXRes × nYRes
seed particles simultaneously active at time step n (n >= N-1).
However, nXRes × nYRes seed particles at any time step are
just enough to evaluate the flow evolution provided that there
is a seed particle from each pixel. It is not necessary to
release a new seed if a seed can be directly extracted from the
pathlines advected during the previous scattering processes.
The extracted seed can take advantage of re-using the saved
pathline to reduce integration calculations. In Figure 2, the
seed particle St will stop the current scattering process when
the life span expires. However, St+1, St+2, St+3 and St+4, the key
points through which the pathline passes at the integer
computational times (time steps) may be further used as seed
particles during the following scattering processes. Such key
points are called potential seeds. They will be either activated
or canceled in the subsequent scattering processes by the
dynamic activation-deactivation scheme to be discussed in
section 3.2. Potential seeds may not be located at pixel
centers. The texture value of a potential seed can be obtained
by bilinear interpolation or the nearest neighbor access. The
flexible seeding strategy is based on as-long-as-possible
pathline advection. A pathline will advect forward until one
of the following cases occurs:

45

(a) the pathline in the 1st scattering process. (b) the pathline in the 2nd scattering process.

Figure 3: Save, re-use, and update pathlines (value scattering life span = 4 time steps).

saved for the 2nd scattering process

(a)

 saved for the 3rd scattering process

re-used part

2 3 4(b)

time step

: active seed. : non-seed particle : potential seed. : tail seed, the last potential seed in a process.

0 1 2 3 4 5

extended part

4

5

0

1

2 31

it reaches the field boundaries,
it encounters a critical point, or
it is killed by the dynamic activation-deactivation scheme.

3.2. Dynamic Activation-Deactivation

As pathlines are saved, re-used, and advected forward, an
unavoidable situation is that there are many potential seeds
passing through some pixels simultaneously while there are
many pixels not visited by any potential seed. To visualize all
flow features, new seed particles have to be released from the
un-visited pixels. Gradually there may be more and more
seeds simultaneously active in a scattering process, which
will inevitably degrade the performance. Also, there will not
be enough physical memory to save excessive pathlines.

 To deal with this problem, we employ a dynamic
activation-deactivation scheme by applying two mutexes,
CurMutex and NxtMutex, to each pixel. A mutex has two
possible values (0 or 1) for exclusion purposes. A cleared
mutex indicates there has been yet no active seed from the
pixel while a set mutex means there has already been an
active seed from the pixel. A CurMutex implies the pixel
status in the ongoing scattering process and determines
whether to release a new seed from the pixel or not. A
NxtMutex indicates the pixel status in the next scattering
process and checks whether to activate a potential seed and
hence save the current pathline for the next scattering process
or just to cancel it. The CurMutexes are refreshed with the
NxtMutexes before each scattering process begins while the
NxtMutexes are dynamically updated during the scattering
process. Excessive potential seeds can be effectively
deactivated by NxtMutexes and the corresponding pathlines
are then deleted. The dynamic activation-deactivation scheme
helps maintain the fewest necessary pathlines in a scattering
process. Excessive pathlines are prevented from consuming
memory or affecting acceleration performance. Given the

field resolution nXRes × nYRes, memory consumption can be
predetermined because there is never more than nXRes ×
nYRes pathlines which need to be saved for any scattering
process.

3.3. Save, Re-use, and Update Pathlines

The portion of a pathline advected during one time step is
called a pathlet. A pathlet begins with an active seed or a
potential seed followed by some non-seed particles (pixels).
Once a potential seed is activated, the subsequent pathlets
previously saved will be directly re-used during the current
scattering process without on-the-fly pathline integration. All
that needs to be done is to advect the existing pathline
forward by only one pathlet. The saved and re-used pathline
reduces computationally expensive integration calculations
and therefore accelerates the scattering process.

 Figure 3 illustrates how to save, re-use, and update
pathlines. The CurMutex is cleared at the beginning of the
first scattering process and a seed is therefore released from
the pixel to advect four pathlets. The seed scatters the texture
value (white noise) to the succeeding pixels along the
pathline and refreshes their convolution ring-buckets. Once
the first potential seed is encountered, the corresponding
NxtMutex is checked. If the NxtMutex is cleared, the
following three pathlets are saved for the second scattering
process as the first scattering process continues. The
NxtMutex is then set to refuse other potential seeds and the
release of a new seed from the pixel center. All pixel indices
and integration step sizes are saved in a pixel ring-buffer.
Other information to be saved includes:

 all seeds’ buffer-indices: to demarcate pathlets in a pixel
ring-buffer by potential seeds and a tail seed.

 pathline status: whether the pathline runs outside the field,
meets a critical point, or neither.

