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Abstract
Detection of the salient iso-values in a volume dataset is often the first step towards its exploration. An error-and-trail
approach is often used; new semi-automatic techniques either make assumptions about their data [4] or present multiple
criteria for analysis. Determining if a dataset satisfies an algorithm’s assumptions, or the criteria to be used in an
analysis are both non-trivial tasks. The use of a dataset’s statistical signatures, local higher order moments (LHOMs), to
characterize its salient iso-values was presented in [10]. In this paper we propose a computational algorithm that uses
LHOMs for expedient estimation of salient iso-values. As LHOMs are model independent statistical signatures our
algorithm does not impose any assumptions on the data. Further, the algorithm has a single criterion for
characterization of the salient iso-values, and the search for this criterion is easily automated. Examples from medical
and computational domains are used to demonstrate the effectiveness of the proposed algorithm. 

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Segmentation]: Edge and Feature Detection.
1. Introduction
Pat Hanrahan called data exploration (including transfer
function design) one of the top ten problems in volume
visualization in his keynote address at the Symposium on
Volume Visualization '92. Recent research has focused on
automatic and semi-automatic techniques for creating transfer
functions and data exploration [1][4][6][8][10]. In the panel
session on transfer function design at the Visualization’00
conference [9] three classes of techniques were identified. One
of the classes included techniques that required an error-and-
trial approach. The other classes contained techniques that are
either image- or data-centric. Of all the techniques, it was felt
that data-centric techniques held most promise. These
techniques required assumptions to be made about the data [4]
or that computable signature functions be obtained [1]. Image-
centric methods [6] on the other hand are based on searching a
large space and offer little user control. The effectiveness of
error-and-trial methods rests very heavily on the expertise and
intuition of the user. In any case, the need for new work that
offered general solutions was felt. This year at the
Visualization’01 conference there were three papers on the
topic of transfer function design [5] and salient iso-value
determination [8][10]. Salient iso-values have to be
determined first in any data-exploration activity. Suitable user
interfaces and boundary emphasis functions can be placed
over a salient iso-value to emphasize the surfaces in a semi-
transparent way. 

In an earlier paper [10], we proposed to employ data-signa-
tures to explore data. These signatures are obtained from local-
ized k-order central moments and cummulants including
kurtosis and skew. There exist strong relationships between the
various central moments that can be used to locate salient iso-
values. A localized two-material mixture model was assumed
and it was shown that the maximas and minimas of the
moments and cummulants occur at spatial locations populated
by material interfaces or boundaries. A scatter-plot was used
to estimate the maximas and minimas in individual scatter -
plots. Also, no attempt was made to correlate the information
across the scatter-plots of various quantities. The scatter-plots,

however, did yield useful characteristics for CT and fluid-
dynamics data which allowed for the selection of the extremas
and zero-crossings. Such plots are shown in Figure 2. In this
paper, we present algorithms to estimate significant salient iso-
values instead of requiring the user to guess the location of the
value. We employ a 3D space of function value, and its skew
and kurtosis values. However, unlike Kindlmann and Durkin
[4] a pre-computed (histogram) volume is not employed. The
resulting search allows in easier location of salient iso-values.
In essence, this paper reports on computational methods in a
statistical context to determine salient iso-values. Majority
voting techniques are exploited to locate salient iso-values in
our proposed algorithm.

Section 2 presents some of the existing techniques for salient
iso-values detection. A brief introduction to LHOMs (Local
Higher Order Moments) and their use in salient iso-values
detection is presented in Section 3. The algorithm proposed in
this paper is described in Section 4, and Section 5 presents its
implementation. The results that validate the algorithm are
presented in Section 6, and finally Section 7 offers a summary
and describes future work.

