
A Framework for Interactive Hardware Accelerated
Remote 3D-Visualization

Klaus Engel, Ove Sommer, and Thomas Ertl

University of Stuttgart, IfI, Visualization and Interactive Systems Group
fengel, sommer, ertl g@informatik.uni-stuttgart.de

http://wwwvis.informatik.uni-stuttgart.de

Abstract. In this paper we present a framework that provides remote control
to Open Inventor or Cosmo3D based visualization applications. A visualization
server distributes a visualization session to Java based clients by transmitting
compressed images from the server frame buffer. Visualization parameters and
GUI events from the clients are applied to the server application by sending
CORBA (Common Object Request Broker Architecture) requests.
The framework provides transparent access to remote visualization capabilities
and allows sharing of expensive resources. Additionally the framework opens
new possibilities for collaborative work and distance education. We present a
teleradiology system and an automotive development application which make
use of the proposed techniques.

1 Introduction

The rapid evolution of todays digital communication networks enables access to a huge
amount of scientific data and remote computation capabilities, like shared memory mul-
tiprocessor machines or special high-end graphics hardware. Concerning this develop-
ment we believe that techniques have to be developed to enable the visualization of
scientific data using remotely available high-end visualization architectures from any
Internet-connected desktop computer.

In the development of todays desktop computers two contrary trends can be ob-
served. On the one hand the computation and rendering capabilities of modern low-cost
PCs are quickly rising. One the other hand the network computer (NC) is a very simple
and inexpensive device that acts as a thin client to more powerful server machines.

Up to now hardware accelerated rendering has required local rendering. For exam-
ple, in the X-Windows system a remotely started 3D application uses local 3D acceler-
ation hardware for rendering. Local rendering enables high interaction rates. However,
there are certain conditions under which local rendering is impossible or undesirable.
For example, typical data sets from scientific simulations and measurements neither can
quickly transferred nor can be handled on modern desktop computers because of their
immense size. On the other side there is a class of high-end servers, supercomputers
and workstations with special 3D graphics acceleration hardware, numerical computa-
tion power and high-performance IO bandwidth that provide the necessary means to
handle large scientific data sets. Furthermore local rendering often requires the transfer
of sensitive data from servers to clients. This may be undesirable because of security



Framebuffer pBuffer

Graphics Hardware

OpenGL

OpenInventor /
Cosmo3D

Server Application

image
encoder

CORBA
application
control
interface

image
decoder

Framebuffer

Graphics Hardware

socket

corba events Client Application

Server Client

CORBA
event
generator display window

mouse events

application
parameters,
menu events

CORBA
OI/Cosmo3D
control
interface

CORBA
event
generator

corba events

thread

Fig. 1. The client-server scenario used in this framework. One or more clients remotely observe
and control an application on a server by using two CORBA interfaces and a socket connection.

reasons, e.g. for patient data in medical applications its more secure to transfer (en-
crypted) image data instead of original data.

We developed a framework for the remote visualization of large scientific data sets.
It is able to use 3D acceleration hardware of the server system and allows to use these
features from any Internet-connected PC interactively. The general scenario used for the
framework consists of an high-end visualization server for rendering images and one or
more clients to provide a user interface, display the rendered images, and control the
visualization (Fig. 1). There are no special requirements for the choice of the clients.
Even a PDA with TCP/IP network connection and adequate display resolution would
be sufficient.

On the server side an Open Inventor or Cosmo3D based visualization application is
rendering either images on-screen into the frame buffer or off-screen into the pbuffer.
Thereby two different scenarios can be derived: A master user controls the session on
the server machine and uses the visualization application locally. Images rendered on-
screen into the frame buffer are encoded and transferred to all clients using a socket
connection. The second scenario uses a display-less server that runs the server job in
the background and renders into the pbuffer. The pbuffer is a special protected graphics
memory block which allows hardware accelerated off-screen rendering. Images are read
from this buffer into main memory, encoded and transferred to the attached clients using
a socket connection.

