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Abstract. We address the problem of interacting with scenes that contain a very
large range of scales. Computer graphics environments normally deal with only a
limited range of orders of magnitude before numerical error and other anomalies
begin to be apparent, and the effects vary widely from environment to environ-
ment. Applications such as astrophysics, where a single scene could in principle
contain visible objects from the subatomic scale to the intergalactic scale, pro-
vide a good proving ground for the multiple scale problem. In this context, we
examine methods for interacting continuously with simultaneously active astro-
nomical data sets ranging over 40 or more orders of magnitude. Our approach
relies on utilizing a single scale of order 1.0 for the definition of all data sets.
Where a single object, like a planet or a galaxy, may require moving in neigh-
borhoods of vastly different scales, we employ multiple scale representations for
the single object; normally, these are sparse in all but a few neighborhoods. By
keying the changes of scale to the pixel size, we can restrict all data set scaling to
roughly four orders of magnitude. Navigation problems are solved by designing
constraint spaces that adjust properly to the large scale changes, keeping naviga-
tion sensitivity at a relatively constant speed in the user’s screen space.

1 Introduction

We study the problem of supporting interactive graphics exploration of datasets span-
ning dozens of orders of magnitude in space and time.

The physical universe is precisely such a data set, and, as our theoretical and ex-
perimental understanding of physics has improved over the years, the development of
appropriate techniques for making these vast scales accessible to human comprehension
has become increasingly important. From the scale of galactic super-clusters down to
the quarks in atomic nuclei, we have approximate sizes ranging from1025 meters down
to 10�15 meters. To look closely at cosmological scales corresponding to the distance
that far-away light has traveled since near the beginning of the Big Bang [10], we may
need to go to even larger scales, while to visualize the tightly wound Calabi-Yau spaces
intrinsic to the “hidden dimensions” of modern string theory [6, 9], we need to delve
down to the Planck length of1:6� 10�35 meters, giving a potential requirement for 60
or more orders of magnitude.

Large scale data sets are common in visualization, but the focus of the visualization
literature has generally been on data sets with massive amounts of information (see,



e.g., [13]). As increasingly detailed data have become available on distant astronomical
structures (see, e.g., [2, 5]), the combined problems of large scale in the size and large
scale in the extent of astronomical data have received increasing attention (see, e.g,
[16]).

The concept of creating pictures and animations to expose these vast realms has a
long history. As early as 1957, a small book by Kees Boeke entitled “Cosmic View:
The Universe in Forty Jumps” [1] had already appeared with the purpose of teaching
school children about the scales of the universe. The effort to turn the ideas in this
book into a film were pursued by the creative team of Charles and Ray Eames for
over a decade, starting with a rough draft completed in 1968 and culminating in the
classic film “Powers of 10” in 1977 [3]. Five years later, Philip and Phylis Morrison
annotated the movie in a richly illustrated Scientific American book [12]. The Eames
Office continues to develop educational materials based on the original film, including
a CD-ROM [14] that adds many additional details. Recently, the IMAX corporation
sponsored the production of “Cosmic Voyage,” a feature-length film [15] that reframes
many of the features of “Powers of 10” using modern cosmological concepts combined
with current large scale 3D data sets and simulations to provide additional richness and
detail.

What all these efforts have in common is that they are relatively static, with no
easy way to let the student of the universe ask his or her own questions and wander
through the data choosing personal viewpoints. Even given the general availability of
many interesting astronomical data sets and the computer power to display portions of
them in real time, myriad problems confront the visualizer who wishes to roam freely
through the whole range of scales of the physical universe. In this paper we present an
elegant approach to solving this problem.

2 Strategies

Our experience with brute force attempts to display data sets of many orders of magni-
tude is that major flaws in precision occur between scales of1013 and1019; the prob-
lems can actually be worse on more expensive workstations, regardless of the appar-
ent uniformity of the promised hardware support for OpenGL transformation matrices.
One can surmise that the onset of problems traces to normalizing vectors by taking
the inverse square root of the scale squared; with an available exponent range in single
precision arithmetic up to about1038, our experimental observations are theoretically
plausible.

