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Abstract

Synchronous electrical activity in different brain regions is generally assumed to imply functional relationships

between these regions. A measure for this synchrony is electroencephalography (EEG) coherence, computed be-

tween pairs of signals as a function of frequency. Existing high-density EEG coherence visualizations are generally

either hypothesis-driven, or data-driven graph visualizations which are cluttered. In this paper, a new method is

presented for data-driven visualization of high-density EEG coherence, which strongly reduces clutter and is re-

ferred to as functional unit (FU) map. Starting from an initial graph, with vertices representing electrodes and

edges representing significant coherences between electrode signals, we define an FU as a set of electrodes rep-

resented by a clique consisting of spatially connected vertices. In an FU map, the spatial relationship between

electrodes is preserved, and all electrodes in one FU are assigned an identical gray value. Adjacent FUs are visu-

alized with different gray values and FUs are connected by a line if the average coherence between FUs exceeds

a threshold. Results obtained with our visualization are in accordance with known electrophysiological findings.

FU maps can be used as a preprocessing step for conventional analysis.

Categories and Subject Descriptors (according to ACM CCS): E.1 [Data]: Graphs and networks; J.3 [Life and

Medical Sciences]: Health

1. Introduction

EEG measures the electrical activity of the brain using

electrodes attached to the scalp at multiple locations. Syn-

chronous electrical activity in different brain regions is gen-

erally assumed to imply functional relationships between

these regions. A measure for this synchrony is electroen-

cephalography (EEG) coherence [MSvdHdJ06], calculated

between pairs of electrode signals as a function of frequency.

For the analysis of high-density EEG coherence, EEG re-

searchers often employ a hypothesis-driven definition of cer-

tain regions of interest (ROIs) in which all electrodes are as-

sumed to record similar signals because of volume conduc-

tion effects [HF77, LRMV99]. As an alternative, we intro-

duce an approach for the determination of data-driven ROIs.

Visualization of high-density EEG (at least 64 electrodes)

is not always managed well [tCMR05, tCMR07]. A typical

visualization of EEG coherence is a two-dimensional graph

(layout) with vertices representing electrodes and edges rep-

resenting significant coherences between electrode signals.

Vertices are commonly visualized as dots, edges as lines.

For high-density EEG, this graph suffers from the potentially

large number of overlapping edges, resulting in a cluttered

visualization, e.g., [KBS97,SRSP99]. One common solution

to reduce clutter in graph visualizations involves the reor-

ganization of vertex positions [FR91]. However, in our case

this is not appropriate, because the electrodes have meaning-

ful positions. Other solutions reorganize edges [WCG03], or

vary visual attributes of the edges [HMM00, WCG03]. Ex-

isting EEG analyses of high-density EEG are hypothesis-

driven, choosing a regularly distributed subset of elec-

trodes, e.g., [MSvdHdJ06]. Different approaches employ

a contingency table with electrodes along the rows and

columns [KBS97], or first localize dipoles corresponding to

maximally independent components in the data, and then

calculate coherence between dipole activities [DMFTS02].

As an alternative to the hypothesis-driven approach, we
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here propose a data-driven visualization of high-density co-

herence, which strongly reduces clutter and is referred to as

functional unit (FU) map. It obtains data-driven ROIs, re-

ferred to as FUs, which are spatially connected sets of elec-

trodes recording pairwise significantly coherent signals. In

an initial graph, vertices are mapped to a two-dimensional

image maintaining the spatial relations between electrode

positions. Significant coherences between pairs of electrode

signals are represented by edges between corresponding ver-

tices. In this initial graph, an FU is represented by a spa-

tially connected clique. A clique is a vertex set in which ev-

ery two-element subset is connected by an edge. The spatial

connectedness of vertices is determined by a Voronoi dia-

gram [Vor08] of the electrode positions.

The detection of FUs is based on maximal clique detec-

tion [BK73], which we extend to find sets of spatially con-

nected vertices. The FU map displays all electrodes belong-

ing to one FU with the same color. If the average coherence

between two FUs exceeds a significance threshold, a line is

drawn between the corresponding FU centers.

Our method bears similarity to that of Gladwin et

al. [GLdJ06], showing connecting lines between clusters.