The Java client enables transparent remote access to the visualization capabilities of
the high-end server from any window system supporting platform. The received image
data is decoded, stored as a Java2D buffered image and drawn into the frame buffer.
Mouse and keyboard events generated on the client are transported to the server ma-
chine using CORBA method calls. The server provides an Open Inventor or Cosmo3D
interface for these events that passes the parameters to objects and functions that handle
the events on the server side. Thereby, when using Open Inventor, a manipulator wid-
get can be remotely picked and dragged. Application parameters are transferred to the
server using a second CORBA event interface.



Using our framework, which consists of several C++ and Java classes, the client
and server applications can be easily developed. Moreover the framework enables the
conversion of any existing visualization application into a remotely controllable one by
adding only a small amount of additional code. Multiple clients are able to share the
view on the data and interact in turn.

In the following section we will describe some related work in the field of web based
visualization. Section 3 outlines the architecture of our framework. Section 4 explains
two exemplary applications which use the proposed techniques. Results are given in
section 5. We will conclude the paper with some remarks on future activities.

2 Related Work

In the past years several approaches for scientific visualization on digital networks were
investigated. One of the first progressive applications for volume visualization was pre-
sented by Lippert et al. [7].

Hendin introduced a VRML based volume visualization tool [5], which uses three
stacks of perpendicular slices. We introduced techniques for fast volume clipping, col-
laborative work, and data size reduction [2] as an extension to Hendin’s approach.

An opposite approach was proposed by Ma et al. The web based volume visualiza-
tion system called DiVision allows users to explore remote volumetric data sets using
a web-browser [10]. The system computes images on a visualization server, which are
transferred to the client and inserted into a graph. However, the application does not
support interactive manipulation.

In the virtual network computing (VNC) system by Richardson et al. [11], server
machines supply applications, data, and desktop environments that can be accessed
from any Internet-connected machine using a wide variety of machine architectures. It
is a remote display system which allows the user to view a computing desktop environ-
ment from anywhere on the Internet. VNC does not support to use remote 3D graphics
acceleration hardware.

Just recently SGI announced OpenGL Vizserver [8]. From the limited amount of
information which is currently available it is understood that OpenGL Vizserver will
enable a single Onyx2 workstation to distribute visualization sessions to multiple UNIX
operating system desktop workstations by transmitting compressed images from the
Onyx2 frame buffer. While the system only seems to work inside organization networks
and only on SGI machines, our framework allows transparent access to any high-end
server from any Internet-connected desktop PC.

3 The Framework

The framework consists of several C++ classes for the server side and Java modules that
are used to build a client application. Because of the modular structure of the framework
it can be applied to any visualization application and new codecs can be added.



3.1 Server modules

A stand-alone visualization application can easily be converted into a remotely accessi-
ble one by adding a CORBA interface and slightly modifying the scene graph. Currently
the framework was adapted for Open Inventor and Cosmo3D.

Open Inventor: Open Inventor traverses the scene graph in a fixed order from top to
bottom and left to right. Because of this behavior we can add a new scene graph node
namedPBufferNode that switches to the pbuffer rendering context in front (to the
left) of the contributing nodes, generally at the leftmost position. TheSocketNode
reads the frame buffer content into main memory and performs the encoding and trans-
mission of the image data. It is inserted behind (to the right) of the contributing nodes,
generally at the rightmost position in the scene graph.

As soon as the scene graph has changed or new mapping parameters (e.g. modified
transfer functions) have been received a render action is applied to the root node of the
scene graph. Then the following sequence of steps is performed:

1. The render action traverses the scene graph from top to bottom and left to right.
2. As soon as thePBufferNode is reached, the render method switches to the

pbuffer rendering context. If there was noPBufferNode node added to the scene
graph the rendering context remains on-screen.

3. The render action continues to traverse through the scene graph and the shape nodes
draw geometry into the current rendering context.

4. As soon as theSocketNode is visited, the content of the frame buffer is read into
main memory. It compresses the image data using one of the available compression
methods and provides the encoded data to all connected clients via a given socket
port.

