
Fast Multiresolution Extraction of
Multiple Transparent Isosurfaces

Thomas Gerstner

Department for Applied Mathematics, University of Bonn
Wegelerstr. 6, 53115 Bonn, Germany
gerstner@iam.uni-bonn.de

Abstract. In this paper, we present a multiresolution algorithm which is capa-
ble to render multiple transparent isosurfaces under real–time constraints. To this
end, the underlying 3D data set is covered with a hierarchical tetrahedral grid.
The multiresolution extraction algorithm is then based on an adaptive traversal of
the tetrahedral grid with the help of error indicators. The display of transparent
isosurfaces using alpha blending requires a back–to–front rendering of the isosur-
face triangles. This is achieved by a hierarchical sorting procedure of the tetrahe-
dra and the hierarchical computation of data gradients. We will also comment on
the automated selection of suitable isovalues for visualization applications.

1 Introduction

Interactive rendering of large volumetric data sets is a hard task. Besides direct vol-
ume rendering methods, such as ray casting, splatting, or 3D texture mapping, indirect
volume rendering techniques, such as isosurface extraction, are frequently applied. In
both settings, hardware acceleration and multiresolution techniques are often required
in order to achieve real–time visualization performance.

Isosurface extraction algorithms rely on the ability of current graphics processors
to render large amounts of triangles very quickly. Still, the total rendering time is often
dominated by the extraction time of the isosurface, that is the computation of the isosur-
face triangle vertices. Here, multiresolution methods allow significant reductions of the
number of isosurface triangles through suitable approximations of the volume, thereby
speeding up both extraction and rendering time.

The display of multiple isosurfaces can be used as a surrogate for direct volume
rendering techniques, especially when spiky transfer functions are used. Thereby the
selection of isovalues can be done statically, automatically adapted to the data set, or
defined by the user. Since the number of displayed isosurfaces will not be very large
in interactive applications, the huge number of degrees of freedom in transfer function
design is also drastically reduced. Isosurfaces with different isovalues are completely
nested and therefore the inner isosurfaces are completely obscured by the outer iso-
surface except at the boundary of the data set. Thus, multiple isosurfaces have to be
rendered transparently which is usually also supported by the graphics hardware. How-
ever, then the triangles have to be processed in a strict back–to–front fashion. This
requires a view–dependent sorting of all the isosurface triangles. Once the user changes
the viewpoint, the sorting time will dominate the total rendering time.

http://www.eg.org
http://diglib.eg.org


The goal of this paper is to show that in volumetric multiresolution methods this
sorting step to be done hierarchically in constant time. Thereby we will focus on a
specific well–known multiresolution method based on recursive bisection of tetrahe-
dra. The hierarchical sorting is done in three phases: sorting of the initial tetrahedra,
recursive sorting of child tetrahedra during the tree traversal, and sorting of the iso-
surface components inside each tetrahedron. View–dependent sorting also requires the
computation of data gradients inside each tetrahedron. Although these gradients can be
precomputed, they require large amounts of memory. We will therefore show how gra-
dients can quickly be computed hierarchically on–the–fly. Finally, we will comment on
the automated selection of suitable isovalues.

This paper is organized as follows. Section 2 reviews related work. Section 3 shortly
discusses the construction of multiresolution isosurfaces based on tetrahedral bisection.
Sorting is done in Section 4. Section 5 explains hierarchical gradient computation. Vi-
sualization examples are shown in Section 6. Section 7 describes a technique for auto-
mated isovalue selection. The final remarks of Section 8 conclude the paper.

2 Related Work

Multiresolution techniques have been successfully applied to the four most popular
direct volume rendering algorithms such as 3D texture mapping [11, 27], ray casting [4,
18, 28], splatting [9, 12, 13], and the shear–warp transformation [3, 31]. For a detailed
(non–multiresolution) comparison of these methods see [17].