Whereas they use a hypothesis-driven approach to determine

the number of clusters and the location of the clusters, our

method uses a fully data-driven approach.

We illustrate FU maps for different datasets and different

parameters. Results are related to conventional findings.

2. EEG Data

During an EEG experiment, the electrical activity of the

brain is measured using up to 512 electrodes attached to the

scalp at different locations. To reduce impedance, a conduc-

tive gel is applied between skin and electrodes, which are

often held in fixed positions by an elastic cap. Each elec-

trode carries a unique labeling by a combination of letters

and digits (e.g., F3, Cz, P4, as in Fig. 1, right). From all elec-

trodes simultaneously, the electrical potential is measured at

sampling rates typically up to 2000Hz. The measured signal

from each electrode is amplified, resulting in one recording

channel for every electrode. If there are many electrodes, the

term ‘multichannel’ or ‘high-density’ EEG is used.

Activity from one source can result in a strong signal

recorded by multiple electrodes, as a result of volume con-

duction [HF77]. Therefore, nearby electrodes usually record

similar signals. Often, there are several sources of activity

at different locations. These sources can be synchronous.

Consequently, signals recorded by electrodes that are far

apart can also be similar. Coherence is a measure for the

similarity of signals as a function of frequency. The co-

herence c as a function of frequency λ for two continuous

time signals x and y is defined as the absolute square of

the cross-spectrum fxy normalized by the autospectra fxx

and fyy [HRA∗95], having values in the interval [0,1]:

cλ(x,y) =
| fxy(λ)|2

fxx(λ) fyy(λ)
. An event-related potential (ERP) is an

EEG recording of the brain response to a sensory stimulus.

For L repetitive stimuli, the EEG data can be separated into L

segments, each containing one ERP. A significance threshold

for the estimated coherence is then given by [HRA∗95]

θ = 1− p
1/(L−1), (1)

where p is a probability value associated with a confidence

level α, such that p = 1−α. Throughout this paper, we use

p = 0.05, unless stated otherwise.

3. Related Work

3.1. Graph Theory

Most coherence representations use graph visualizations. A

graph G = (V,E) consists of a set of vertices V and a set of

edges E ⊆ V ×V . The vertices u and v are called neighbors

or adjacent if there is one edge between them. The neighbor-

hood of vertex v is the collection of all neighbors of v. In a

directed graph, the set E consists of ordered pairs of vertices

from V . In an undirected graph, the pairs are not ordered. A

directed edge is denoted as e = (u,v), an undirected edge as

e = {u,v}; u and v are called incident with e, and e is said

to be incident with u and v. The degree of a vertex is the

number of edges incident with this vertex. A plane graph is

a graph without intersecting edges in the two-dimensional

plane. A walk between two vertices is a sequence of edges

(e1, ...,en), with vertices v0, ...,vn such that ei = {vi−1,vi}.

If a walk exists between two vertices, they are called con-

nected. If an edge e = {v,v} exists, the vertex v is called

self-connected. For a graph G = (V,E) and V ′ ⊆ V , the set

of all edges with both vertices in V ′ is denoted as E|V ′. The

graph G′ = (V ′,E|V ′) is called the (vertex-) induced sub-

graph on V ′. If V ′ ⊂V and E′ ⊂ E|V ′, then G′ = (V ′,E′) is

called a subgraph. If any two vertices in G = (V,E) are con-

nected, G is called a connected graph. A maximal connected

subgraph of G is a connected component. If all two-element

subsets of V are edges, then G = (V,E) is a complete graph.

A clique is a set V ′ ⊆ V such that the induced subgraph on

V ′ is a complete graph. A maximal clique is a clique which

is not a subgraph of a larger clique. For a more extensive

overview of graph theory, see e.g., Jungnickel [Jun99].

3.2. Graph Visualization

A straightforward graph visualization of EEG coherence

represents electrodes as vertices and significant coherences

as edges, with vertices shown as dots and edges as lines.

In graph layouts of EEG coherence, edge densities can

be so high that individual edges cannot be distinguished,

and edges can obscure vertices and other visual informa-

tion, e.g., [KBS97]. Multiple solutions exist to reduce such

cluttering of edges.