One of our chosen tasks is therefore to find a way that would allow many more
orders of magnitude to be represented without significant arithmetic errors. We accom-
plish this with three major strategies: (1) the replacement of ordinary homogeneous
coordinates by “log scale” homogeneous coordinates, with the fourth coordinate rep-
resenting thelog of the current scale in the chosen base, typically 10; (2) the use of a
small number of cycling scale frames, covering approximately three orders of magni-
tude, that are reused so that all data are rendered at or near unit scale, regardless of the
actual scale; (3) pixel-level replacement of enormous but distant visible data sets by hi-



erarchically scaled models reducing to environment texture maps whenever the current
scale of local user motions would result in negligible screen motions of distant objects.

We then combine these techniques with a scale-intelligent implementation of the
constrained navigation framework [7, 17] to keep user navigation response constant in
screen space; this is essential to retain an appropriate level of user response universally
across scales. A crucial side benefit of constrained navigation is somewhat similar to
the advantages of carefully constraining the camera motion in Image-Based Rendering:
one allows the viewer a great deal of freedom, but restricts access in such a way that
the expense of data retrieval is reduced compared to that needed for full six-degree-of-
freedom “flying.”

In the following sections, we begin our work by deriving the conditions needed to
represent a large range of scales in spatial data. Next, we describe our hierarchical ap-
proach to object representation, ways to support many scale magnitudes within a single
object, and the concept of variable-representation geometry adapted from classical car-
tography. Finally, we treat several examples in the context of constrained navigation
with intelligent scaling built into the user interface.

3 The Geometry of Scale Uniformization

Navigation through a virtual environment and the placement of objects in the environ-
ment utilize the standard six degrees of freedom: three orientation parameters, which
are independent of scale, and three position parameters, which must be adapted to our
scaling requirements. In order to support local scales near unity, we introduce one ad-
ditional parameter, the power scale, which is effectively an index into an array of local,
mipmap-like unit-scale environments whose scales are related by exponentiating the
indices.

3.1 Homogeneous Power Coordinates

We define the homogeneous power coordinate representation of a point as

p = (x; y; z; s) (1)

wheres is typically an integer and the physical coordinates in 3D space corresponding
to p are

X(p) = (xks; yks; zks) = x� ks:

Herek is the chosen scale base, typicallyk = 10. The homogeneous power coordinates
p are thus equivalent to the ordinary homogeneous coordinatesX = (x; y; z; w) with

s = � log
k
w :

Thus if we choosek = 10 and units of meters, we see thats = 0 corresponds to the
human scale of one meter, ands = 7 to about the diameter of the Earth (1:3� 107m).
Table 1 gives a rough picture of some typical scales in these units.

We note thats can be generalized to a vector,s = (sx; sy; sz), such thatsx, sy and
sz are the power scales applied to thex, y andz-components ofp independently.



Object Power of 10 Object Power Object Power Object Power

Planck length -35 virus -7 Earth 7 Local galaxies 23
proton -14 cell -5 Solar system 14 Super-cluster 25
hydrogen atom -10 human 0 Milky Way 21 Known Universe 27
Table 1.Base 10 logarithms of scales of typical objects in the physical universe in units of meters.
To convert to other common units, note that 1au = 1:50 � 10

11 m, 1 ly = 9:46 � 10
15 m, and 1

pc= 3.26ly = 3:08 � 10
16 m, whereau= astronomical unit,ly = light year, andpc= parsec.

3.2 Homogeneous Power Coordinate Interpolation

Since each coordinatep = (x; y; z; s) may have a different power scale, our first
requirement is the formulation of interpolation methods that may be used to transi-
tion smoothly among scales. To interpolate between two homogeneous power coordi-
natesp0 andp1 using the parametert, wheret 2 [0; 1], we may immediately write
p(t) = (1� t)p0 + tp1. SinceX(p) = x� ks is the ordinary space representation ofp,
the interpolation in ordinary space becomes

X(p(t)) = [(1� t)x0 + tx1]� k(1�t)s0+ts1 :

Whens0 = s1, this reduces to ordinary interpolation within a single scale domain.
When we fixx0 = x1, we can implement a “Powers of [Basek]” journey by interpo-
lating directly in power-scale space alone.