Isosurface extraction can be very slow when marching algorithms [15, 21] which
scan the complete data set are used. Therefore, a variety of methods have been designed
which try to avoid to search through regions where no intersection with the isosurface
occurs. To this end, hierarchical partitions of either the geometric [30] or the span space
[14] are constructed. For a survey and comparison of available methods see [1, 26].

Multiresolution isosurface extraction methods are characterized by a hierachical
decomposition of the underlying geometric space. Through suitable approximations of
the data, they are also able to extract approximate isosurfaces with varying complexity.
The various methods mainly differ in the type of hierarchy and interpolation, such as
octrees [24], red tetrahedral refinement [8, 10, 29], tetrahedral bisection [5–7, 20, 32],
hierarchical Delaunay triangulations [2], or wavelet techniques [25]. With the help of
bounds for the minimum and maximum data value inside each subdomain, the scanning
of empty regions is also avoided.

If the data domain is refined adaptively, it can happen that the extracted isosurface
contains cracks at transition zones where the mesh resolution changes. For this prob-
lem, different solutions have been devised such as remeshing [8], point insertion [24],
projection [19], blending [10], and saturation [5–7, 32].

3 Multiresolution Isosurface Extraction

In this section, we will explain the construction of multiresolution isosurfaces based on
tetrahedral bisection and error indicators. The algorithms have already been described
in detail in previous works but for clarity we shortly repeat the basic steps here.



x1 x2

x3

x4

x1 x2

x3

x4

x ref

T
�

T
�

T
�g g

n

1

2
g1 2

Fig. 1.Bisection of a tetrahedronT into two child tetrahedraT1 andT2.

Let us consider a nested hierarchy of tetrahedral grids where the tetrahedra are re-
fined by recursive bisection [16, 23]. For a tetrahedronT the midpoint of a predeter-
mined (in our case the longest) edgeeref(T ) is chosen as a new vertexxref(T ). Then,
the tetrahedron is split at the face spanned byxref(T ) and the two vertices ofT oppo-
site toeref(T ) into two child tetrahedraT1(T ) andT2(T ) (Figure 1). Through recursive
application of the refinement rule a binary tree hierarchy is inferred on the tetrahedra.

The adaptive multiresolution isosurface algorithm is based on a depth first traversal
of the binary tree. On every tetrahedron for a stopping criterion is checked. If it is true,
the algorithms stops and renders the local isosurfaces using the look–up table of the
marching tetrahedra algorithm [21]. Otherwise, the two children are visited recursively.

If the algorithms stops on a specific tetrahedronT and refines another tetrahe-
dron which shares the refinement edge, an inconsistency occurs at the hanging node
xref(T ). This leads to cracks in the isosurface. Therefore, we ensure that whenever a
tetrahedron is refined, all tetrahedra sharing its refinement edge are refined as well.
This can be achieved by definition of error indicatorsη on the refinement vertices,
i.e. η(T ) = η(xref(T )), and choosingη(T ) < ε as a stopping criterion for some user
specified threshold valueε. If the error indicator values are saturated [5–7, 32], no hang-
ing nodes can occur for all possible values ofε. This way, the extraction algorithm is
completely local and information from neighboring tetrahedra is never required.

Furthermore, the traversal of the binary tree is also stopped if the tetrahedron is not
a candidate for an intersection with one of the isosurfaces. In our case, it is checked
whether any of the isovalues is contained in the interval consisting of all the data values
inside the tetrahedron. This information can either be explicitly computed in a bottom–
up traversal of the tree [30] or be obtained from already available error indicator values
[7]. This way, the complexity of the extraction algorithm is of the order of the output
(the number of drawn triangles), independent of the size of the input in practice.

4 Transparency Sorting

The most efficient way to display transparent surfaces is through alpha blending, which
is supported by basically all manufacturers of graphics cards. Alpha blending requires
a back–to–front sorting of the rendered primitives, though. In principle, the isosurface
meshes could first be extracted and then the triangles be sorted, but it turns out that
the sorting time then dominates the total rendering time. This is especially bad since
rotation of the isosurface is the predominant user action in visualization and thus sorting
has to be done for almost every frame.