46

 tail seed coordinates: to advect the pathline one pathlet
forward during the next scattering process.

 Finally, the saved pathline is added to a pathline list
which maintains those pathlines to be re-used in the
following scattering processes.

 In the second scattering process, the saved pathline is
accessed from the pathline list. The active seed, once the first
potential seed in the first scattering process, scatters the
noise-jittered high-pass-filtered texture value to the re-used
pixels which are directly extracted from the pixel ring-buffer
and to the pixels along the extended pathlet which is newly
advected by the tail seed, once the last potential seed in the
first process. The first potential seed, once the second
potential seed in the first scattering process, is checked with
the corresponding NxtMutex. If the NxtMutex is set, the
pathline is deleted from the pathline list when the scattering
process ends. Otherwise, the pathline remains in the pathline
list and is updated by deleting the first pathlet and
concatenating the newly extended pathlet. The NxtMutex is
then updated with a set flag. The tail seed, pixel ring-buffer,
and seeds’ buffer-indices are updated accordingly.

 After the whole pathline list is accessed and updated,
new seeds are then released from the un-seeded pixels. As the
subsequent scattering processes continue, pathlines are
dynamically saved, re-used, and updated in the same routine
as described above.

3.4. Algorithm Description

AUFLIC is designed to accelerate the time-accurate value-
scattering process by reducing computationally expensive
pathline integration calculations to the minimum amount.
Pathlines are saved, re-used, and updated using the flexible
seeding strategy and the dynamic activation-deactivation
scheme. The algorithm is described as the follows.

typedef struct tagPATHLINE //pathline information
{struct{int index; float size;} pixels[SIZE];//pixel ring-buffer
 short nSeedIndex[N]; //seed buffer-index: to locate pathlets
 short nTailIndex; //tail buffer-index: to wrap-insert pixels
 short bDead;//vector==0? outside the field? or neither?(0,1)
 struct{float x, y;} mTailSeed; //for further advection
 tagPATHLINE *next; //pointer to the next pathline
} *PATHLINE; //added to the pathline list

void AUFLIC(int nFrameIndex) //produce a frame
{if(nFrameIndex==0){NxtMutexes[]=0; PathlineList=NULL;}
 CurMutexes[]=NxtMutexes[]; NxtMutexes[]=0;
 if (nFrameIndex != 0) /**re-use and update pathlines**/
 { for any pathline from PathlineList
 { extract ActiveSeed from pathline and use LastTexture;
 for(i = pathline->nSeedIndex[0]; i %SIZE < pathline->
 nTailIndex; i++)scatter ActiveSeed to pathline->pixels[i];
 for(i=0; i<N-1; i++) pathline->nSeedIndex[i]=pathline->
 nSeedIndex[i+1]; pathline->nSeedIndex[N-1]= -1;

 int *pNxtMutex= &(NxtMutexes[the first potential seed]);
 if(pathline->bDead == 0) //further advect the pathline
 { let pathline->mTailSeed advect pathline for a pathlet;
 while(∆t<1 time step & within the field & vector!=0)
 {integrate 1 step,find a pixel; scatter ActiveSeed to pixel;
 if(*pNxtMutex==0)//remain active in the next process
 { wrap_insert pixel; if (pixel is a potential seed)
 {pathline->mTailSeed=pixel;save tail buffer-index;}
 }
 } //END while(∆t<1……)
 } //END if(pathline->bDead == 0)
 if((*pNxtMutex==1) || (pathline->nSeedIndex[0]== -1))
 delete pathline from PathlineList; else *pNxtMutex = 1;
 } //END for any pathline from PathlineList
 } //END if (nFrameIndex != 0)
 for(any pixel with CurMutex==0) /**release new seeds**/
 { if (nFrameIndex==0)useWhiteNoise; else use LastTexture;
 release a NewSeed from the pixel; pathline = NULL;
 while(within the value scattering life span)
 { if (vector==0) {if (pathline) pathline->bDead=1; break;}
 integrate and check potential seeds, then enter a pixel;
 if(out of the field){if(pathline)pathline->bDead=1; break;}
 scatter NewSeed texture value to pixel;
 if((pixel is 1st potential seed)&(pixel’s NxtMutex== 0))
 { pixel’s NxtMutex=1; pathline = new PATHLINE;
 pathline->nSeedIndex[0]=0;
 pathline->nSeedIndex[1…N-1]=-1;pathline->bDead=0;
 save pixel to pathline; insert pathline to PathlineList;
 } else if(pathline != NULL) { save pixel to pathline;
 if(pixel is a potential seed) save seed’s buffer-index;
 if(pixel is a tail seed) save tail seed’s coordinates;
 } //END if(…)
 } //END while(within the value scattering life span)
 } //END for(any pixel with CurMutex == 0)
 bucket convolution; output frame = resulting texture;
 LastTexture=NoiseJitteredHighPassFilter(resulting texture);
} //END AUFLIC

