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Abstract. This paper explores two general methods for incorporating volumetric
uncertainty information in direct volume rendering. The goal is to produce vol-
ume rendered images that depict regions of high (or low) uncertainty in the data.
The first method involves incorporating the uncertainty information directly into
the volume rendering equation. The second method involves post-processing in-
formation of volume rendered images to composite uncertainty information. We
present some initial findings on what mappings provide qualitatively satisfactory
results and what mappings do not. Results are considered satisfactory if the user
can identify regions of high or low uncertainty in the rendered image. We also
discuss the advantages and disadvantages of both approaches.

1 INTRODUCTION

Visualization is used for gaining an understanding of large amounts of data in a short
period of time. Scientific datasets often have associated with them a measure of quality,
reliability or uncertainty which also needs to be made a part of the visual output.

Uncertainty can be caused by many factors in the data collection and processing:
from unreliable instrumentation and problems in transportation, to errors caused by the
interpolation and modeling algorithms. While these errors can sometimes be ignored, it
is important to alert the users to the trustworthiness of the image upon which they need
to make a decision.

While the uncertainty is an essential part of the data, it has often been ignored while
processing or displaying. This can be misleading to the user unaware that parts of the
dataset contain unreliable information. For accurate interpretation it is important to dis-
play the original data together with its uncertainty. Uncertainty visualization techniques
present data in such a manner that users are made aware of the locations and degree of
uncertainties in their data so as to make more informed analyses.

In this paper we concern ourselves with uncertainty visualization using one particu-
lar rendering method, namely direct volume rendering. We present two general options:
one which is calculated at the rendering time and presented as part of the volume ren-
dering of the primary value, which we call inline processing; and one which combines
the volume renderings of the primary value and of the uncertainty value as a post-
processing method.

2 BACKGROUND

Visualizing uncertainty is a recognized challenge in the visualization community, and
recently, more visualization research have focused on this area. For example, Cedilnik
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and Rheingans [1] looked at different ways of imparting uncertainty over 2D fields
using procedural methods to distort overlaid grid lines, Interrante [3] discussed how
one might use natural textures over a map to show uncertainty, Djurcilov and Pang [2]
looked at different ways of incorporating uncertainty information in contour lines and
isosurfaces of sparse data sets, Wittenbrink et al. [11] included uncertainty in direction
and uncertainty in magnitude into glyph designs, and Pang et al. [7] described some
general methods for incorporating uncertainty into visual displays.

The approaches above involve some modification of how the data is represented,
and through this modification, impart the uncertainty information. The modifications
are typically applied to geometric primitives and attributes such as grid lines, contour
lines, glyphs, and textures. Unfortunately, volume rendering does not produce any inter-
mediate geometric primitives that could be modified in order to represent uncertainty.
Therefore, this paper explores different alternative techniques for including uncertainty
information directly in volume renderings.

3 DATA WITH UNCERTAINTY

3.1 Ocean data and dynamical model

During July and August of 1996, ocean data were collected in the Middle Atlantic Bight
(MAB) south of New England, as part of the “ONR Shelfbreak PRIMER Experiment”
[6]. The dominant dynamical feature in the MAB consists of a temperature and salinity
front, separating the shelf and slope water masses. This front is often located above the
shelfbreak, near the 100 m isobath (see Figure 13). It is usually tilted, in the opposite
direction of the bottom slope. The main objective was to study the influence of oceano-
graphic variability on the propagation of sound between the shelf and slope regions.
Intensive cruise surveys were carried out daily in a 45 km by 30 km domain between
the 85 m and 500 m isobaths.

The physical variables or fields are the temperature, salinity, velocity and pressure.
They are dynamically evolved by the numerical ocean model of the Harvard Ocean
Prediction System [8]. Atmospheric fluxes based on buoy data are imposed in surface.

3.2 Uncertainty forecasts

To dynamically evolve the physical uncertainty, an Error Subspace Statistical Estima-
tion (ESSE) scheme [5] is employed. This scheme is based on a reduction of the evolv-
ing error statistics to their dominant components or subspace. Presently, statistics are
measured based on a variance or least-squares criterion [9]: a subspace is then charac-
terized by the dominant eigen decomposition of a covariance matrix. The objective is
then to dynamically forecast the principal component decomposition of the uncertainty
of the physical fields.