Fig. 2.Sorting points and normal plane of the initial tetrahedral mesh.

On the other hand, multiresolution methods allow a back–to–front sorting during the
extraction phase which eliminates above problem. We will now show how this sorting
can be done at virtually no extra cost for recursive bisection tetrahedral meshes. Thereby
three different sorting problems arise: sorting of the initial tetrahedra, recursive sorting
of the child tetrahedra during the adaptive tree traversal, and sorting of the isosurface
components inside a tetrahedron during extraction. Let us emphasize here that only
those tetrahedra that are visited during the adaptive tree traversal are sorted.

4.1 Initial Tetrahedra

We assume that the input volume data is arranged in a uniform grid withn3 nodes,
n = 2k + 1. The initial tetrahedral mesh consists of the six tetrahedra whose vertices
are adjacent corners of the cube and which all share the same diagonal of that cube
(Figure 2). Applying then the refinement scheme of the previous section, all refinement
verticesxref(T ) will fall onto grid points of the original data set.

These tetrahedra have to be sorted starting with the most distant tetrahedron and
ending with the closest one. Letv be the viewing vector (from the eye to the object) and
n be the normal of a separating plane of a pair of non–intersecting tetrahedraTi andTj .
Let us assume thatTi lies in direction of the normaln andTj is in opposite direction.
Then,Ti is behindTj if v ·n > 0 and beforeTj if v ·n < 0. If v ·n = 0 those tetrahedra
could be processed in parallel.

For the six initial tetrahedra,15 normals of separating planes between any two tetra-
hedra are possible. These normals can be computed as the vector between two distin-
guished points each located on the boundary of one tetrahedron. These six points are the
midpoints of those edges whose endpoints are not endpoints of the diagonal of the cube
thereby spanning a normal plane (as shown in Figure 2). With this information, any
sorting algorithm such as quicksort can immediately be applied to sort the tetrahedra.

4.2 Child Tetrahedra

During the tree traversal, a tetrahedron is split into two child tetrahedra. The separating
plane between those tetrahedra is spanned by the pointsx2, x3 andxref (Figure 1). Let
the normaln of the separating plane point towardsT1. Then, similarly to the previous
section,T1 has to be processed beforeT2 if v · n > 0 and vice versa otherwise.

The normaln could be computed byx2xref×x3xref on–the–fly, but it is more efficient
to precompute and store this information for each type of reference tetrahedron. In our



N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N1 36 43 42 47 48 26 44 35 33 46 45 37 25 27 29 31 33 35 34 32 39 41 42 43
N2 26 28 30 32 34 36 37 38 40 27 25 44 45 46 31 29 40 38 48 47 41 39 30 28

N 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N1 49 51 53 55 57 59 61 63 65 67 69 71 52 60 62 56 58 66 70 72 68 64 50 54
N2 50 52 54 56 58 60 62 64 66 68 70 72 71 55 57 59 61 69 65 51 63 67 53 49

N 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

N1 11 16 18 7 2 19 2 9 16 21 23 18 4 9 4 14 21 11 7 23 6 14 6 19
N2 17 1 12 1 20 10 8 24 22 3 17 3 10 15 13 8 12 5 22 5 15 20 24 13

Table 1.Mapping table for the reference tetrahedra numbers.

case, there are 72 reference tetrahedra. Of the three basic types of tetrahedra which cycle
all three refinement levels (see [5]) there are 24 instances from the respective rotation
and mirror symmetry classes. For example, the six tetrahedra of the first type all share
the same diagonal of the cube and there are four different diagonals possible.

Not surprisingly, the numbers of the reference tetrahedra can be determined hierar-
chically. So given the reference numberN of a tetrahedron, the reference numbers of
the two child tetrahedraN1 andN2 need to be determined. It turns out that this mapping
appears to be quite erratic and no simple formula can be given forN1(N) andN2(N)
(or, at least, we found none). Since the complete mapping is fairly difficult to obtain
due to its cyclic structure, we state it in table 1. The six initial tetrahedra are numbered
from 1 to 6.