5. The render action continues to traverse the scene graph.

Open Inventor provides convenient mechanisms to convert 2D events received from
a client to 3D events. The steps that are performed can be summarized as follows:

1. The client application registers interest in particular events with its window system.
2. The client application receives an event from its window system.
3. The client calls the appropriate server method using CORBA and delivers the nec-

essary parameters (e.g. mouse position, mouse button) to the server.
4. The server application translates the event into aSoEvent (for mouse events

SoLocation2Event ).
5. The SoEvent is inserted into an instance of theSoHandleEventAction class.
6. The handle event action is applied to the top node of the scene graph. This action

traverses the scene graph. Each node implements its own action behavior. When a
node (typically a manipulator) is found, it handles the event.

7. If necessary a render action is applied to the scene graph.

The CORBA main loop and the Open Inventor main loop are running in two sepa-
rate threads. As Open Inventor is not thread-save the received client events can not be
applied to the scene graph immediately. TheTicker class is an Open Inventor engine
(derived fromSoEngine ) that storesSoHandleEventAction s created by client
event receiving CORBA methods. TheTicker class is called from the Open Inventor
main loop in fixed time steps and triggers aSoHandleEventAction .



Cosmo3D: The scene graph structure provided by Cosmo3D differs from that of Open
Inventor. No information is inherited horizontally in the Cosmo3D scene graph, which
is traversed downwards from top to bottom in each branch. OpenGL Optimizer offers
different kinds of scene graph traversal actions: On the one hand there are depth-first
traversal actions which do their work in the same order as Open Inventor actions do.
On the other hand breadth-first traversal actions can be applied for parallelization using
multiple processors. Thus, a new Cosmo3D scene graph node, which implements the
corresponding functionality of the describedPBufferNode and SocketNode , is
derived from the Cosmo3D classcsGroup . Its methoddrawVisit() contains a
pre- and a post-traversal section. The former switches the rendering context to pbuffer
while the latter section starts the encoding and transmission of the image data.

In contrast to the Open Inventor scenario the new Cosmo3D scene graph node is
used as a root node which enfolds the original scene graph as its subgraph.

Alternatively, the scene graph can be left untouched and just one function call has
to be added at the beginning of the methodopXmViewer::swapBuffers() . This
function determines the current drawing buffer, callsglReadPixels() and initiates
the image encoding and transmission.

Incoming mouse or key events are interpreted and handled after a pre-processing
step by the corresponding methods in theopXmViewer class as if they had been ap-
peared on the local site. For example, mouse events are sent to a method which con-
verts the incoming data and emulates the methodprocessPendingEvents() of
opXmViewer .

3.2 Client modules

The client modules are implemented using the JAVA2 platform. We provide the follow-
ing classes:

RenderArea: The basic render areavis.inventor.RenderArea is a drawing
area for frame buffer content, that was received from the visualization server. For this
purpose the Java2Djava.awt.image.BufferedImage class is used. The draw-
ing area also relays mouse events that are sent to the server. It is derived from the
java.awt.Panel class and can be added into any Java container. The
vis.inventor.FullViewer class, derived from this class, provides the look-and-
feel and functionality of Open InventorsSoXtFullViewer , which includes a decora-
tion around the render area. This decoration is make up out of thumb wheels, sliders, and
push buttons. It also supports a context menu that allows to change the Open Inventor
rendering type in several ways.

Decoders: vis.imagedecoder.Decoder is the abstract base class for all codecs
we have implemented. New decoders can be integrated into the framework by deriving
new classes from this base class. We provide the decoders
vis.imagedecoder.ZLIBDecoder , vis.imagedecoder.LZODecoder ,
vis.imagedecoder.RLEDecoder andvis.imagedecoder.RAWDecoder .



time

event

render encode

apply

read 
frame
buffer

CORBA request image

decode write
frame
buffer

latency

Client

Server

Fig. 2. The latency in between manipulation and image update consists of request, event transla-
tion, rendering, frame buffer read, encoding, transfer, decoding and display time.

SimpleViewer: We also provide a classvis.viewers.SimpleViewer which can
be used as a client to observe any remote visualization session of an application that was
adapted using our framework. For this purpose only some lines of code have to be added
to a stand-alone visualization application.