2. Previous Work
In general, the visualization process should be guided by infor-
mation about the goal of the visualization, and specific infor-
mation about the particular dataset in question. This approach
was taken by Kindlmann and Durkin [4]. An initial step in this
process is the definition of a boundary. The boundary is essen-
tially a Gaussian smoothed step function. The spatial compo-
nent of the boundary is then removed by creating a 3D
histogram of the data value and its’ first and second derivative.
Based on analysis of this histogram, a distance function is cre-
ated: a signed distance to the middle of the nearest boundary.
The opacity is now defined as a function of position within a
boundary. In [5] Kniss and Kindlmann devised multi-dimen-
sional techniques based on the techniques proposed in [4]. 

Bajaj and his associates devised the contour spectrum which
can guide the selection of iso-values for contouring [1]. A 1D
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plot of geometric and topological characteristics or signatures
(volume and gradient integral) are plotted against the function
value. The contour spectrum technique does not employ any
particular model for the boundary interface. Rather, they
exploit geometrical and/or topological properties of the vol-
ume. In [8] the contour spectrum computation was expedited
through a Laplacian-weighted gray value histograms.   Statisti-
cal techniques are gaining popularity in data-mining applica-
tions. Only a few reported statistics-based methods exist for
volume data-analysis and exploration. In [2][3] statistical
inference methods (e.g. Bayesian) are employed to determine
the material density of each voxel. In [10] we explore the use
of statistical signatures and show how salient iso-values can be
determined. It turns out that [8] also exploits the histogram
(the first-moment) for analysis. 

Instead of tweaking input parameters another approach such as
inverse design can be used for data-analysis [6]. Embodying
this approach is the Design Galleries approach that was used to
explore parameter spaces for a host of visualization, graphics
and animation applications [6].The problem with inverse
design methods are that they are automatic in nature and do
not allow for much control to be exercised on the process. We
now define some our boundary model.

3. Local Higher Order Moments (LHOMS)
Higher Order Moments (HOMs), mk, are statistical quantities
that measure the tendency of a distribution SN to cluster
around a certain value [7], usually the distribution’s mean, M,
and are computed as:

 (1)

where, k is the order of a HOM. Local Higher Order Moments
(LHOMs), are HOMs that are calculated local to a sample
point in a distribution. Consider a sample point xi, such that

, and let W be a neighborhood, of size w, around xi. If

Mi is the mean of the sample points in W, then LHOM at xi is
given by:

(2)

where, k is the order of the LHOM, and
.

Consider a neighborhood W of size  centered at a point
P, in a two dimensional dataset, see Figure 1. Clearly, there are
w2 particles or sample points in W. (Since we are dealing with
number of points, our analysis is not dependent on the
dimensionality of the dataset; a two dimensional dataset is
used only as an example.). 

If W is small enough, such that it contains at most two distinct
materials at a single boundary, it can be shown that the
calculation of LHOM at P, using Equation 2, simplifies to, see
[10]: 
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Figure 1: The boundary model (w = 3) for a small
2D neighborhood. C1 and C2 are the two materials
separated by a material interface. 
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Figure 2: Large dynamic range, 0 - 100,000, of the Second Order LHOM (left), and Small dynamic range, -6 - 12, of Skew (right).
The graphs were taken for a CT tooth dataset.
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Figure 3: A three-dimensional histogram of Skew (S), Kurtosis (K), and sample value, f. A bin contains the number of points
whose sample value, Kurtosis, and Skew are in the range represented by it. The region bounded by thick lines represents the
region containing the salient iso-value bins.
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where,  is the difference in the sample values of the two
materials present in neighborhood W, and m is the number of
sample points of the material C1 and n is the number of sample
points of material C2. Further, if the sample value at P
represents a salient iso-value, then it can be shown that at P: 

• Second Order LHOM, m2,p, has a maxima.

• Third Order LHOM, m3,p, has a zero-crossing

• Fourth Order LHOM, m4,p, has a local minima.

• Skew, S, a non-dimensional ratio of third and second 
order LHOMs has a zero-crossing.

• Kurtosis, K, a non-dimensional ratio of fourth and sec-
ond order LHOMs has a minima of -2.

A method for manual determination of the salient iso-values
through scatter plots, using above properties, was sketched in
[10]. In the following section we describe an algorithm that
uses the above characteristics to automate the task.