4.3 Isosurface Components inside a Tetrahedron

Now that we’ve finally sorted all the tetrahedra in the adaptive tetrahedral mesh the
only thing left is to sort the isosurface components within each tetrahedron. This case
rarely arises for fine resolution datasets and large differences in between isovalues. But
our multiresolution algorithm tries to extract and render isosurfaces on coarse tetrahe-
dra and thereby often several isosurfaces will intersect a given tetrahedron making this
sorting necessary.

Let {i1, . . . , im} the ordered set of isovalues starting withi1 being the smallest
andim being the largest. Let us assume that for the ordered subset{ij , . . . , ik} of all
isovalues the corresponding isosurfaces intersect the current tetrahedron. Then, the iso-
surfaces have to be rendered either starting with the lowest isovalueij and ending with
the highest isovalueik, or starting withik and ending withij . Since linear interpolation
is used inside each tetrahedron, all isosurface components are parallel to each other.
The order of the isosurfaces is therefore determined by the inner product of the normal
of the isosurfaces with the viewing vector. The normal of the isosurface triangles is just
the gradientg of the linear function spanned by the data values at the vertices of the
tetrahedron. We have therefore the sorting test: ifv · g > 0, then the highest isovalue
has to be processed first, ifv · g < 0, the lowest one. Note that forv · g = 0 the iso-
surface triangles are parallel to the viewing vector and therefore nearly invisible. How
these gradients can be computed efficiently will be shown in the next section.



5 Hierarchical Gradient Computation

As we have seen in the previous section, transparency sorting requires the data gradi-
ents. These gradients can in principle be precomputed but they will then require a lot
of memory. Since the number of tetrahedra in the mesh is about six times the num-
ber of vertices, the required memory would be roughly6 · 3n3 floating point numbers
in addition to then3 data values. It is therefore advisable to compute these gradients
on–the–fly, but in straightforward implementation, gradient computation would signif-
icantly decrease the performance of the multiresolution algorithm. We will now show
how gradients can be computed very efficiently hierarchically.

Let us recall that the gradientg on the tetrahedronT for a linear functionf(x, y, z) =
ax+ by + cz + d is given byg = ∇f = (a b c)T . The coefficientsa, b, c can be com-
puted for data valuesf1, . . . , f4 at the respective vertices(x1, y1, z1), . . . , (x4, y4, z4)
by the solution of the linear system

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1



a
b
c
d

 =


f1

f2

f3

f4

 .

Given the solution of this system, we now want to compute the gradientsg1, g2 of the
two child tetrahedra. Let us first look at the first childT1 (see Figure 1). The coefficients
a1, b1, c1 of g1 are given by the following system

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
xref yref zref 1



a1

b1
c1
d1

 =


f1

f2

f3

fref

 ,

wherefref is the data value at the refinement vertex. Let us now rewrite the first system
through replacement of the fourth row with the sum of the first and fourth rows divided
by two, 

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

x1+x4
2

y1+y4
2

z1+z4
2 1



a
b
c
d

 =


f1

f2

f3
f1+f4

2

 .

Sincexref = (x1 +x4)/2 (and similarly fory andz), we see that the system for the child
differs from the system for the parent only by the fourth component of the right hand
side. Let the inverse of above matrix be given by(wij). Then we have fora

a = w11f1 + w12f2 + w13f3 + w14(f1 + f4)/2

and fora1

a1 = w11f1 + w12f2 + w13f3 + w14fref.

Differencing yields
a1 = a+ w14(fref − (f1 + f4)/2).



Repeating this step forb andc we end up witha1

b1
c1

 =

a
b
c

+ (fref − (f1 + f4)/2)

w14

w24

w34

 .