3.3 Network Communication

The transmission of images and the remote control of the server application are strictly
decoupled. The image data is streamed through a TCP socket connection and the ap-
plication, mapping and rendering parameters are applied to the server application by
using CORBA method calls. Once new mapping or rendering parameters were received
by the server they are applied to the visualization. Then the rendering is performed,
the frame buffer is copied into main memory, the data is encoded, transferred to the
clients, decoded and finally copied into the frame buffer of the client (Fig. 2). These
steps determine the overall latency of the application between manipulation and image
update.

CORBA interfaces: The CORBA interface to the server is divided up into two parts:

– The events for the render area of the server application are sent to the server using
the interfaceRenderArea . For a server that uses Open Inventor the interface
FullViewer extends theRenderArea interface with functionality of the Open
InventorSoXtFullViewer class.

– Application specific parameters are accessed via theApplication interface. We
provide a base interface which can be extended to make the functionality of a server
application accessible. For example, if the application allows to add clipping planes
we would have to add a methodaddClippingPlane to the interface and imple-
ment the appropriate server method.

Image compression and transfer: The image transmission is decoupled from the
CORBA interfaces because we wanted to be able to quickly replace the image transfer



codec with more sophisticated ones without any changes in the remaining networking
code. It could be as well integrated into the CORBA communication, but right now
we transfer the image data using a TCP socket connection. The user can select one of
following encoding types:

– RAW: The codec returns the original data, thus no compression is performed. This
method can be used in a high bandwidth network to keep the latency low.

– ZLIB: Performs a loss-less compression based on the ZLIB library [12]. The algo-
rithm finds duplicated strings in the input data. The second occurrence of a string is
replaced by a pointer to the previous string, in the form of a pair (distance,length).
ZLIB compression is a standard feature of Java since version 1.1 and is performed
via fast native code.

– LZO: Performs a loss-less compression based on the LZO library [9]. LZO is a
block compression algorithm - it compresses and decompresses a block of data.
Block size must be the same for compression and decompression. LZO compresses
a block of data into matches (a sliding dictionary) and runs of non-matching literals.
LZO favors speed over compression ratio. As the LZO codec is not a standard
method of Java, the LZO decompression is accessed via a Java Native Interface
(JNI) call.

– RLE: Performs a loss-less compression based on run-length encoding.

Despite of the image compression the amount of data that has to be transmitted
to the client is still too large for low-bandwidth network connections like an ISDN
connection. In order to allow high interaction rates on such connections we additionally
apply an image size reduction while interacting with the data. For example, when a
manipulator is picked and dragged we transfer the images with half or quarter resolution
and scale the images to full size on the client. As soon as the user stops dragging the
manipulator a full frame is transmitted. The combination of compression and image size
reduction provides sufficient frame rates even on 56k modem network connections.

4 Collaborative visualization environments

In areas where specialists are separated by distance the work-flow efficiency can be
improved by collaborative applications. For example, such applications allow users to
discuss the visualized data sharing the same view. Furthermore, expensive experts can
be consulted and distance education or advanced training can be held. Additionally, our
approach provides simultaneous access to a server application for multiple users. Thus
the capabilities of expensive hardware can be sharded by low-cost client systems.

In this section we will present two applications that were extended by our frame-
work to enable collaborative work. The first one is an application that uses 3D texture
mapping hardware of high-end graphics workstations to visualize medical volume data.
The second one is employed in the car development process for visualization of huge
time-dependent finite element models.

4.1 Teleradiology

The use of 3D texture mapping hardware has become a powerful visualization option for
direct volume rendering [1, 15]. Unfortunately, up to now 3D texture mapping hardware



is still restricted to high-end graphics workstations. Now one can make the hardware
capabilities accessible to almost any client system by using our framework.

