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Abstract. We present a new technique for modeling rectilinear volume data.
The algorithm produces a trivariate modél(x, y, z), which is piecewise de-
fined over tetrahedra that fits the volume data to within a user specified tolerance.
The technique is adaptive leading to an efficient model that is more complex
where the data demands it. The novelty of the present technique is that a valid
tetrahedrization is not required. Tetrahedral cells are subdivided as required by
the error condition only. This type of cellular decomposition leads to a contin-
uous model by the use of a tetrahedral Coons volume which has the ability to
interpolate to arbitrary boundary data.

1 Introduction

Visualization of a volume data set is used to gain some insight into the data. Most
scientific visualization algorithms produce a graphical image (volume rendering [2]) or
an entity that can then be rendered (isosurfacing [5]). In the case of volume rendering a
useful image is generated but subsequent analysis of the original data is difficult using
such output. Geometry, in the form of triangle meshes, is created as output from typical
isosurfacing algorithms. This type of output is more amenable to analysis but it does
not give a complete picture of the original volume data.

Much can be gained from modeling discrete volume data, i.e., generating an under-
lying mathematical representation for the data and using that representation for visual-
ization tasks. Benefits of modeling volume data include the compression of large data
sets, the application of visualization algorithms, and the ability to perform analyses or
simulations.

1.1 Adaptive Approximations

Adaptive approximative models are useful because they can closely approximate por-
tions of data that have large local variations without using too much information to
also represent areas where the data is relatively smooth. One way of forming adap-
tive approximations to volume data is to define an initial, coarse approximation and
apply successive refinements until the model closely approximates the data of interest.
A model that consists of piecewise linear functions defined over a tetrahedrization is a
popular choice for approximating volume data sets. Each vertex in the tetrahedrization
has an associated scalar value, or weight, from which a continuous function inside each
tetrahedron can be constructed.



There are several methods for performing local refinements on a tetrahedrization

[1, 6]. Both algorithms maintain a valid tetrahedrization at all times. (See [9] for defini-
tions and general background material for tetrahedral decompositions.) A tetrahedron
is first selected for refinement, generally based on some local error criterion, and then a
recursive rule is applied to also refine neighboring tetrahedra. This helps to ensure that
two neighboring tetrahedra will always share a common face. Figure 1(a) shows an ex-
ample of a tetrahedrization that has undergone several refinements using the algorithm
presented in [1].

One problem with such a recursive closure scheme is that many tetrahedra that
already closely approximate the data may be refined. Many more tetrahedra than nec-
essary may be generated to construct an adequate approximation to the data. It would
be advantageous to only subdivide those tetrahedra in which the error is large instead
of also having to subdivide neighboring tetrahedra in order to maintain a valid tetra-
hedrization. Figure 1(b) shows an example of a tetrahedrization where no recursive
closure rule is applied to neighbors after a tetrahedron has been refined. Each refined
tetrahedron was split into eight sub-tetrahedra.

Fig. 1. Adaptively refined tetrahedrizations constructed (a) using the red-green algorithm and (b)
by not refining neighbors.

If we switch to a refinement strategy which does not maintain a valid tetrahedriza-
tion then each tetrahedron cannot have a linear function defined over it and still result
in a continuous function across the tetrahedrization. We need to use a different method
for defining the volume model over this type of decomposition. In this work we propose
the use of a tetrahedral Coons volume defined over each tetrahedron. This will allow us
to ignore the incompatibilities between tetrahedra and refine only those tetrahedra that
need to be refined based on local error estimates.

This work builds on that presented in [10]. The authors presented a new method for
adaptively approximating terrain data and adaptively tessellating parametric surfaces
using Coons patches. The idea was to adaptively refine triangles without worrying about
also refining neighboring triangles. The approximation to the data then consisted of a
collection of Coons patches defined over the triangulation.



1.2 Previous Work

Several different methods of approximating volume data have appeared in the literature.
Tensor-product wavelets have been applied to regular volume data to generate multires-
olution approximations [7, 8, 4]. Another approach, used by Grosso et. al. [3], is to gen-
erate coarse-to-fine approximations using piecewise linear functions over tetrahedriza-
tions. This approach requires a valid tetrahedrization (i.e., one with no T-vertices, see
[9]) which is obtained by using the red-green algorithm of [1]. A sequence of approxi-
mations of regular volume data can also be generated in a “bottom-up” manner as done
in [13]. They start with a tetrahedrization of regular data and merge tetrahedra based on
local error estimates. For a different approach to volume models over nonconforming
meshes based upon projection operators, we alert the reader to the work of Ohlberger
and Rumpf[12].

Our work bears some similarity to that presented in [3]. We generate coarse-to-fine
adaptive approximations using functions over tetrahedrizations. The differences are that
we use a tetrahedral Coons volume over each tetrahedron (versus linear functions) and
so we do not require a valid tetrahedral decomposition.