In the present MAB case, these error principal components are initialized combining
data and dynamics. To account for nonlinearities, they are forecast by an ensemble of
Monte-Carlo forecasts.

In the visualizations presented here, only temperature and salinity uncertainty fore-
casts are used. However, since physical fields are coupled, the effects of velocity errors



are included in these forecasts and accurate estimates of temperature and salinity errors
can thus be obtained.

As a first endeavor, we utilize the variances of the Monte-Carlo ensemble as a scalar
representation for uncertainty at each point.

4 INLINE APPROACH

The classic volume rendering equation is:
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is the color intensity contributions through a line from position
�

to
�
.

� is the color emission function and ) the differential opacity function. Equation (1)
calculates an integrated color for each pixel by summing up opacity weighted emittance
values. One form or another of this equation is used to generate volume rendered images
of 3D scalar fields. Because the data set generally consists of a single scalar field, the
same scalar field is used to determine both the opacity and the material emittance values.
This is typically achieved by transfer functions that map the scalar data value to both
opacity and color.

Because our uncertainty is also represented as a 3D scalar field, we have the op-
portunity to map field values to color and uncertainty values to opacity, and experiment
with different transfer functions. We refer to this approach as “inline” in the sense that
the uncertainty information is directly incorporated into the rendering process. In this
section, we describe two inline experiments.

4.1 1D Transfer Functions

In this experiment, we mapped salinity values to � and uncertainty values to ) . We then
use a 1D transfer function to separately map the salinity and uncertainty values. We
experimented with a transfer function that maps increasing uncertainty to increasing
opacity, and composited the resulting images to a black background with white grid
lines.

As a point of reference, Figure 1 is a traditional volume rendering of the mean
salinity field. Figures 2 and 3 both show a volume rendering of the uncertainty in the
salinity field. Figure 2 maps uncertainty values above 0.2 to high opacity values, while
Figure 3 maps uncertainty values above 0.5 to high opacity values. High uncertainty
regions show up as a bluish cloud. Dark regions have lower uncertainty. We note that
most of the uncertainty lies along the salinity front on top of the shelfbreak.

One can map uncertainty to opacity in a number of ways. In this experiment, we mapped
higher uncertainty values to higher opacity values. Field values such as salinity and
temperature are mapped to color. A black background with white grid lines is used
to accentuate the fact that more transparent regions have lower uncertainty. Note that



Fig. 1. Mean salinity. Fig. 2. Uncertainty � 0.2. Fig. 3. Uncertainty � 0.5.

regions with low uncertainty do not automatically produce more transparent regions
because of the potential occlusion with accumulated opacities from different viewing
angles.

(A) Transfer function (B) Salinity (C) Temperature

Fig. 4. (A) Shows the transfer function for both the field values and uncertainty values. All values
have been normalized to lie between 0 and 1. The increasing white curve maps higher uncertainty
to higher opacity. (B) Volume rendering of the mean salinity field mapped to color and uncertainty
in salinity mapped to opacity. (C) Volume rendering of the mean temperature field mapped to
color and uncertainty in temperature mapped to opacity.

One can also experiment with an increasing uncertainty to decreasing opacity map-
ping so that the regions of uncertainty show up as transparent regions rather than opaque
regions. The choice of mapping increasing/decreasing opacity seems to depend on the
volume data to be studied. Looking at the uncertainty of the temperature field alone
confirms that, indeed, the regions of high uncertainty in the right columns of Figures
4 and 10 (color plate) are in the greenish opaque regions. On the other hand, the fine
structural details in the uncertainty field are washed out and lost in the resulting ren-
dering. In addition, there is some ambiguity in interpreting the image. The ambiguities
can be attributed to a number of factors including varying thickness of the volume from
a given viewpoint, the depth within a volume of a region of high uncertainty, interac-
tion of the color and opacity compositing. The image in Figure 10 is similar to Figure



4 except that we used a transfer function which produces more contrast between high
and low uncertainty regions. We also removed the white grid lines to see if it is better
without them or not.

4.2 2D Transfer Functions

In this experiment, we use 2D transfer functions similar to those used by Kindlmann
and Durkin [4]. However, instead of looking at the first and second derivatives of the
data, we look at data versus uncertainty values. Figure 5 is a 2D scatter plot showing
the distribution of mean salinity versus uncertainty in salinity. We use this 2D scatter
plot as the basis for our transfer function, mapping different regions of the scatter plot
to different color values. Figures 11 and 12 show different 2D transfer functions and the
corresponding volume rendered images of the combined salinity and uncertainty fields.

data

uncertainties

Fig. 5. Scatter plot of mean salinity (Y-axis) versus uncertainty (X-axis). Mean salinity values
increase towards the bottom, while uncertainty values increases towards the right.