For this purpose an interactive stand-alone texture based rendering application for
medical volume data has been extended (Fig. 3, left). It has been integrated into the
Open Inventor framework in order to obtain the whole flexibility and functionality of-
fered by this graphics API. By introducing a new class, the volume renderer has been
represented as a separate object within the hierarchical structure of the scene graph.
This allows convenient use of built-in manipulators, sensors, editors and other prede-
fined classes, methods and features (light sources, anti-aliasing, perspective/orthogonal
projection, fly, walk, trackball) [4, 13].

First a few lines of code were added in order to extend the scene graph using the
SocketNode we previously introduced. With this small modification it is possible to
join a visualization session passively using a web-browser and observe the visualization.
To allow remote control of the application we had to extend the base CORBA applica-
tion interface with additional functionality (e.g. update of transfer function, adding of
clipping planes, etc.). On the client side a viewer application was developed that pro-
vides the same look-and-feel as the stand-alone application (Fig. 3, right). We used the
vis.inventor.FullViewer class as the display area in the main window, added
some buttons to the decoration, and reimplemented the menu bar and the dialogs of the
stand-alone application in Java (e.g. the transfer-function dialog).

Recapitulating, our approach allows working groups to discuss medical volume data
sets collaboratively. 3D texture supporting graphics workstations, which were too ex-
pensive for many hospitals, can now be used remotely from any desktop PC. No patient
data is transferred through the network and the security of the image stream can be
ensured by using SSH socket tunneling.

4.2 Visualization of crash-worthiness simulations

Another example where the presented technique is very useful is the visualization in
the car development process. In cooperation with the BMW Group we developed a
Cosmo3D / OpenGL Optimizer based application which is in productive use in the pre-
and post-processing of crash-worthiness simulations.

The car bodies are represented by about 500.000 mainly four-sided finite elements.
During simulation the first 120 ms are computed and the coordinates of the deforming
mesh are stored in 60 time steps together with the tracked parameters into a result file.
Those result files often contain more than 1.5 GB of data.

Our applicationcrashViewerbuilds a Cosmo3D scene graph that describes the car
body for each time step. We developed an OpenGL Optimizer based viewer which
allows the engineer to visualize and animate the crash. Furthermore, the crash perfor-
mance can be analyzed by directly mapping the tracked scalar parameters as colors onto
the geometry or by visualizing the force flux by force tubes [6].

To represent the large scale Gouraud-shaded time-dependent geometry with con-
stant topology for each time step in a Cosmo3D scene graph, as proposed in [14], ap-
proximately 700 MB of main memory is required. Since only high-end graphics work-
stations are equipped with such a lot of main memory a technique was sought to make



those expensive resources accessible to low-end systems. Hence, we extended the stand-
alone visualization application by our approach which offers a solution by transferring
image data from any OpenGL supporting workstation to arbitrary window supporting
client systems.

If a meeting of the analyzing engineers is too time-consuming because they are, for
example, located at distant sites, the image transfer allows for a collaborative discussion
on the crash-worthiness of the current model variant. One engineer starts the visualiza-
tion application which is able to provide the rendered images in encoded data stream
form as previously outlined.

There are two scenarios: first, the other engineer starts a Java application that of-
fers a minimal set of functionality of the original C++-based visualization application.
2D mouse events and keystrokes triggered on the client side are transmitted back to
the server application and interpreted there like described in section 3.1. In the second
scenario where one engineer will communicate some results to one or more engineers
who do not have to interact with the model the former one advises an URL to other
participants. They start any HTML browser, download a HTML page from the given
URL which includes a Java applet (see Fig. 4). This applet encapsulates theSimple-
Viewer described in section 3.2.

Summarizing, our approach allows collaborative working groups to discuss simula-
tion results in distributed heterogeneous environments. There are low requirements to
participating client systems. Additionally, in regard to security aspects, for example, if
third party engineers of subcontractors are involved, the pure data will stay in-house;
instead just image data is transferred. We expect, that this technique will facilitate the
collaboration between accordant working groups of BMW and Rover, where it will be
tested in the next few months.