In order to adjust display positions of objects with different scales appearing in the
same scene, we need scale-to-scale correspondence rules. Thus, if we letp0 andp1 be
the positions of a single object expressed with respect to power scales ofs0 ands1,
respectively, we require equivalence of the physical coordinates:

X0(p0) = X1(p1)

x0 � 10
s0 = x1 � 10

s1 :

That is,x1 = x0 � 10�s, where�s = s1 � s0 is the change in the power scale.

3.3 Environment Map Angular Scale Criteria

Next, we need to set up the framework for viewing large scale objects that intrude upon
the current scale of the user’s display.

Let x1 andx2 be the limiting boundaries of a family of3D observation positions
spanning a distancejx2�x1j = d, and letO be an object at a radial distancer from the
mid-point of the line joiningx1 andx2, as shown in Figure 1. As we move along the
line betweenx1 andx2,O will have the greatest angular displacement (as perceived by
the viewer) whenO is located on the perpendicular bisecting plane ofx1 andx2. Thus
if � is the maximal angular displacement ofO with respect to a motion connectingx1
andx2, thentan(�=2) = d=2r, so

� = 2 tan�1
d

2r
: (2)



Fig. 1. Geometry for the calculation of an ob-
ject’s maximum subtended angle�.
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Fig. 2.Schematic diagram for angular limits
deciding whether to omit an object.

Next letw be the maximum resolution of a desktop display screen, or perhaps one
wall of a CAVETM. Assuming a 90-degree field of view, the typical angle subtended
by one pixel is�=2w. We impose the assumption that whenever an object is displaced
by fewer thann pixels as we move our viewpoint across its maximal local range, we can
represent that object by a static texture map (anenvironment map) without any major
perceptual error. The condition becomes

� <
n�

2w
:

Thus we conclude thattan�1(d=2r) < n�=4w, so

r >
d

2 tan(n�=4w)
: (3)

Thus we may replace an objectO by its pixel-level environment map representation
whenever its distancer from the worst-case head-motion displacement axis withd =

jx2 � x1j satisfies Eq. (3).

Local User Motion Scales.Let s be the scale of our current environment. This means,
e.g., that we typically restrict local motions to lie within a virtual cube of side10s

accessible to the user without a scale change. Assuming the average extreme motion is
given simply by the cube edge length, and letting the distance of the object in question
be of orderr = 10l, we find

10l = (
10s

2
)

1

tan(n�
4w

)

�s(n) = l � s = � log10 2� log10 tan(
n�

4w
) :



Plugging in typical values forn and takingw = 1024, we find the following results:

�s(1) = 2:81; �s(2) = 2:5; �s(3) = 2:34; �s(4) = 2:21 :

Therefore, to represent the Milky Way with individual star data from the Bright Star
(BSC) catalog [8] or Hipparcos [4], we need a hierarchical strategy: whenever the cur-
rent scale differs from that of the star data scale by about 3 units, we can just use
an environment map. As we move within the scale of a single local environment, this
guarantees that no object position will differ by more thann pixels from the full 3D
rendering.

3.4 Object Disappearance Criteria

When will an object’s scale be so small that we do not need to draw it? In this section,
we derive the estimates needed to decide when to “recycle” a particular scale repre-
sentation so that we can adhere to our requirements that nothing be represented too far
from unit scale inactual calls to the graphics hardware. This of course can only be
accomplished if the transition between successive scales is smooth and has the appear-
ance of a large scale change. To carry out this illusion, we need to eliminate small scale
representations in favor of new unit scale representations as the camera zooms out (and
also the reverse).

The Smallest Visible Object.We begin by assuming that any object subtending less than
n pixels when projected to the screen or CAVE wall can be ignored and does not need
to be drawn.

As before, the resolution of the screen is described by the average angle subtended
by one pixel, i.e.,�=2w, wherew be the maximum screen resolution in pixels; thus, if
the projected size of anything is smaller thann�=2w, we can ignore it.

Largest Angle Subtended by an Object.Given an object of sized, we need to calculate
the worst-case projected size on the screen in order to decide when it can be omitted.