First, the layout of the vertices can be changed, e.g.,
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by using a force-directed placement [FR91]. However,

for EEG applications we prefer to maintain the spa-

tial relationship between the vertices representing elec-

trodes. Other solutions vary visual attributes of edges, such

as transparency [WCG03], or color, saturation, and line

width [HMM00]. However, there can still be many overlap-

ping edges that obscure other visualization elements. Also,

the superposition of differently colored lines might result

in an undesired mix of colors. Additionally, the layout of

the edges can be manipulated, e.g., by interactively curving

away edges from the focus of attention [WCG03]. This has

the undesirable side-effect that, in an already crowded field

of view, the area which is out of focus will be even more

crowded. Finally, elements (such as edges) can be left out

selectively [CJM03].

3.3. EEG Coherence Visualization

Most EEG analyses of EEG coherence make a hypothesis-

driven selection of electrodes, e.g., [MSvdHdJ06]. Only a

few data-driven methods are available for the visualization

of EEG coherence, and they are suitable for relatively low

numbers of edges. One method visualizes coherence for 21

electrodes and all possible electrode combinations, setting

out the electrodes along both the rows and columns of a ma-

trix as a tiled display [KBS97]. The result is a square contin-

gency table showing coherence values for all possible elec-

trode pairs. Each table entry is a square in which coherence

is displayed between the two corresponding electrode sig-

nals as a function of frequency. By arranging the electrodes

along the rows and the columns of the matrix, the spatial

relations are lost. As a result, consecutive entries in the ta-

ble do not need to imply coherence between pairs of signals

recorded at adjacent electrodes on the scalp.

Other data-driven EEG coherence visualization meth-

ods employ graph visualization techniques. Electrodes are

commonly shown as dots or circles distributed over a

two-dimensional or three-dimensional head shape, while

significant coherences are indicated by lines or arrows,

e.g., [KBS97, SRSP99]. Especially for high-density EEG

with up to 512 vertices, many overlapping edges are pos-

sible, resulting in visual clutter.

A different approach uses EEG source analysis to obtain

dipole sources. The number of dipole sources is consider-

ably smaller than the number of electrodes. The coherence

between dipole source activities can be shown with sources

as vertices [DMFTS02]. Despite the low number of ver-

tices, there may still be various overlapping edges. More-

over, there are generally several different but plausible dipole

source solutions [Sri99].

Another solution is to cluster the electrodes as described

in [GLdJ06]. From a total collection of 128 electrodes, a

subselection is made of 66 electrodes. From this subselec-

tion, twelve regularly distributed electrodes are chosen as

anchors. Each of the remaining electrodes is assigned to the

anchor that recorded the most similar signal, provided that

the similarity exceeds some significance threshold. The clus-

ter centers are defined as the average of the positions of the

electrodes within each cluster. If the similarity calculated be-

tween two clusters exceeds a threshold, a line is drawn be-

tween the two cluster centers. The main disadvantage of this

method is the hypothesis-driven selection of the number of

anchors and their positions.

4. Data Representation

4.1. EEG Coherence Data

Data were used from a so-called P300 experiment. Dur-

ing this experiment each participant was instructed to re-

spond to an infrequent auditory target stimulus. The partic-

ipant counted target tones of 2000Hz (probability 0.15), al-

ternated with standard tones of 1000Hz (probability 0.85)

which were to be ignored. After the experiment, the partici-

pant had to report the number of perceived target tones. The

participants studied here were three young adults. The brain

response was recorded using an EEG cap with 119 elec-

trodes attached to the scalp. The data were resampled from

1000Hz to 256Hz. Each dataset consisted of brain reactions

to 20 target tones, recorded in L = 20 segments.

A procedure from Neurospec (www.neurospec.org)

was adopted to compute the coherence. Frequencies be-

tween 1 and 30Hz are typically studied clinically. We cal-

culated the coherence within a low (1-3Hz) and a high

(13-20Hz) frequency band, because EEG synchrony be-

haves differently for low and high frequencies [MSvdHdJ06,

NSW
∗97]. The coherence for a frequency band a-bHz was

calculated as the average of the coherence between frequen-

cies aHz and bHz. For 119 electrodes, in total 7021 coher-

ence values were computed per frequency (band). If the con-

ductive gel accidentally connected two adjacent electrodes,

very high coherences were measured. Coherences higher

than 0.99 were therefore ignored.

