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Abstract. Adaptive mesh refinement (AMR) is a numerical simulation technique
used in computational fluid dynamics (CFD). It permits the efficient simulation of
phenomena characterized by substantially varying scales in complexity of local
behavior of certain variables. By using a set of nested grids at different resolu-
tions, AMR combines the simplicity of structured rectilinear grids with the possi-
bility to adapt to local changes in complexity and spatial resolution. Hierarchical
representations of scientific data pose challenges when isosurfaces are extracted.
Cracks can arise at the boundaries between regions represented at different res-
olutions. We present a method for the extraction of isosurfaces from AMR data
that avoids cracks at the boundaries between levels of different resolution.

1 Introduction

AMR was introduced to computational physics by Berger and Oliger [3] in 1984. A
modified version of their algorithm was published by Berger and Colella [2]. AMR has
become increasingly popular in the computational physics community, and it is used in
a variety of applications. For example, Bryan et al. [4] use a hybrid approach of AMR
and particle simulations for simulation of astrophysical phenomena.

Fig. 1 shows a simple two-dimensional (2D) AMR hierarchy produced by the Berger–
Colella method. The basic building block of ad–dimensional Berger-Colella AMR hi-
erarchy is an axis-aligned structured rectilinear grid. Each gridg consists of hexahedral
cells. Each grid can be positioned by specifying its originog. The underlying simula-
tion method is a finite-difference method. Typically, acell-centered data format is used,
i.e., dependent function values are associated with the centers of the cells. We denote
the region covered by the grid byΓg. Each grid contains a pointer to an array containing
the dependent data values. These are stored in a simple array

An AMR hierarchy consists of several levelsΛl comprising one or multiple grids.
All grids in the same level have the same resolution, i.e., all grids in a level share the
same cell sizeδΓl . The region covered by a levelΓΛl is the union of regions covered by
the grids of that level.
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Fig. 1.AMR hierarchy consisting of four grids in three levels. The root level consists of one grid.
This grid is refined by a second level consisting of two grids. A fourth grid refines the second
level. It overlaps both grids of the second level. Boundaries of the grids are drawn as bold lines.
Locations at which dependent variables are given are indicated by solid discs

The hierarchy starts with theroot level Λ0, the coarsest level. Each levelΛl may
be refined by a finer levelΛl+1. A grid of the refined level is commonly referred to
as acoarse grid and a grid of the refining level as afine grid. The refinement ratio
r specifies how many fine grid cells fit into a coarse grid cell, considering all axial
directions. The value ofr is always a positive integer. A refining grid refines an entire
levelΛl, i.e., it is completely contained inΓΛl but not necessarily in the region covered
by a single grid of that level. Each refining grid can only refine complete grid cells of
the parent level, i.e., it must start and end at the boundaries of grid cells of the parent
level. Furthermore, there is always a layer with a width of at least one grid-cell between
a refining grid and the boundary of the refined level. Due to the hierarchical nature of
AMR simulations, the resulting data lend themselves to hierarchical visualization. We
discuss a new method for the direct extraction of isosurfaces from AMR data sets.

2 Related Work

Little research has been published regarding the visualization of AMR data. Norman
et al. [12] convert an AMR hierarchy into finite-element hexahedral cells with cell-
centered data that can take advantage of standard visualization tools (like AVS [1], IDL
[7], or VTK [13]), while preserving the hierarchical nature of the data. Ma [9] describes
a parallel rendering approach for AMR data. Even though he re-samples the data to
vertex-centered data, he still uses the hierarchical nature of AMR data and contrasts it
to re-sampling it to the highest resolution-level available. Max [10] describes a sorting



scheme for cells for volume rendering, and uses AMR data as one application of his
method.

Isosurface extraction is a commonly used technique for the visual exploration of
scalar fields. Our work is based on the marching-cubes (MC) method, introduced by
Lorensen and Cline [8]. A volume is traversed cell-by-cell, and the part of the iso-
surface within each cell is constructed using a look-up table (LUT). The LUT of the
original article by Lorensen and Cline contained a minor error that could lead to cracks
in the extracted isosurface. This is due to ambiguous cases where different isosurface
triangulations in a cell are possible. Nielson and Hamann [11], among others, addressed
this problem and proposed a solution to it. Van Gelder and Wilhelms [5] have provided
a survey of solutions to this problem. They show that, in order to extract a topologically
correct isosurface, more than one cell must be considered at a time. If topological cor-
rectness of the isosurface is not required, it is possible to avoid cracks without looking
at surrounding cells. In our implementation, we use the LUT from VTK [13] that avoids
cracks by taking special care during LUT generation.