Completely analogously, the gradientg2 of T2 can be computed fromg by replacement
of wi4 with wi1. Now, only the correspondingwij for all 72 reference tetrahedra have
to be computed and stored in advance. The numbers of the reference tetrahedra can
be determined during the traversal by the numbering scheme of the previous section.
In comparison to direct computation (matrix inversion) or the plain usage of reference
elements (matrix–vector multiplication), the hierarchical method requires just scalar
multiplication and vector addition. Note that the factorfref − (f1 + f4)/2 is exactly
the wavelet coefficient in the piecewise linear lazy wavelet representation. Of course
the gradients can be reused for flat illumination shading of the isosurface triangles,
although we use Goraud shading in our examples.

6 Visualization Examples

As a first example serves the well–known buckyball data set (courtesy of AVS). Figure
5 shows three isosurfaces for isovalues of 0.05, 0.15 and 0.25. The colors of the isosur-
faces are blue, red and green (from outer to inner) with opacities of 0.3, 0.5, and 0.7.
The error thresholdsε of the six images are 0.0, 0.01, 0.02, 0.04, 0.08, and 0.16. The
number of triangles are 1775762, 979730, 438042, 277698, 171465, and 92309.

The second example in Figure 6 shows the electron density around the cap of a nan-
otube (courtesy of A. Caglar, Univ. of Bonn). In addition to the isosurfaces, the different
atoms of the molecule are shown (hydrogen in blue, boron in red, and nitrite in green).
The isovalues are 0.05 (yellow), 0.2 (green), and 0.35 (blue) with opacities of 0.3. The
ε–values are identical to the buckyball example resulting in 230452, 175054, 143126,
96327, 55933, and 42630 triangles. The atoms are rendered as small textured balls and
are inserted during the tree traversal at the appropriate position. In this example, it was
not necessary to split the textures across tetrahedra since they were small enough and
placed in the centers of the tetrahedra. In other cases, it may be necessary to split such
textures, though.

The combined rendering and extraction time of the algorithm is about 270000 trian-
gles/sec on an SGI Onyx2 (R10000, 195 MHz). The same algorithm for opaque isosur-
faces achieves about 300000 triangles/sec, so the time required for sorting is moderate
(about 10%) and does not degrade the total performance significantly.

7 Isovalue Selection

In many applications there is a close corresponence between data values and useful
isovalues. For example, in medical imaging, bone, tissue and blood vessels have certain
known reflectivities returned from medical scanners. In many other applications this
correspondence may be unknown or changing in between data sets. Certainly, it is often



0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 200 400 600 800 1000 1200

av
er

ag
e 

is
os

ur
fa

ce
 n

or
m

al

isovalue

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

av
er

ag
e 

is
os

ur
fa

ce
 n

or
m

al

isovalue

0.3

0.35

0.4

0.45

0.5

0.55

0 500 1000 1500 2000 2500

av
er

ag
e 

is
os

ur
fa

ce
 n

or
m

al

isovalue

Fig. 3.Average isosurface normal sizesḡ for the tooth, sheep and knee data sets.

the best way to determine suitable isovalues by trial and error. However, in some cases,
it may also be helpful to offer the user first guesses of suitable isosurfaces and let him
or her decide whose are useful and whose not.

Probably the most straightforward way to determine suitable isovalues is by looking
at the gradient field of the data set. Let us define the (discrete) average size of the
normals of an isosurface as

ḡ(i) =

∑
Tj :s(i)∩Tj 6=∅

area(s(i) ∩ Tj) · |g(Tj)|∑
Tj :s(i)∩Tj 6=∅

area(s(i) ∩ Tj)

wherei is the isovalue,s(i) the triangulated isosurface, andg(Tj) the data gradient on
Tj (which is the normal of the isosurface). The local minima and maxima ofḡ(i) then
characterize possible isovalues. The maxima will separate homogeneous areas and the
minima are the centers of these areas.

Let us take a look at some concrete graphsḡ(i) for the three different data sets
(courtesy of B. Lorensen, General Electric) which have been used for the transfer func-
tion bake–off at Visualization 2000 [22]. Those data sets, CT respectively MRI scans
of a tooth, a sheep’s heart, and a knee serve as benchmarks in transfer function design.
The computed̄g(i) for the three data sets are shown in Figure 3.