5 Results

In this section we show results for the proposed techniques. On the server side all tests
were run on a SGI Onyx2 workstation equipped with two 195 MHz R10000 processors
and 512 MB of main memory. A SGI O2 workstation with the same processor and
128 MB of main memory and a 333 MHz Celeron PC equipped with 64 MB of main
memory were serving as the client systems. The O2 was linked via a 100 MBit Ethernet
network connection and the PC was linked using a 64 kBit ISDN Internet connection.
We used the medical volume visualization environment with a 512x512x106 CT data
set. A typical image sequence with frames of 704 pixels width, 576 pixels height and
24 bits depth was used.

First we analyze the frame rates that can be achieved over the local network and
the Internet connection (Table 1). While interacting with the volume the images were
rendered and transferred at quarter resolution (176x144 pixels), after interaction a full
frame was transmitted. This leads to faster rendering, encoding, transfer, decoding and
display times. When using the stand-alone non-networked visualization application we
achieved an average frame rate of 4.1 for the full frames and 25.4 frames per second
for quarter frames. Using the ISDN connection no interactive rates were achieved us-
ing full frames. This is negligible during interaction because then we are transferring



data size LOCAL LAN ISDN
method full quarter full quarter full quarter full quarter
RAW 1.2 mb 76 kb 1.9 19 - -
ZLIB 106 kb 6 kb 2.2 14 0.09 1.5
LZO 150 kb 9 kb

4.1 25
2.4 16 0.06 1.3

RLE 160 kb 10 kb 2.5 16 0.06 1.2

Table 1. The listed frame rates were achieved when visualizing a CT data set (512x512x106)
locally, remotely using ISDN and remotely in a LAN network. Quarter resolution frames
(176x144 pixels) were sent while interacting with the volume and full resolution frames
(704x576 pixels) were sent after interaction. The average amount of transferred data for a full
and quarter sized frame is denoted in the left part of the table.

quarter sized images only. Thus interactive refresh rates could be achieved. Only if the
user stops to interact (e.g. releases a manipulator) the user has to wait some seconds for
the full size frame. Best frame rates were achieved using ZLIB compression because
the network bandwidth is the limiting factor for transmission via ISDN. We will see
later that ZLIB compression has the best compression ratio. For a local network con-
nection best frame rates were achieved using RLE compression because the encoding
and decoding times are the critical values.

Secondly, we compare the encoding time and the compression ratios when using
ZLIB, RLE and LZO compression. The average encoding time was 180 milliseconds
for ZLIB, 50 milliseconds for LZO and 30 milliseconds for RLE. The average decoding
time on the O2 was 93 milliseconds for ZLIB, 29 milliseconds for LZO and 13 millisec-
onds for RLE. Obviously, concerning the compression ratio ZLIB compression is ahead
of the other compression methods (Fig. 5). RLE performs nearly as well as LZO com-
pression. RLE is the simplest and thus the fastest compression method we investigated.
The compression ratios of all methods of course depend on the covering of the screen
space by the visualization. That is why a magnification leads to lower compression fac-
tors. Because of these results we currently favour ZLIB compression on low bandwidth
channels and RLE compression on high bandwidth channels.

6 Conclusions and Future Work

We have presented a framework which allows remote high-end visualization from any
Internet-connected, Java-enabled desktop PC. The introduced techniques were demon-
strated by two applications. A volume renderer for 3D medical data, that uses special
3D texture hardware, can now be used remotely from any Internet-connected PC. We
will effect an application study with the Department of Neurosurgery of the Univer-
sity of Erlangen-Nuremberg. Furthermore, a visualization application for large scale
data sets of crash-worthiness simulations was extended by the presented framework to
enable collaboration in the car development process.

As a main result of our work it is now possible to remotely explore huge scientific
data sets on specialized server hardware using low-cost clients. We showed that this
is even possible using a low bandwidth channel like an ISDN connection. The trans-
fer of GUI events and application parameters requires a much lower bandwidth than



the download of rendered images. Exactly this scenario is given while using low-cost
broadband Internet connections like cable modems or satellite connections.