Unlike 1D transfer functions where we mapped uncertainty to opacity, 2D transfer
functions primarily use color to show regions with varying uncertainty. For example,
the middle images of Figures 11 and 12 (color plate) use a constant opacity regardless
of uncertainty. However, opacity can be used to also emphasize or de-emphasize uncer-
tainty. For example, the right images of Figures 11 and 12 use a step function that maps
low uncertainty data to an almost transparent value, and high uncertainty data (greater
than 0.2, as in Figure 2) to high opacity. The result is a volume rendering of the salinity
data, but with obvious structural features showing the location of the high uncertainty
regions. In Figure 12 blue and cyan regions have higher uncertainty. Middle and right
images use the same uncertainty to opacity mapping as the corresponding images in
Figure 11.

5 POST-PROCESS APPROACH

Due to the use of transparency, images produced by volume rendering algorithms have
a soft and smooth quality to them. This aspect lends itself into exploring the use of
discontinuity as a means of representing uncertainty. We use discontinuity in several
ways by introducing speckles, noise and texture as options used in post-processing of
an image to highlight areas where data is uncertain.



5.1 Inserting Speckles/Holes

This task is accomplished in several steps:

1. Produce a standard volume rendering of the field values (see Figure 14).
2. Produce a gray scale volume rendering of uncertainty values from the same view-

point (see Figure 6). Note that converting a color volume rendering of the uncer-
tainty field to gray scale will not produce the same desired effect.

3. Dither the gray scale rendering into a black and white bitmap image with inverted
values (see Figure 7). The purpose of this step is to create a rendering in which each
black dot will be a representation of uncertainty in that neighborhood. The dithering
itself makes sure that the dots are evenly distributed and visually pleasing.

4. Generate a composite image by multiplying the color volume rendering with the
bitmap image pixel by pixel (see Figure 15).

Fig. 6. Gray-scale rendering of uncertainty. Fig. 7. Inverted bitmap rendering.

Figure 15 shows the outcome of the operations 1 to 4 - an image in which the volume
rendering of the primary data value is modified to show pixel-sized holes in areas of
high uncertainty. The user is still able to grasp the overall structure of the primary value
throughout the dataset, and yet has an understanding of where the data is unreliable.

One possible pitfall of this method is that at a distance the small holes may blend
into the image and cause the volume rendering to appear darker in regions with high
error. This may be undesirable and can be improved by increasing the size of the holes,
thus making it more apparent that the disturbance is not a coloring artifact, but indeed an
intended feature of the image. We show one such example in Figure 16 where the holes
are increased four-fold in order to emphasize the uncertainty. This image was produced
by first sub-sampling the volume rendering of the uncertainty values (output of step 2)
by a factor of four, then proceeding with the dithering, after which the image is brought



back to its original size and multiplied as in step 4. The end-result is an image where
the holes are four pixels large.

We would like to point out that in these examples we have used black to color the
holes and match the background color. It would be up to the user to decide the choice of
color for the speckles, but we recommend black as an intuitive choice for representing
holes.

5.2 Adding Noise

Noise seems a natural option for conveying uncertainty - our minds easily accept the
idea that a picture containing noise is less reliable than a clear one. Noise also has the
convenient property that it can be introduced into an image without worry for side-
effects, as its random nature eliminates any possibility for artifacts appearing as regular
patterns.

We apply this idea to the volume rendered images by selectively disturbing the im-
ages in the area if high uncertainty. The output (see Figure 17) shows how randomized
color dots can be added to an area, thus causing it to appear uneven and fuzzy.

The pseudo code for the algorithm is quite simple.
For each color pixel of the original volume rendering:

1. Find the matching pixel in the uncertainty rendering.
2. Rescale the uncertainty gray shade value to between � .. � . � is the probability that

the original color will be changed.
3. Replace the original color pixel with a random color with probability � .