4. Results And Discussions

To demonstrate AUFLIC acceleration, we apply both UFLIC
and AUFLIC to two 2D unsteady flow data sets. The weather
data set has 41 time steps and the resolution is 576 × 291.
The vortex data set has 101 time steps and the resolution is
397 × 397. The machine used for the experiments is a SGI
Onyx2 with four 400MHZ MIPS R12000 processors and
4GB memory.

 AUFLIC is designed to speed up UFLIC computation
by accelerating the time-accurate value-scattering process in
the UFLIC pipeline (Figure 1). AUFLIC and UFLIC use
exactly the same code for data loading, bucket convolution,
noise-jittered high pass filtering, color mapping, and image
output, but not for value scattering. In the data loading
process, we do not normalize vectors in order to produce a
desirable visual effect. Instead, we scale and clamp the

47

Figure 4: AUFLIC compared with UFLIC in image quality. Unsteady weather data set (576 × 291).

(b) AUFLIC image.

(a) UFLIC image.

original data to a limited magnitude range so that a seed
particle scatters the texture value to a limited number of
succeeding pixels along the pathline during the life span. A
maximum number is therefore obtained for the AUFLIC
pixel ring-buffer size. In all the experiments, we set the life
span to 4 time steps for both UFLIC and AUFLIC. AUFLIC
pixel ring-buffer size is set to 72. For the two unsteady flow
data sets, 37 frames and 97 frames are produced respectively.

 Figure 4 shows the images of the unsteady weather data
set produced by UFLIC and AUFLIC respectively (see color
section). Figure 5 shows the images of the unsteady vortex
data set generated by UFLIC and AUFLIC respectively (see
color section). All the images are color mapped based on
vector magnitude with blue being lowest and red highest. The
images produced by AUFLIC are nearly the same as those
produced by UFLIC. No flow features in the UFLIC images

48

(a) UFLIC image.

Figure 5: AUFLIC compared with UFLIC in image quality. Unsteady vortex data set (397 × 397).

(b) AUFLIC image.

are missing in the AUFLIC images and no additional artifacts
are introduced by AUFLIC. The reason is that AUFLIC saves
all that is needed in the scattering process: the contributed
pixels along the pathline and the corresponding integration
step sizes as the convolution weights. Furthermore, the

fading effect factors can also be computed from the saved
integration step sizes. AUFLIC uses the flexible seeding
strategy, so seed particles extracted directly from saved
pathlines may not be located at pixel centers and therefore
they are not evenly distributed in a scattering process.

49

Method Load data Scattering Convolution Filtering Color & Output Total AUFLIC/UFLIC
UFLIC 13.19 1551.17 9.32 8.42 2.39 1584.49

AUFLIC 12.58 869.89 9.05 8.64 2.35 902.51
56.96 %

Resolution: 397 × 397. Frames: 97. Life span: 4 time steps. AUFLIC pixel ring-buffer size: 72.
Table 2: AUFLIC compared with UFLIC in breakdown of the computation time (in seconds) for the vortex data set.

Method AUFLIC UFLIC
released pathlines 1762823 6201792
release percentage 28.42 % 100 %
un-reused pathlines 568155 6201792
re-used pathlines 1194668 0
re-use percentage 67.77 % 0 %
total re-use times 4438969 0
average re-use times 3.72 0
deactivated pathlines 561402 0
total pixels 146728381 309044731
average pathline length 83.23pixels 49.83pixels

(a) Weather data set.

Method AUFLIC UFLIC
released pathlines 3500366 15288073
release percentage 22.90 % 100 %
un-reused pathlines 1263664 15288073
re-used pathlines 2236702 0
re-use percentage 63.90 % 0 %
total re-use times 11787707 0
average re-use times 5.27 0
deactivated pathlines 1511223 0
total pixels 357898668 739725898
average pathline length 102.25pixels 48.39pixels

(b) Vortex data set.