Octree-based methods are among the methods used to speed up the extraction of
isosurfaces. Shekhar et al. [14] use an octree as a hierarchical representation of the
data. By adaptively traversing the octree and merging cells that satisfy certain criteria,
they reduce the amount of triangles generated for an isosurface. Their scheme removes
the cracks in the resulting isosurface. Westermann et al. [15] modified this approach by
adjusting the traversal criteria and improving the crack-removal strategy. Gross et al.
[6] used a combination of wavelets and quadtrees to approximate surfaces, e.g., from
terrain data. Using an estimate based on a wavelet transform their approach chooses a
level in the quadtree structure to represent a given region. Handling transitions between
quadtree levels is similar to handling those between levels in an AMR hierarchy.

3 Dual Grids

The MC method assumes that data values are associated with the cell vertices, but the
AMR method produces values at cell centers. To deal with this incompatibility problem
one can, for example, re-sample the data set to a vertex-centered format. However, re-
sampling causes “dangling nodes” in the fine level. Even if the re-sampling scheme
assigns the same values to the dangling nodes as the interpolation scheme assigns to
them in the coarse level, dangling nodes can cause cracks when using the MC method
(see [15]). We solve these problems by using adual grid for isosurface extraction. This
dual grid is defined by the function values at the cell centers. The cell centers become
the vertices of the vertex-centered dual grid.

The dual grids for the first two levels of the AMR hierarchy shown in Fig. 1 are
shown in Fig. 2. We note that the dual grids have “shrunk” by one cell in each axial
direction with respect to the original grid. The result is a gap between the coarse grid
and the embedded fine grids. Due to the existence of this gap, there are no dangling
nodes that could cause discontinuities in an extracted isosurface.



Fig. 2. Dual grids for the three AMR grids comprising the first two hierarchy levels shown in
Figure 1. The original AMR grids are drawn in dashed lines and the dual grids in solid lines

4 Stitching 2D Grids

To avoid cracks in extracted isosurfaces as a result of gaps between grids, a tessellation
scheme is needed that “stitches” grids of two different hierarchy levels. The resulting
stitch mesh is constrained by the boundaries of the coarse and the fine grids and can
be used to merge levels seamlessly. The stitch mesh must not subdivide any boundary
elements of the existing grids. In the 2D case, this is achieved by requiring that only
existing vertices are used and no new vertices generated. Since one of the reasons for
using the dual grids is to avoid the insertion of new vertices, whenever possible, this
poses no problems.

In the 2D case, a constrained Delaunay triangulation can be used to fill the gaps
between grids. For two reasons, we chose not to do this. While in the 2D case only
edges must be shared between the stitching grid and the dual grids, entire faces must
be shared in the 3D case. The boundary faces of rectilinear grids are quadrilaterals and
cannot be shared by tetrahedra without being subdivided, thus causing cracks when used
in an MC-based isosurface extraction scheme. Furthermore, an index-based approach
is more efficient, since it takes advantage of the regular structure of the boundaries
while avoiding problems that might be caused by this regular structure when using a
Delaunay-based approach.

The stitching process for a refinement ratio of two is shown in Fig. 3. Stitch cells
must be generated for edges along the boundary and for the vertices of the fine grid.
The stitch cells generated for the edges are shown in dark grey, while the stitch cells
generated for the vertices are drawn in light grey. For the transition between one fine
and one coarse grid, each edge of the fine grid is connected alternatingly to either a
vertex or an edge of the coarse grid. This yields triangles and deformed quadrilaterals



Fig. 3. “Stitch cells” for first two levels of AMR data set shown in Fig. 2

as additional cells. The quadrilaterals are not subdivided, since such a subdivision is
not unique. (This in turn would cause problems in the 3D case when these quadrilat-
erals become boundary faces shared between cells.) The vertices are connected to the
coarse grid via two triangles. Here, a consistent partition of the deformed quadrilateral
is possible. The obvious choice is to connect each edge to the two coarse edges that are
“visible” from it.
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Fig. 4.Possible cases for connecting a boundary edgee0e1 ((i)–(iv)) or a boundary vertexv ((v)–
(viii)) to a coarse grid. If cells of the coarse grid are refined, the coarse grid points (circles) are
replaced by the corresponding refining point (solid black discs)