4. Determination of Salient Iso-Values
From the above description it is clear that we can use either of
the five mentioned criteria for detecting the salient iso-values.
However, the first three, m2,p, m3,p and m4,p, are direct powers,
and hence have a very large dynamic range (Figure 2 (a)).
Computation with large numbers is both slow, introduces
errors such as overflow and expends much memory. Skew and
Kurtosis, being ratios, have a relatively smaller dynamic
range, (Figure 2(b)) and hence, are ideal candidates for fast
salient iso-values detection. Though either Skew or Kurtosis
can be used for detecting salient iso-values, a better approach
involves using both these quantities. This approach reduces
the possibility of detecting spurious salient iso-values.
Kindlmann and Durkin in [4] demonstrated the use of a three-
dimensional histogram in combining the information from two
quantities, the first order gradient and the second order
gradient.

If we construct a three-dimensional histogram of Skew,
Kurtosis, and sample values, see Figure 3, what do we expect
to see? If a point’s sample value is a salient iso-value, then at

that point Kurtosis will be -2, and Skew will be 0, we classify
all bins in the histogram that correspond to these values as
salient iso-value bins. We expect that the sample values that
are salient iso-values would not only have a majority of their
points in the salient iso-value bins, but also the number of their
points in the non salient iso-value bins would be minimum
(Figure 4). The cummulants are computed through out the
volume. Hence, there will be several regions populated by
voxels with same measured value f but with different values of
skew and kurtosis. Hence, for detecting salient iso-values a
robust algorithm is required to search for all those sample
points that satisfy this majority criteria. Section 5 presents an
efficient implementation of this algorithm.

5. Algorithm for Salient Iso-Value Detection
From Section 4 it is clear that we are searching for only those
sample values that satisfy the following two criteria:

1. They have a majority of their points in the salient iso-
value bins.

2. The number of their points in the non salient iso-value
bins is minimum or relatively smaller.

Given the size of a bin,  then for all sample points

the size of the salient iso-value region is given by:

                                      (4)

(Note: We take size of each bin along f to be 1, so that each bin
represents exactly one sample value.). To evaluate the first
criteria, we determine sample values for which the number of
points that satisfy Equation 4 is greater than the number of
points that don’t. Further, to evaluate the second criteria, we
consider all sample values that satisfy the first criteria, and
compute the difference between the number of points that
satisfy Equation 4 and the number of points that don’t; if a
sample value represents a salient iso-value we expect this
difference, , to be maximum. Our algorithm is described in
Figure 5. Equation 4 essentially provides a majority voting
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Figure 4: Shows the plots for the number of points in the salient iso-value bins ( ) and the number of points in the non
salient iso-value bins  for those sample values that satisfy the first criteria. (left) CT Head dataset, and (right) CT Tooth
dataset. (Note: Three salient iso-values are predicted for each of these datasets. A window of size 5 was used in calculation of
LHOMS.)
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criteria for sample values. The cummulants, in essence, vote
that the sample values be considered as salient. The maximas
are determined by examining the output of the algorithm.

6. Results
From Section 5 we conclude that if we plot the output of the
algorithm (Figure 5), we should expect maximas at the
location of salient iso-values. The output of our algorithm
include the counts of conforming and non-confirming points
as dictated by our voting criteria. Figure 6 shows the graph
obtained by plotting the output of the algorithm, and the
corresponding salient iso-values for the CT Tooth dataset.
Figure 7 shows the graph and salient iso-values for the CT
Head dataset, while Figure 8 shows the results for a CFD
shock wave dataset. It is clear that the salient iso-values
predicted by our algorithm are indeed the salient iso-values in
the input dataset.

7. Conclusion and Future Work
In this paper we presented an algorithm that uses statistical
signatures of a dataset to accurately predict the salient iso-
values in the dataset. Future work includes adopting the given
algorithm for MRI datasets, and building an intuitive interface
for transfer function design using the techniques presented in
this paper.
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Figure 5: The algorithm for salient iso-value detection. (Note: We can pre-compute the values for Skew and Kurtosis; in this case
the complexity of the algorithm is linear with the number of sample points.)