2 Triangular Coons Patches and Tetrahedral Coons Volumes

2.1 Introduction

Coons patches and volumes have been used in geometric modeling to define patches or
volumes that interpolate prescribed boundary curves or functions [9, 11]. The methods
generate a smooth surface or volume by blending data from the boundaries in a system-
atic way. We will first cover triangular Coons patches and then present their extension to
tetrahedral Coons volumes. These will then be used in tandem to form approximations
to volume data.

2.2 Triangular Coons Patches

The domain of a triangular Coons patch is a triangle so it will be convenient to write
points on the surface using barycentric coordinates. The barycentric coordinates of
(uo,u1,us) of a point(z,y) are defined by the relation

H

wherePg, P;, andP,, are vertices of the domain 2.

In order to create a triangular Coons patch we require three compatible boundary
curves. We make no requirements on the nature of the boundary curves so we will
refer to them as functions defined in terms of boundary edges on the domain triangle.
The three boundary curves are denotedFaés), F1(s), andF2(s) whereF is an
underlying function defined on the boundary of a triangular domain and the parameter

UoP() + U1P1 + U2P2 (1)

= up + U1 + U2 (2)



varies from0 to 1. The boundary curves must be compatible so we require, for example,
The type of triangular Coons patch used here, the NTW linear/linear patch, was

first presented in [11] and more recently appeared in [10]. A suBdsavritten as the

sum of three componengy (u1,u2), S1(uo,uz) andSa(ug,u1). These components

are given by

So(ul,U,Q) = F(U1P1 + (1 — ul)Po) + F(u2P2 + (1 — ’U,Q)Po) — F(Po) (3)
Sl(uo,ug) = F(UOPO + (]. — U[))P]_) + F(U2P2 + (]. — UZ)PI) — F(P]_) (4)
Sz(UO,Ul) = F(U()PO + (1 — U,())Pg) + F(U,1P1 + (1 — ’U,1)P2) — F(Pg) (5)

A point on the patch is written as a barycentric combination of the three components
and is given by
S(uo,u1,u2) = uoSo + u1S1 + uzS2. (6)

Figure 2 illustrates a patch with piecewise linear boundaries.

Fig. 2. NTW linear/linear patch that interpolates to piecewise linear boundaries.

2.3 Tetrahedral Coons Volumes

We would like to extend the idea of a triangular Coons patch to define a scalar-valued
tetrahedral Coons volume. The volume will be written using barycentric coordinates
over a tetrahedral domain and it will be constructed in such a way that it interpolates to
four compatible scalar-valued boundary functions.

The tetrahedral Coons volume requires four compatible scalar-valued boundary
functions. Each function is defined over a triangular domain and associates a scalar
value with a pointin its domain. If we denote the vertices of a tetrahedral domRip,as
P,, P,, andP3 then one compatibility requirement necessitates @, P>P3)
andF'(Py, P2P3) must have the same values along the éllg¢o P 3 in the domain.

The tetrahedral Coons volume used here is an extension of the NTW linear/linear
patch. Avolumé/ (ug, u1, us, ug) is written as the sum of four componemtgu , us, us),

i (U(), u2, Ug), Vs (U(), ui, Ug), andV3 (U(), U1, U,Q). The expression fdf() (Ul, U, Ug) is
given as follows
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In a manner similar to the triangular Coons patch, the value of the volume corre-

sponding to barycentric coordinates, u , u2, us) is written as a convex combination
of the four components and is given by

|
w

V(Uo,ul,UQ,U3) =uoVp +ur Vi + u2Vo + usgVis. (8)

There are other types of triangular Coons surfaces which differ in the way in which
the components of a surface are defined and combined [9, 11]. The transfinite scheme
used here was chosen primarily because of its simplicity and the ease with which it
generalizes to tetrahedral volumes.

We will next describe the way in which triangular Coons patches and tetrahedral
Coons volumes will be used to approximate volume data. Using the ideas presented
in this section we will be able to build models of volume data in which the need for
maintaining a valid tetrahedrization is eliminated.

3 Adaptive Approximations using Tetrahedral Coons Volumes

3.1 Algorithm

The algorithm that we present will be used to adaptively approximate regular volume
data. We require that the data set is of sf2& + 1) x (2™ + 1) x (2" 4+ 1). The
reason for this is that vertices in the tetrahedrization will be associated with points in
the input. As tetrahedra are refined, new vertices will continue to correspond to data
points. In particular, a tetrahedron will be refined by splitting each edge at its midpoint
and joining those to form new tetrahedra. Because of the special size of the data set, the
midpoint of each edge will also correspond to a data point.

We will now describe the face functions that will be used in order to define tetra-
hedral Coons volumes over a tetrahedrization like that shown in Figure 1(b). Each face
function is scalar-valued and is defined over a triangular domain. Because a tetrahedron
may have one of its faces shared by many other tetrahedra, the domain of a face function
can be thought of as an adaptive triangular decomposition.