Method Load data Scattering Convolution Filtering Color & Output Total AUFLIC/UFLIC
UFLIC 5.00 635.35 3.77 3.37 1.06 648.55

AUFLIC 4.77 330.35 3.86 3.43 0.93 343.34
52.94 %

Resolution: 576 × 291. Frames: 37. Life span: 4 time steps. AUFLIC pixel ring-buffer size: 72.
Table 1: AUFLIC compared with UFLIC in breakdown of the computation time (in seconds) for the weather data set.

*: deactivated pathlines: those re-used and later deleted from the pathline list by the dynamic activation-deactivation scheme.
Table 3: Pathline statistics for UFLIC and AUFLIC.

Figure 6: The nearly-constant and low memory consumption of AUFLIC for saving pathlines.

50

Fortunately, we have not noticed any side effects even
without using texture interpolation. We have also considered
saving only pixel indices without integration step sizes. For
this case, value scattering is simplified by using a unit
weighting scheme. Greater acceleration can be achieved and
less memory is needed while the images produced are still
comparable with UFLIC images. Note that all the
experiments here are based on the standard AUFLIC.

 Table 1 and Table 2 show the breakdowns of the
computation time used by UFLIC and AUFLIC for
visualizing the two data sets. Theoretically, AUFLIC should
consume the same amount of time as UFLIC in data loading,
bucket convolution, noise-jittered high pass filtering, color
mapping and image output, because they use the same code
for these processes. However, AUFLIC uses much less time
in the scattering process than UFLIC. As for the whole
pipeline, AUFLIC cuts UFLIC generation time nearly in half
without any image quality degradation.

 Table 3 shows various statistics for both UFLIC and
AUFLIC. Compared with UFLIC, AUFLIC releases
significantly less pathlines because many pathlines are re-
used for several times. The pathlines are therefore advected
longer than those in UFLIC. The dynamic activation-
deactivation scheme effectively prevents excessive pathlines
from consuming memory or degrading the performance.
Figure 6 illustrates the additional memory AUFLIC requires
for saving pathlines. Since we use a fixed-size pixel ring-
buffer to save a pathline, the memory cost is proportional to
the number of the saved pathlines which is never more than
the resolution (nXRes × nYRes) of the field because of the
dynamic activation-deactivation scheme. Thus the memory
requirements are reasonable. Generally, after three or four
time steps (ie., after three or four scattering processes),
memory consumption is small and varies little. The small
memory footprint makes it possible to apply AUFLIC to
large-scale unsteady flow visualization.

5. Conclusions And Future Work

We have presented AUFLIC, an Accelerated Unsteady Flow
Line Integral Convolution algorithm, to speed up UFLIC
computation for unsteady flow visualization. Our optimized
algorithm uses a flexible seeding strategy and a dynamic
activation-deactivation scheme to save, re-use, and update
pathlines. A large amount of computationally-expensive
integration calculations are avoided and the time-accurate
value-scattering process is therefore accelerated. AUFLIC
can produce the same quality images using half the time of
UFLIC at very low memory cost.

 As for future work, we would like to further enhance
AUFLIC and apply it to three-dimensional unsteady flow
data sets. How to efficiently encode pathline information to

reduce memory cost is a challenging problem for three-
dimensional AUFLIC.

Acknowledgments

This work was supported by the High Performance
Visualization Center Initiative (HPVCI) funded by the DoD
High Performance Computing Modernization Program
(HPCMP). We would like to thank Dr. Han-Wei Shen from
the Ohio State University for his help with UFLIC questions,
implementation details, and valuable suggestions.
Additionally, we would like to thank Dr. Rani Samtany and
Dr. Han-Wei Shen for the unsteady vortex flow data set.

References

1. Jark J. Van Wijk. Spot Noise - Texture Synthesis for
Data Visualization. Computer Graphics, Vol.25, No.4,
pp.309-318, July 1991.

2. Brian Cabral and Leith (Casey) Leedom. Imaging
Vector Fields Using Line Integral Convolution. ACM
SigGraph 93 Proceedings, August 2-6, Anaheim,
California, pp.263-270, 1993.

3. Detlev Stalling and Hans-Christian Hege. Fast and
Resolution Independent Line Integral Convolution.
ACM SigGraph 95 Proceedings, August 6-11, Los
Angeles, California, pp.249-256, 1995.