In the case of multiple grids, a check must be performed: Are the grid points in the
coarse grid refined or not? If a fine edge is connected to a coarse point, this check is
simple. If the coarse point is refined, the fine edge must be connected to another fine
edge; this yields a rectilinear instead of a triangular cell. The case of connecting to a
coarse edge is more complicated and illustrated in Figs. 4 (i)–(iv). If both points are



refined (Fig. 4(iv)), the fine edge is connected to another fine edge. As a result, adjacent
fine grids yield the same cells as a continuous fine grid. The problem cases occur where
only one of the points is refined (Figs. 4(ii) and 4(iii)). Even though it is possible to
skip these cases and handle them as vertex cases of the other grid, a more consistent
approach is to include them in the possible edge cases. However, the same tessellations
should be generated for both cases, as shown in Fig. 4.

The cases arising from connecting a vertex are illustrated in Figs. 4 (v)-(vii). In
addition to replacing refined coarse grid points by the nearest fine-grid point, adjoining
grids must be merged. If either of the coarse grid points0 (Fig. 4(v)) or2 (Fig. 4(v))
is refined, it is possible to “promote” the border vertex to a border-edge segment by
connecting it to the other refined grid point and treating it as an edge, and using the
connection configurations from the previous paragraph, i.e., those shown in Fig. 4 (i)–
(iv). (This case occurs along the bottom edge of the fine grids shown in Fig. 3.)

Even though general integer-refinement ratiosr are possible for AMR grids, in 2D
simulations, refinement ratios of two and four are the most common ones used. The
stitching process can be generalized to more general refinement ratios. Instead of con-
necting edge segments of the refining grid alternatingly to a coarse-grid edge segment
and point,(r−1) consecutive edge segments must be connected to one common coarse-
grid point. Everyr–th fine edge must be connected to a coarse edge. Even though the
valence of the grid points of the coarse grid is increased, this is not a problem with the
commonly used refinement ratios. Furthermore, general refinement ratios do not add
more refinement configurations, since the fundamental connection strategies remain the
same.

5 Stitching 3D Grids

Our index-based approach can be generalized to 3D AMR grids. In the simple case
of one fine grid embedded in a coarse grid, quadrilaterals, edges and vertices of the
fine grid must be connected to the coarse grid. In each of the two directions implied
by a quadrilateral, a decision must be made whether to connect to a vertex or an edge.
The various combinations result in quadrilaterals being connected to either a vertex, a
line segment (in the two possible directions) or another quadrilateral. The cell types re-
sulting from these connections are pyramids (Fig. 5(i)), deformed triangle prisms (Fig.
5(ii), and deformed hexahedral cells (Fig. 5(iii)).

The edge case can be viewed as a combination of the vertex and edge cases of
the 2D case. If the viewing direction is parallel to the edge (such that it appears to the
viewer as a point), it must always be connected to two perpendicular edges of the coarse
grid. In the direction along the edge, one connects it to a point or a parallel edge. The
combination results in the edge to be connected to either two perpendicular edges or two
quadrilaterals of the coarse grid. This results in two tetrahedra, shown in Fig. 5(iv), or
two deformed triangle prisms, shown in Fig. 5(v), as connecting cells. The vertex case
is the combination of two 2D vertex cases. This results in each vertex being connected
to three quadrilaterals of the coarse grid via pyramid cells, as shown in Figure 5(vi).

When the coarse grid is refined by more than one fine grid, one must check each
coarse-grid point for refinement. Edges might be “upgraded” to the quadrilateral case
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(for two adjacent edges). This occurs for the hexahedral cell (Fig. 5(iii)) when either
grid points2 and 3 or grid points4 and 5 are refined. Vertices can be promoted to
edges, or even quadrilaterals, when more than two grids meet at a given location. The
fine vertex shown in Fig. 5(vi) can be promoted to an edge, if any of the coarse grid
points3, 5, or 6 is refined.