An area of future work involves the development of specialized image-streaming
codecs for computer generated image sequences. First results using video streaming
codecs were presented in [3]. However, currently available codecs are based on the
needs of Internet video streams. Those streams have different characteristics than ren-
dered ones (variable frame rate, partial changes in consecutive frames, ...). One pos-
sible approach would be to use lossy compression while interacting with the data and
loss-less compression when having still images. Also image encryption techniques are
necessary for transferring sensitive data over the Internet.

References

1. B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomographic Recon-
struction Using Texture Mapping Hardware. In A. Kaufman and W. Kr¨uger, editors,1994
Symposium on Volume Visualization, pages 91–98. ACM SIGGRAPH, 1994.

2. K. Engel and T. Ertl. Texture-based Volume Visualization for Multiple Users on the World
Wide Web. In5th Eurographics Workshop on Virtual Environments, 1999.

3. Klaus Engel, Ove Sommer, Christian Ernst, and Thomas Ertl. Remote Visualization us-
ing Image-Streaming Codecs. InProceedings of Symposium on Intelligent Multimedia and
Distance Education, Baden-Baden, Germany, August 1999.

4. P. Hastreiter, H.K. C¸ akmak, and Th. Ertl. Intuitive and Interactive Manipulation of 3D Data
Sets by Integrating Texture Mapping Based Volume Rendering into the OpenInventor Class
Hierarchy. In K. Spitzer Th. Lehman, I. Scholl, editor,Bildverarbeitung fuer die Medizin:
Algorithmen, Systeme, Anwendungen, pages 149–154. Inst. f. Med. Inf. u. Biom. d. RWTH,
Aachen, Verl. d. Augustinus Buchhandlung, 1996.

5. Ofer Hendin, Nigel John, and Ofer Shochet. Medical Volume Rendering Over the WWW
using VRML and JAVA. InProceedings of MMVR, 1997.

6. S. Kuschfeldt, O. Sommer, T. Ertl, and M. Holzner. Efficient Visualization of Crash-
Worthiness Simulations.IEEE Computer Graphics and Applications, 18(4):60–65, 1998.

7. L. Lippert, M.H. Gross, and C. Kurmann. Compression domain volume rendering for dis-
tributed environments. InProceedings Eurographics ’97, pages C95–C107, 1997.

8. SGI Newsroom. SGI Brings Advanced Visualization to the Desktop with OpenGL Vizserver.
http://www.sgi.com/software/vizserver/.

9. M.F.X.J. Oberhumer. Lzo. http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html.
10. J. Patten and K.-L. Ma. A Graph Based Approach for Visualizing Volume Rendering Results.

In Proc. of GI’98 Conference on Computer Graphics and Interactive Techniques, 1998.
11. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual Network Computing.

IEEE Internet Computing, 2(1), January 1998.
12. G. Roelofs. Zlib. http://www.cdrom.com/pub/infozip/zlib/.
13. O. Sommer, A. Dietz, R. Westermann, and T. Ertl. An Interactive Visualization and Naviga-

tion Tool for Medical Volume Data. In V. Skala, editor,Proc. 6th International Conference
in Central Europe on Computer Graphics and Visualization ’98, pages 362–371, 1998.

14. Ove Sommer and Thomas Ertl. Geometry and rendering optimizations for the interactive
visualization of crash-worthiness simultations. InProceedings of SPIE, Visual Data Explo-
ration and Analysis VII, volume 3960, January 2000. to appear.

15. Rüdiger Westermann and Thomas Ertl. Efficiently Using Graphics Hardware in Volume
Rendering Applications. InComputer Graphics Proceedings SIGGRAPH ’98, Annual Con-
ference Series, pages 169–177. ACM SIGGRAPH, July 1998.



Fig. 3. Transparent remote access to 3D texture mapping hardware of a C++ server application
(on the left) from a Java client application (on the right). Note that the client provides the same
look-and-feel as the stand-alone application by providing an Open Inventor-like decoration. The
displayed manipulators can be picked and dragged remotely.

Fig. 4.Transfer of image data from the original visualization application (on the left) via a socket
connection to a HTML browser (on the right).

Fig. 5. Compression Ratios of ZLIB, LZO and RLE compression for a typical image sequence.
A rotation of the volume followed by a magnification was performed.