If f is the distance from the viewpoint to the near viewing plane, the largest angle
that could be subtended by this object isd=f .

Note that the limits off depend on the human visual system: when the object is too
near, the eye cannot focus on it — the near limit off is roughly0:3 feet (10 cm). An
estimate of the required precision for a CAVE follows from the CAVE wall dimension
of 8–10 feet (2:4–3:0 m), sof is about1=24 to 1=30 the screen size.

Next, we have to convertf to the units of our virtual environment. When the current
scale of the virtual environment iss, one side of the wall is10s units. For example, an
8-foot (2:4 m) CAVE would havef roughly equal to10s=24 in wall units.

Combining the Numbers.We can now put everything together. When the visual angle
of an object is smaller than the visual limit, it does not need to be drawn. The condition
is that the angle in radians subtended by the object at distancef must be less than the
angle subtended by the desired limit ofn screen pixels (see Figure 2):

d

f
=

24d

10s
<

n�

2w



Definingl = log10 d, we find24(10l�s) < n�=2w, so that

�s(n) = l� s < log10

� n�

48w

�

Note thatn�=48w is smaller than1 in general, so�s is normally negative. Plugging in
typical values forn and lettingw = 1024, we find:

�s(1) = �4:194; �s(2) = �3:893; �s(3) = �3:717; �s(4) = �3:592 :

Therefore, if the scale of an object is smaller than the current scale by around4:2, we
can ignore it for rendering purposes without entailing more than a single pixel worth of
perceptual error.

4 Implementing Multi-scale Blending

The conceptual goal of keeping all objects drawn at unit scale as the graphical viewing
volume sweeps through each object’s natural scale is an appealing ideal. However, in
practice, very few objects live “alone” in their assigned neighborhood of the order-of-
magnitude scale space. From the Earth, at scale107 m, we can see elements of the
solar system, at scale1013 m, as well as clouds of stars in our own galaxy, the Milky
Way, at scale1021 m. If we wish to show the Milky Way as seen from Earth, we must
havemulti-scalerepresentations of objects at far different scales that can be rationally
displayed alongside the Earth without requiring huge scale factors.

In this section, we describe several different issues, problems, and solutions to the
mixed scale rendering problem. Our actual implementation involves an elaborate script-
ing language that supports each of the features described below. In particular, we pro-
vide definitions for multiple navigation manifolds, lists of alternate object representa-
tions indexed by scale, and animation parameters for hierarchical object motion. Further
details will be omitted here for lack of space.

Symbolic interpolators:In many circumstances, certain objects serve as anchors or
flags that define a special user context in the visualization. In such circumstances, it is
appropriate to render objects at scales that are unconnected to their actual size, but are
dictated by their semantic importance. In ordinary cartography, landmarks or objects of
legal significance or liability to the map maker are drawn using symbols out of propor-
tion to the conventional size of an object. One example we have implemented keeps the
Earth itself visible by using a constant size globe starting above some particular scale
threshold.

A related technique (see, e.g., [11]) maintains an entire virtual library of depictions
to be used for an object in different scale environments. At one scale, a fully rendered,
illuminated 3D object may be appropriate, at another a textured 2D billboard may be
correct, while at another one might use fixed-scale text if the object should never com-
pletely disappear.



Multi-resolution data structures and octrees:Typical astronomical objects may extend
over many orders of magnitude, with a variety of natural representation scales for in-
dividual subregions. Such data are normally stored in a hierarchy of resolutions such
as an octree. However, to have a fully detailed set of data at all possible points of an
enormous astronomical object would be prohibitively expensive. We can sidestep this
problem and make the missing detail less obvious to the user by restricting the naviga-
tion paths and permitted view directions to permit detailed examination of only certain
selected areas. Thus one can in principle design an environment in which the highest
levels of detail are typically be limited to only a few regions of the octree representa-
tion, permitting substantial economy in data storage. If all the detail is actually required,
more sophisticated methods such as those suggested in [16] are needed.