Figure 6: (left) Graph of the output from the algorithm for the CT Tooth dataset. Note there are
three local maximas: 252, 622, and 985; hence, there are three salient iso-values in the dataset.
The iso-surfaces corresponding to these salient iso-values are shown left. (left-top) iso-surface
for 252, (left-center) iso-surface for 622, and (left-bottom) iso-surface for 985.
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// max_sample_value the maximum sample value
// num_sample_points the total number of sample ponits in a dataset
// deltas                      the size of a bin for skew
// deltak                      the size of a bin for kurosis

/* store the number of points in the salient iso-value bins for each sample value */
 integer N_Salinet [0..max_sample_value]        

 /* store the number of points in the non salient iso-value bins for each sample value */
 integer N_Non_Salinet [0..max_sample_value]   

 /* Criteria 1: calculate the number of points in salient and non salient iso-value bins for each sample
value. */

 for(integer n = 0; n < num_sample_points; n++) {
    sample_value = get_sample_value(n); // sample value at sample point n
    skew                 = get_skew(n);                  // skew value at sample point n
    kurtosis           = get_kurtosis(n);             // kurtosis value at sample point n

    if((skew >= -deltas and skew < deltas) and  (kurtosis >=-2 and kurtosis < deltak))
       N_Salinet [sample_value]++;
    else
       N_Non_Salinet [sample_value]++;
 }

 /* Criteria 2: find the difference between the number of points that are in salient iso-value bins and the
number of points that are not in salient iso-value bins for those sample values that satisfy Criteria 1. */

 for(integer s = 0; s < max_sample_value; s++) {
   if(N_Salinet [s] > N_Non_Salinet [s])
     delta = N_Salinet[s] - N_Non_Salient[s];
   else delta = 0;
   output delta;
 }
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Figure 7: (left) Graph of the output from the algorithm for the CT Head dataset. Note there are
three local maximas: 886, 1917, and 3959; hence, there are three salient iso-values in the
dataset. The iso-surfaces corresponding to these salient iso-values are shown left. (left-top)
iso-surface for 886, (left-center) iso-surface for 1917, and (left-bottom) iso-surface for 3959.
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Figure 8: (left) Graph of the output from the algorithm for the a CFD dataset. Note there are two local maximas: 956, and 985;
hence, there are two salient iso-values in the dataset. The iso-surfaces corresponding to these salient iso-values are shown left.
(left-top) iso-surface for 956, and (left-bottom) iso-surface for 985.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

750 800 850 900 950 1000 1050

∆

Sample Value, v

24


	1. Introduction
	2. Previous Work
	3. Local Higher Order Moments (LHOMS)
	(1)
	(2)
	(3)

	4. Determination of Salient Iso-Values
	5. Algorithm for Salient Iso-Value Detection
	1. They have a majority of their points in the salient iso- value bins.
	2. The number of their points in the non salient iso-value bins is minimum or relatively smaller.

	6. Results
	7. Conclusion and Future Work
	8. Acknowledgments
	9. References
	[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The Contour Spectrum,” Proceedings of Visualiz...
	[2] R. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,” Computer Graphics, Vol. 22 No. ...
	[3] D. H. Laidlaw, K. W. Fleischer, and A. H. Barr, “Partial- volume Bayesian classification of m...
	[4] G. Kindlmann and J. W. Durkin, “Semi-automatic generation of transfer functions for direct vo...
	[5] J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume Rendering Using Mult-Dimensional T...
	[6] J. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich...
	[7] C. L. Nikias, and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processi...
	[8] V. Pekar, R. Wiemker, and D. Hempel, “Fast Detection of Meaningful Isosurfaces for Volume Dat...
	[9] H. Pfister, B. Lorensen, C. L. Bajaj, G. Kindlmann, W. Schroeder, L.Sobierajski-Avila, K. Mar...
	[10] S. Tenginakai, J. Lee, and R. Machiraju, “Salient Iso-Surface Detection with Model-independe...

	Statistical Computation of Salient Iso-Values
	Abstract