4.2. Initial Graph

In an (undirected) initial graph, vertices represent electrodes

and edges represent significant coherences (Eqn. 1) between

electrode signals. Vertices are visualized as dots and edges

as lines (Fig. 1, left). Vertices are not self-connected. A

histogram gives an example of computed coherence values

(Fig. 1, middle).

4.3. Voronoi Relationship

To determine spatial relationships between electrodes, a

Voronoi diagram [Vor08] is employed which partitions the

plane into cells with the same nearest vertex. For EEG data,

the vertex set equals the set of electrode positions (Fig. 1).
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Figure 1: Left: Initial graph (EEG frequency band 1-3Hz, dataset 1). Vertices represent electrodes, edges represent signif-

icant coherences between electrode signals. Edges are visualized as gray lines, vertices as black dots on top of the edges.

This corresponds to a common existing data-driven visualization, showing cluttered edges. Middle: Histogram of the corre-

sponding coherence. Vertical lines (dash, solid, dot) indicate significance thresholds associated with three probability levels

(p = 0.10,0.05,0.01, respectively). Right: Voronoi diagram with electrode labels in the corresponding cells, having the convex

hull of all electrodes as a boundary. To improve the readability, the Voronoi diagram is stretched horizontally. Because the

coherence computation is independent of distance, distances between electrodes do not need to be preserved. However, spatial

relationships between electrodes are maintained.

The vertices are referred to as (Voronoi) centers, the bound-

aries as (Voronoi) polygons. The area enclosed by a polygon

is called a (Voronoi) cell. A cell encloses all points which

are closest to the center in that particular cell. We call two

cells Voronoi neighbors if they have a boundary in common.

A collection of cells C is called Voronoi-connected if for a

pair φ0,φn ∈C there is a sequence φ0,φ1, ...,φn of cells in C

with each pair φi−1,φi consisting of Voronoi neighbors. We

use the terms “Voronoi neighbor” and “Voronoi-connected”

interchangeably for cells, vertices, and electrodes.

5. Functional Unit Maps

Using a hypothesis-driven approach, EEG researchers of-

ten define certain regions of interest (ROIs) to analyze

high-density EEG coherence. From each ROI, typically

one electrode is selected as a marker. Usually, there are

about ten to twenty markers. These markers are assumed

to record signals that are representative for all electrodes in

the corresponding ROI, because of volume conduction ef-

fects [HF77]. Instead, we introduce a method to determine

a data-driven ROI, called functional unit (FU), which is rep-

resented in the initial graph by a clique consisting of a set

of spatially connected vertices. Consequently, an FU corre-

sponds to a set of electrodes in which the electrodes record

pairwise significantly coherent signals.

5.1. Maximal Cliques

Bron and Kerbosch [BK73] developed a method to detect

all maximal cliques in a graph. It first branches the problem,

and bounds unsuccessful branches. Its recursive procedure

maintains three dynamic vertex sets:

• the set compsub contains an increasing or decreasing

clique;

• the set candidates contains vertices that are connected

to all vertices in compsub and that can be added to

compsub;

• the set not contains vertices that are connected to all ver-

tices in compsub and that have already been added to

compsub previously.

At each call of the procedure, the first element of can-

didates, say vertex v, is added to compsub and removed

from candidates. Next, newcandidates is the inter-

section of candidates and the neighborhood of v. Sim-

ilarly, newnot is the intersection of not and the neigh-

borhood of v. If both newcandidates and newnot are

empty, compsub contains a maximal clique. This proce-

dure is repeated recursively with local sets newcandi-

dates and newnot, until the candidate set is empty. In

case the procedure is not repeated with newcandidates

and newnot, the vertex most recently added to comp-

sub (vertex v) is removed from compsub and added to

not. If any vertex in newnot is connected to all vertices

in newcandidates, then it is known that this vertex will

never be removed from not and this branch is bounded.