In all cases, we found the minima more useful. For the tooth data set there are three
clearly visible minima. The leftmost minimum corresponds to the cylindrical outer shell
of the medium in which the tooth was set prior to scanning. The other two minima give
the surface and the enamel of the tooth as shown in Figure 4, left. The sheep data set
shows only one distinguished minimum indicating the heart’s surface and inner blood
vessels (Figure 4 middle). Manual scanning of other isovalues revealed no further useful
isosurfaces. The knee data sets shows three clear minima despite the high amount of
noise in the data corresponding to skin, muscular tissue, and bone (Figure 4 right).
Although we did not do so, such noisy data should be smoothed before isosurfacing.

8 Concluding Remarks

In this paper, we have shown how multiple transparent isosurfaces can be extracted
interactively using the tetrahedral bisection hierarchy. This was achieved by an adaptive
tree traversal, a hierarchical sorting procedure of the tetrahedra and isosurface triangles,



Fig. 4.The tooth, sheep and knee data sets rendered with multiple transparent isosurfaces.

and the hierarchical computation of data gradients. Furthermore, we have shown how
isovalues can be selected (semi-)automatically based on the local minima of the average
isosurface normal graphs.

Let us remark that in comparison to direct volume rendering methods isosurface ex-
traction requires no special purpose hardware and gives images with sharp boundaries.
Also, besides the isovalues, colors and opacities, which can be obtained quickly, no fur-
ther design parameters are necessary. On the downside, details in between isosurfaces
are lost and cannot be displayed with this methodology. Of course, the sorting and num-
bering algorithms for the tetrahedra can be used in direct volume rendering algorithms
based on tetrahedral splats or ray casting (with inverted sorting order).

References

1. C. Bajaj, V. Pascucci, and D. Schikore. Accelerated Isocontouring of Scalar Fields. In
C. Bajaj, editor,Data Visualization Techniques. John Wiley and Sons, 1998.

2. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Repre-
sentation and Visualization of Volume Data.IEEE Transactions on Visualization and Com-
puter Graphics, 3(4):352–369, 1997.

3. F. Dong, M. Krokos, and G. Clapworthy. Fast Volume Rendering and Data Classification
using Multiresolution Min–Max Octrees.Computer Graphics Forum, 19(3):359–367, 2000.

4. T. Ertl, R. Westermann, and R. Grosso. Multiresolution and Hierarchical Methods for the
Visualization of Volume Data.Future Generation Computer Systems, 15(1):31–42, 1999.

5. T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology Simplifying
Multiresolution Isosurface Extraction. InProc. IEEE Visualization 2000, pages 259–266.
IEEE Computer Society Press, 2000.

6. T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction based on Tetra-
hedral Bisection. In M. Chen, A. Kaufman, and R. Yagel, editors,Volume Graphics, pages
267–278. Springer, 2000.

7. T. Gerstner, M. Rumpf, and U. Weikard. Error Indicators for Multilevel Visualization and
Computing on Nested Grids.Computers & Graphics, 24(3):363–373, 2000.

8. R. Grosso, C. L̈urig, and T. Ertl. The Multilevel Finite Element Method for Adaptive Mesh
Optimization and Visualization of Volume Data. InProc. IEEE Visualization ’97, pages
387–394. IEEE Computer Society Press, 1997.



9. B. Guo. A Multiscale Model for Structure–based Volume Rendering.IEEE Transactions on
Visualization and Computer Graphics, 1(4):291–301, 1995.

10. D. Holliday and G. Nielson. Progressive Volume Model for Rectilinear Data using Tetrahe-
dral Coons Volumes. In W. de Leeuw and R. van Liere, editors,Data Visualization 2000,
pages 83–92. Springer, 2000.

11. E. LaMar, B. Hamann, and K. Joy. Multiresolution Techniques for Interactive Texture–based
Volume Visualization. InProc. IEEE Visualization ’99, pages 355–362. IEEE Press, 1999.