(i) Hexahedral cell (ii) Triangular prism cell

Fig. 6.Tessellations for 3D cells

The possible refinement configurations result in a large number of cases to be con-
sidered. In situations where a fine quadrilateral, edge, or vertex is connected to coarse
quadrilaterals, eight points are considered. These points form a deformed hexahedral
cell. Each of the faces of the cell corresponds to a possible 2D refinement configura-
tion shown in Fig. 4. It is important to note that the 2D refinement configurations that



produce subdivided quadrilaterals are the same configurations that yield non-planar cell
boundaries, i.e., boundaries that need to be subdivided. Fig. 6(i) illustrates that this sub-
division information alone is sufficient to determine a tessellation. It is not necessary to
consider the actual positions of the points. Each face of the cell in the figure is subdi-
vided using the canonical tessellations depicted in Fig. 4, illustrated by the dotted lines.
This subdivision of the faces implies tessellations of hexahedral cells into pyramids,
triangular prisms, and tetrahedra. In the case of the pyramid (Fig. 5(i)), a refined coarse
point is replaced by a fine quadrilateral; the result is a hexahedral cell. Refined coarse
points in triangular prisms must be replaced by a fine edge. One of the the possible
configurations is shown in Fig. 6(ii). If both coarse points of the triangular prism are
refined, the resulting hexahedral cell does not have to be split further.

6 Isosurface Extraction

Within the individual grids, we apply a slightly modified MC approach. Instead of con-
sidering all cells of a grid for isosurface generation, we consider only those cells that
are not refined by a finer grid. We do this by pre-computing a map with refinement in-
formation for each grid. For each grid cell, this map contains an index of a refining grid
or an entry that the cell is unrefined. This enables us to quickly skip refined portions of
the grid. For the generation of isosurface within the stitch cells, the MC method must
be extended to handle the cell types generated during the stitching process. This is a
straightforward extension achieved by generating case tables for each of the new cell
types. These new case tables must be compatible with the one used in the MC approach,
i.e., the ambiguous cases mentioned in Section 2 must be handled in exact the same way
as for the hexahedral cells.

7 Results

Fig. 7 shows isosurfaces extracted from an AMR data set. The isosurface in Fig. 7(i)
shows an isosurface extracted from two levels of the hierarchy, and Fig. 7(ii) one ex-
tracted from three levels. To highlight the transitions between levels, parts of the isosur-
face extracted from different levels of the hierarchy are colored differently. Isosurface
parts extracted from the root, the first and the second level are colored red, orange and
light blue, respectively. Portions extracted from the stitch meshes between the root and
the first level are colored in green, and portions extracted from the stitch mesh between
the first and second level are colored in yellow. The root level and the first level of the
used AMR hierarchy each consist of one32 × 32 × 32 grid. The second level consists
of 12 grids with dimensions6 × 12 × 6, 6 × 4, 8 × 12 × 10, 6 × 4 × 4, 14 × 4 × 10,
6 × 6 × 12, 12 × 10 × 12, 10 × 4 × 8, 6 × 6 × 2, 16 × 26 × 52, 14 × 16 × 12, and
36 × 52 × 36. All measurements were performed on an standard PC with a700Mhz
Pentium III processor.



(i) Isosurface extracted using two out of seven levels of the
AMR hierarchy. Generating the stitch cells required approxi-
mately55ms, generating the isosurface approximately250ms

(ii) Isosurface extracted using three out of seven levels of the
AMR hierarchy.Generating the stitch cells required approximately
340ms, generating the isosurface approximately600ms

Fig. 7. Isosurface extracted from AMR hierarchy (data set courtesy of Greg Bryan, Massachusetts
Institute of Technology, Theoretical Cosmology Group, Cambridge, Massachusetts)



8 Future Work

One possible extension of our method is to use a generic triangulation scheme ensuring
crack-free isosurface extraction. This would allow the use of our method for other, more
general AMR data, where grids might not necessarily be axis-aligned, e.g., data sets
produced by the AMR method of Berger and Oliger [3]. Furthermore, it is possible to
use the computed tessellation for other purposes, not just for extraction of isosurfaces.
One other possible application is to use the tessellation for direct volume rendering to
obtain high-quality volume-rendered images, see Max [10].
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