Environment maps:We have already derived a series of formulas determining the level
at which a 3D object can be replaced by an asymptotic texture map without requiring an
expensive 3D rendering. Such maps are equivalent to so-called “environment maps” that
are used to represent distant fixed objects, such as the fixed stars themselves, without
rendering them. A spherical texture map, or a series of six orthogonal images with fields
of view corresponding to the faces of a cube, will accomplish the desired result. All we
need to do is to keep track of the camera motion so we can change the environment map
(or switch to 3D detail) if the viewpoint changes significantly.

5 Examples of Scaled Constrained Navigation

We define constrained navigation to be the assignment of a mapping between a con-
troller space and a general field of viewing control parameters [7]. Our typical imple-
mentation involves the design of one or more 2D “sidewalks” that define the 3D spatial
motion of the user and the view parameters in response to inputs in a limited controller
space such as that of a mouse or the CAVE thumb joystick.

Since the response of the user displacement to a unit of controller motion can be
completely controlled and customized by the fields stored with the navigation manifold,
we can easily adapt the motion response to meet the user requirements of large-scale
navigation. In particular, it seems obvious that a “Powers of [Basek],” i.e., logarithmic,
scaling of the response is the natural one to use: the farther we get from the Earth’s
surface, the lower the density of detailed observational data, and the larger the scale of
the visible structures that are interesting to depict.

In addition to scaling motion control with the constrained navigation framework,
we have studied a number of constraint manifold designs that are well-suited to this
work: among these, we describe below the “pond ripple,” the “wedge,” and the “twist.”

Multi-centered Pond Ripple Navigation.In Figure 3, we show a very special disk-
shaped navigation manifold. This manifold has not one, but multiple centers of atten-
tion, corresponding to the evolving changes in the centers of the rings at each scale
level. Tangential motion takes place in the lateral ring direction, centering the viewer’s
gaze on the current center.
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Fig. 3. “Pond ripple” navigation environment with continuous recentering as the viewer orbits
around the central object of interest at each scale. The bottom row of diagrams illustrates the
fact that the viewpoint directions (short heavy bars) at three different positions focus on three
different centers.

Wedge Exponential Journey.In Figure 4, we show a symbolic journey on a wedge-
shaped navigation manifold; the width of the wedge as well as the actual distance trav-
eled per unit controller motion expand exponentially with distance from the origin. This
allows the viewer to pursue a “Powers of [Basek]” interactive exploration of the space,
and to travel between viewpoints in logarithmic time instead of the much less appropri-
ate constant velocity.

Twisting Reorientation.In Figure 5, we show the advantage of the constrained naviga-
tion approach for huge scales with smooth evolution between mismatched orientation
frames natural to each scale. Beginning with a “wedge” manifold, we twist the frames
to get custom orientations. Beginning with an orientation suitable for viewing the Earth,
we move out seven orders of magnitude, while twisting so the solar system appears hor-
izontal instead of the Earth’s equator; moving out seven more orders of magnitude to
the galactic scale, we twist again to orient ourselves to the galactic plane.

6 Conclusions

We have addressed the problem of effective interactive navigation across huge ranges
of scales appropriate for spanning the entire physical universe. This was accomplished
with a combination of methods, including the following: a systematic treatment of all
data at unit scale with (hardware) transformation matrices never exceeding four or-
ders of magnitude in scale range; systematic blending of both iconic (fixed symbolic



scale) and very large data groups using multi-scale representations; merging environ-
ment maps with mipmaps and octrees to make very distant data visible without vio-
lating the unit scale requirement; supporting multi-resolution maps to allow switching
to layered unit-scale data representations as we zoom in and out; scaling both spa-
tial navigation control and time-scale of simulations to the scale of the current local
data representation; constrained multi-resolution navigation. Future work will focus on
additional requirements of time scaling, the multi-resolution problem with very large
data sets, techniques for designing navigation constraints to control the required data
set sizes, analyzing user responses to the environment, and incorporating the effects of
special and general relativity in ways that are intuitive and qualitatively correct without
being obtrusive.
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Fig. 4. Images corresponding to three viewpoints on the logarithmically scaled “wedge” path from the
Earth to the Moon.

Fig. 5. Images corresponding to three viewpoints on the adaptive twisted-orientation constraint mani-
fold encompassing the Earth, solar system, and the Milky Way galaxy.