12. D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm for
Volume Rendering.Computer Graphics (SIGGRAPH ’91 Proc.), pages 285–288, 1991.

13. L. Lippert and M. Gross. Fast Wavelet based Volume Rendering by Accumulation of Trans-
parent Texture Maps.Computer Graphics Forum, 14(3):431–444, 1995.

14. Y. Livnat, H. Shen, and C. Johnson. A Near Optimal Isosurface Extraction Algorithm using
the Span Space.IEEE Trans. on Visualization and Computer Graphics, 2(1):73–83, 1996.

15. W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction
Algorithm. Computer Graphics, 21(4):163–169, 1987.

16. J. Maubach. Local Bisection Refinement forn-simplicial Grids generated by Reflection.
SIAM J. Sci. Comp., 16:210–227, 1995.

17. M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical Evaluation of
Popular Volume Rendering Algorithms. InProc. Volume Visualization 2000, pages 81–91.
ACM Press, 2000.

18. S. Muraki. Approximation and Rendering of Volume Data using Wavelet Transforms.Com-
puter Graphics and Applications, 13(4):50–56, 1993.

19. M. Ohlberger and M. Rumpf. Adaptive Projection Methods in Multiresolutional Scientific
Visualization.IEEE Trans. on Visualization and Computer Graphics, 4(4):74–94, 1998.

20. V. Pascucci and C. Bajaj. Time Critical Isosurface Refinement and Smoothing. InProc. Vol-
ume Visualization 2000, pages 33–42. ACM Press, 2000.

21. B. Payne and A. Toga. Surface Mapping Brain Function on 3D Models.IEEE Computer
Graphics and Applications, 10(5):33–41, 1990.

22. H. Pfister (org.), B. Lorensen, C. Bajaj, G. Kindlmann, and W. Schroeder. The Transfer
Function Bake–Off. Panel session at IEEE Visualization ’00, 2000.

23. M. Rivara and C. Levin. A 3D Refinement Algorithm suitable for Adaptive and Multi-Grid
Techniques.Comm. Appl. Num. Meth., 8:281–290, 1992.

24. R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree–based Decimation of Marching
Cubes Surfaces. InProc. IEEE Visualization ’96, pages 335–344. IEEE Press, 1996.

25. O. Staadt, M. Gross, and R. Weber. Multiresolution Compression and Reconstruction. In
Proc. IEEE Visualization ’97, pages 337–364. IEEE Computer Society Press, 1997.

26. P. Sutton, C. Hansen, H.-W. Shen, and D. Schikore. A Case Study of Isosurface Extraction
Algorithm Performance. In W. de Leeuw and R. van Liere, editors,Data Visualization 2000,
pages 259–268. Springer, 2000.

27. M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level–of–Detail Volume
Rendering via 3D Textures. InProc. Volume Vis. 2000, pages 7–13. ACM Press, 2000.

28. R. Westermann. A Multiresolution Framework for Volume Rendering. InProc. Volume
Visualization 94, pages 51–57. ACM Press, 1994.

29. R. Westermann, L. Kobbelt, and T. Ertl. Real–Time Exploration of Regular Volume Data by
Adaptive Reconstruction of Isosurfaces.The Visual Computer, 15:100–111, 1999.

30. J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation.ACM Transactions
on Graphics, 11(3):201–227, 1992.

31. Y. Yang, F. Lin, and H. Seah. Fast Multi–Resolution Volume Rendering. In M. Chen,
A. Kaufman, and R. Yagel, editors,Volume Graphics, pages 185–197. Springer, 2000.

32. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework for Visualizing
Volume Data. InProc. IEEE Visualization ’97, pages 135–142. IEEE Press, 1997.



Fig. 5.Multiple transparent isosurfaces of the buckyball data set for varying error thresholds.

Fig. 6. Multiple transparent isosurfaces of a boron–nitrite nanotube cap with corresponding
atomic positions for varying error thresholds.