This algorithm ensures that the areas with high uncertainty (lighter gray shades)
on the uncertainty image are translated into regions with higher numbers of disturbed
pixels in the original rendering. The use of probability allows a portion of the pixels
to retain their original color even in areas of high uncertainty, so that the overall color
context is not lost. In our experiments, we found that setting � to 20 produced a desir-
able effect. This will preserve at least 80% of the original color pixel values, and yet
introduce enough noise in high uncertainty areas. An alternative scheme is to use the
uncertainty value as an amount (rather than as a probability) to change the original color
value in color space.

5.3 Adding Texture

Similarly to the previous option, we explore the use of textures in the post-processing
context. We use 2D grainy, gray scale textures with varying intensity or contrast levels to
represent different levels of uncertainty. Low contrast represents low uncertainty, while
high contrast represents high uncertainty. We then use the texture brightness (value in
HSV space) to alter the brightness of the original color image (value in HSV space).
Naturally, in areas of very low or no uncertainty we do not apply any modifications.

The algorithm for adding textures to represent uncertainty in a volume rendered
image is also carried out on a per-pixel basis. The difference from the previous method
is that the different levels of texture contrast have to be created first. Each texture is
tiled so that they are at least as large as the volume rendered image.



For each color pixel of the original volume rendering:

1. Find the matching pixel in the uncertainty rendering.
2. Bin the uncertainty value to one of 5 contrast levels, � .
3. Find the corresponding pixel from texture map � .
4. Adjust the brightness of the original pixel to that obtained from the texture map.

The example in Figure 18 uses a sandstone texture to alter the original volume ren-
dering. Figures 8 and 9 show the sandstone texture at 2 of the 5 different uncertainty
levels. In our experiments, we found that 5 levels of contrast to represent different un-
certainty levels was sufficient. Beyond 5 levels, it was difficult to distinguish additional
levels of uncertainty.

Fig. 8. Low uncertainty texture. Fig. 9. High uncertainty texture.

6 DISCUSSION AND CONCLUSION

We have described some experiments on how one might include volumetric uncer-
tainty information in a volume rendering. They can be classified as either inline or
post-process. Of course, one can also use a pre-process approach where the two vol-
umes are first combined to produce a single scalar volume. Different strategies may
be employed to combine the two volumes. For example, one can perform a point wise
multiplication of the two fields and volume render the result. In this case, low values
would indicate either low data value, low uncertainty value, or both. Converse is true
for high values. We did not experiment with this approach because it would be difficult
to distinguish between data and uncertainty values in the resulting images.

One can argue which is the better approach: inline or post-process ? The inline
method has the advantage that the uncertainty information is integrated into the volume
rendering calculation, taking into account their 3D positions within the volume, and
hence the results are more faithful. On the other hand, more research is needed to design
transfer functions that will unambiguously show the uncertainty information together
with the data values. The post-process approach has the advantage of producing images
that intuitively show the locations and extent of uncertainty in the volume renderings.
However, it is not as faithful to the data in the sense that the uncertainty presentations



are really just image embellishments on the volume rendering of the data. For example,
if there is a region of high uncertainty embedded within the volume, the post-process
approach does not accurately capture the interaction of this region of uncertainty with
the corresponding embedded data values.

In this paper, we applied different ideas of incorporating uncertainty into volume
rendering using the data set from ocean modeling. Of course, the techniques are appli-
cable to data sets from other domains as well. Some of the questions seeking further
research include: How many levels of uncertainty are necessary and can one perceive?
What transfer function best combines data and uncertainty, and perhaps their deriva-
tives? And if one has a probability distribution function at each voxel, such as the
Monte-Carlo ensemble, how does one go about visualizing such a data set? Finally,
while volume rendering does not produce any geometry to be rendered, it does pro-
duce derived data in its rendering pipeline. These derived data, when combined with
the uncertainty information, can also be used to depict uncertainty information [10].
This approach should also be investigated further.
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(A) Transfer function
(B) Salinity (C) Temperature

Fig. 10. High contrast transfer function.
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Fig. 11. The scatter plot in Figure 5 is used as a 2D transfer function. Good (low uncertainty) data
with low values are mapped to green, while good data with high values are mapped to red. Rest
are mapped to gray.
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Fig. 12. The 2D transfer function identifies 5 regions instead of just 2.



Fig. 13. Surface temperature. Fig. 14. Rendering of mean salinity.

Fig. 15. Rendering with speckles. Fig. 16. Larger speckles emphasize holes.

Fig. 17. Noise in high uncertainty areas. Fig. 18. Texture is another option.