4. Detlev Stalling, M. Zockler, and Hans-Christian Hege.
Parallel Line Integral Convolution. Proceedings of The
First Eurographics Workshop on Parallel Graphics and
Visualisation, 26-27 September, Bristol, U.K., pp.111-
128, 1996.

5. Lisa K. Forssell and S. D. Cohen. Using Line Integral
Convolution for Flow Visualization: Curvilinear Grids,
Variable-Speed Animation, and Unsteady Flows. IEEE
Transactions on Visualization and Computer Graphics.
Vol.1, No.2, pp.133-141, June 1995.

6. Christian Teitzel, Robert Grosso, and Thomas Ertl. Line
Integral Convolution on Triangulated Surfaces.
Proceedings of Fifth International Conference in
Central Europe on Computer Graphics and
Visualization (WSCG97), Feb, 10-14, Plzen-Bory,
Czech Republic, pp.572-581, 1997.

7. Ming-Hoe Kiu and David C. Banks. Multi-Frequency
Noise for LIC. IEEE Visualization 96 Proceedings, Oct
27–Nov 1, San Francisco, California, pp.121-126, 1996.

8. R. Wegenkittl, E. Groller, and W. Purgathofer.
Animating Flow Fields: Rendering of Oriented Line
Integral Convolution, Computer Animation 97, pp.15–21,
1997.

51

9. A. Okada and D. L. Kao. Enhanced Line Integral
Convolution with Flow Feature Detection. Proceedings
of IS & T / SPIE Electronics Imaging 97, Feb 8-14, San
Jose, California, Vol. 3017, pp.206-217, 1997.

10. Han-Wei Shen, C. Johnson, and Kwan-Liu Ma.
Visualizing Vector Fields using Line Integral
Convolution and Dye Advection. Proceedings of 1996
Symposium on Volume Visualization, pp.63-70, 1996.

11. Victoria Interrante and Chester Grosch. Strategies for
Effectively Visualizing 3D Flow with Volume LIC.
IEEE Visualization 97 Proceedings. Oct 19 – 24,
Phoenix, Arizona, pp.421-424, 1997.

12. C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl.
Interactive Exploration of Volume Line Integral
Convolution Based on 3D-Texture Mapping. IEEE
Visualization 99 Proceedings, Oct 24-29, San Francisco,
California, pp.233-240, 1999.

13. David A. Lane. Visualization of Time-Dependent Flow
Fields. IEEE Visualization 93 Proceedings, Oct 25-29,
San Jose, California, pp.32-38, 1993.

14. Barry G. Becker, David A. Lane, and Nelson L. Max.
Unsteady Flow Volumes. IEEE Visualization 95
Proceedings, Oct 29-Nov 3, Atlanta, Georgia, pp.329-
335, 1995.

15. Vivek Verma, David Kao, and Alex Pang. PLIC:
Bridging the Gap Between Streamlines and LIC. IEEE
Visualization 99 Proceedings, Oct 24-29, San Francisco,
California, pp.341-348, 1999.

16. Bruno Jobard, Gordon Erlebacher, M. Yousuff Hussaini.
Hardware-Assisted Texture Advection for Unsteady
Flow Visualization. IEEE Visualization 2000
Proceedings, Oct 8 – 13, Salt Lake City, Utah, pp.155-
162, 2000.

17. Han-Wei Shen and David L. Kao. A New Line Integral
Convolution Algorithm for Visualizing Time-Varying
Flow Fields. IEEE Transactions on Visualization and
Computer Graphics, Vol.4 No.2, pp.98-108, April-June,
1998.

52

(a) UFLIC image.

Figure 4: AUFLIC compared with UFLIC in image quality. Unsteady weather data set (576 × 291).

(b) AUFLIC image.

AUFLIC: An Accelerated Algorithm For Unsteady Flow Line Integral Convolution: ZhanPing Liu, Robert James Moorhead II

 (a) UFLIC image (b) AUFLIC image
Figure 5: AUFLIC compared with UFLIC in image quality. Unsteady vortex data set (397 × 397).

265

	ZhanPing Liu Robert James Moorhead II
	NSF Engineering Research Center, Mississippi State University, MS, USA
	Abstract
	UFLIC (Unsteady Flow Line Integral Convolution) is an effective texture synthesis technique to visualize unsteady flow with enhanced temporal coherence, but it is time-consuming to generate. This paper presents an accelerated algorithm, called AUFLIC (Ac
	1
	1. Introduction