In order to define a continuous function across an adaptively refined domain we
define a triangular Coons patch over each triangle in the domain of a face function. The
portions of the function that correspond to triangles in the domain without T-vertices



are simply planar triangles. If all the face functions for a tetrahedron are single triangles
without adaptive refinements then the Coons volume evaluates to a linear function over
the tetrahedron.

The algorithm to adaptively approximate volume data is shown in Figure 3. Since
the original data is being approximated, we require a user-specified error tolerance,
¢, for the fitting process. The initial tetrahedrization for the approximation consists of
the unit cube tetrahedrized into six tetrahedra where each tetrahedron shares the main
diagonal of the cube. We also define a maximum level that prevents the tetrahedra from
being subdivided too many times.

There are several strategies for determining if a tetrahedron requires refinement.
We refine a tetrahedron if the difference between the weight associated with any data
point inside it and the value of the Coons volume evaluated at the data point’s location
exceeds a tolerance. Different strategies might include comparing the average or the
median of the differences to a threshold.

repeat

{

for eachtetT; € T

for each data pointP = (z,y, z; w) insideT;

{
Il convert (x,y,z) to barycentric coordinates with respedito
/I evaluate point using Coons volume associated witfftet
/I see equation (8)
w = VTi (’u,o, UL, U2, u3)
if (jw—w|>e€)

markT; for refinement
}
}
for eachtet T marked for refinement

if (T not at maximum level)

{
}
}

} until no tets refined

split T into eight sub-tetrahedra

Fig. 3. Algorithm for adaptively approximating regular volume data.



3.2 Results

We demonstrate our adaptive approximation method on two data sets. The first is a
synthetic data set of sizZ=? where the dependent values, have been computed by

w = f(:n,y,z) — %e(—10((x—0.25)2+(y—0.25)2))
+%e(716((a:70.25)2+(y70.25)2+(z70.25)2))
+1e(710((m70.75)2+(y70.125)2+(270.5)2))
_ieww(zfo.75>2+(yfo.7s)2)). )

The following table summarizes the fitting process for this data set. The user-specified
tolerance is given followed by the number of vertices and tetrahedra in the resulting
tetrahedrization. The number of volumes indicates the number of tetrahedra that have
non-trivial face functions and must be evaluated as tetrahedral Coons volumes.

tolerancéverticestetrahedrivolumesgrms erro
0.0§ 756 1455 558 0.0283
0.02 3110 6173 2220 0.00914
0.01] 7659 16141 4934 0.00421
Table 1. Statistics for the approximations shown in Figure 4.

In order to visualize the approximations we performed a regular sampling of the
Coons volumes and then use marching cubes to generate isosurfaces and normals for
shading. The sampled data was also used to compute the rms errors. They were com-
puted by taking the sum of the squares of the differences between the weight associated
with a data point and the value of the Coons volume evaluated at that location.

Figure 4 shows the results of the fitting process for this data set. The top row of
the figure shows isosurfaces from the original data set (the left is threstdlcind
the right is0.50). The next three rows are the approximations (tetrahedrizations and
isosurfaces) using tolerance$5, 0.02, and0.01, respectively.

The second data set i$a data set from a MRI scan. The top row of Figure 5 shows
an isosurface computed from the data set (isosurface threglidis). The following
table summarizes the statistics for several approximations of this data set.

Figure 5 shows results of applying our adaptive approximation algorithm to this data
set. The top row is an isosurface computed from the original data. Each row thereafter
shows an approximation in the form of a tetrahedrization and an isosurface for toler-
anced).07 and0.03. The isosurface threshold is the same as that used on the original
data set.



tolerancéverticestetrahedrivolumesrms erro
0.07] 18493 35457 11181 0.0237
0.03 26081 63712 10432 0.0039¢
Table 2. Statistics for the approximations shown in Figure 5.

4 Summary

We have presented a method of performing adaptive approximations of regular volume
data using tetrahedral Coons volumes. The advantage of using Coons volumes over
existing approaches is that a valid tetrahedrization does not need to be maintained.
Only those tetrahedra in which the error is large (i.e., areas where the model does not
adequately approximate the data) need to be refined instead of also needing to refine
neighboring tetrahedra like existing local refinement algorithms.

Future work includes applying a least squares approach to the fitting process to
approximate data that does not meet the size requirements as given in Section 3.1.
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Fig. 4. An adaptively approximated approximated synthetic data set. The top row shows isosur-
faces of the original data set. The next rows show the tetrahedrization resulting from a fit and the
isosurfaces computed from the model.
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Fig. 5. An adaptively approximated approximated MRI data set. The tetrahedrization resulting
from a fit and the isosurfaces computed from the model are shown for various approximations.