An alternative selection of vertex v is more efficient if

there is a large number of overlapping cliques [BK73]. From

the set candidates, the vertex v∗ is selected that has

the largest number of connections with the other vertices in

candidates. If there are more such vertices, then one of
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Figure 2: Functional Unit map (EEG frequency band 1-3Hz, dataset 1). Left: A circle with a cross inside indicates the

geographic center of all Voronoi centers belonging to one FU and has a corresponding gray value. The geographic center can

be located in a cell not belonging to the corresponding FU. Middle: The same FU map, but with seven FUs larger than 5 cells.

White Voronoi cells are part of smaller FUs. Right: Lines connect FU centers, if the inter-FU coherence exceeds the significance

threshold (Eqn. 1). The color of the line depends on the inter-FU coherence (see color bar, with minimum corresponding to the

coherence threshold ≈ 0.15).

these is randomly selected. Further, it is assured that v∗ is

not connected to the vertex just added to not. The worst-

case time complexity of this alternative is O(3n/3), with n

the number of vertices, because 3n/3 is the highest number

of cliques [TTT06].

5.2. Voronoi-Connected Maximal Cliques

We extend the method by [BK73] such that it only detects

maximal cliques consisting of Voronoi-connected vertices.

The three dynamic vertex sets are maintained, but the set

candidates is split into a set currentcand and a set

complcand.

• The set currentcand contains the candidates that are

Voronoi neighbor of at least one element in compsub;

only these can be added to compsub at the current step.

• The set complcand is the complement of current-

cand in candidates.

Similar to the second version of [BK73], at each call

the element from currentcand is taken which has the

largest number of connections with the other candidates

(currentcand and complcand). Let this element be v′.

The set newcurrentcand is the intersection of cur-

rentcand and the Voronoi neighbors of v′, united with

the Voronoi-neighbors of v′ in complcand. Consequently,

newcomplcand consists of the vertices in complcand

minus the Voronoi neighbors of v′. This is repeated un-

til newcurrentcand and newnot are empty. The set

(new)not is maintained as before. This modified pro-

cedure results directly in the collection of all Voronoi-

connected maximal cliques.

5.3. FU Labeling

Each vertex can be part of more than one (Voronoi-

connected) maximal clique. To assign a unique label to every

vertex, the following labeling procedure is applied.

First, we define the quantity total strength S for an undi-

rected (sub)graph G = (V,E) as the sum of all edge values:

S(G) = ∑
i, j

{c(vi,v j) | vi,v j ∈V : j > i}. (2)

This value is not normalized for the size of E. Consequently,

if two graphs have an equal average coherence, the graph

with the larger size has the higher total strength.

The Voronoi-connected maximal cliques are sorted by

their total strength, from high to low. The vertex set cor-

responding to the one with the highest total strength is

labeled W1. The vertices in W1 are assigned the label 1

and are removed from the remaining (maximal) cliques. If

the remaining cliques are not Voronoi-connected any more,

they are split into Voronoi-connected components. For ev-

ery changed clique the total strength is recomputed, and the

clique is inserted in an appropriate location in the sorted list

of cliques. This procedure is repeated, until all vertices re-

ceived a label, or until all maximal cliques have been con-

sidered. This results in vertex sets labeled W1, ...,WM . Every

vertex set Wi (i ∈ {1,2, ...,M}) is considered to be a func-

tional unit, being a clique consisting of Voronoi-connected

vertices.

5.4. FU Map Coloring

Each FU is visualized as a set of identically colored Voronoi

cells. Adjacent FUs are colored differently. We call this visu-

alization an FU map. The problem of coloring the FUs cor-
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Figure 3: FU maps with FUs larger than 5 cells, for the 1-3Hz EEG frequency band (top row) and for 13-20Hz (bottom row),

for three datasets. Displayed above each FU map are: the number of FUs, the number of connecting lines between FUs, and

the relative number of connecting lines (between parentheses). A circle with a cross inside indicates the geographic center of

all Voronoi centers belonging to an FU and has a corresponding gray value.

responds to the coloring of a plane graph, assigning differ-

ent colors to adjacent vertices. Humans can perceive about

five different colors rapidly and accurately [Hea96], whereas

there can be more than five FUs. However, for any plane

graph, four colors are sufficient [RSST96].

To find a four-coloring of the FUs, the FUs are sorted by

their number of neighboring FUs, from high to low. From a

set of four available colors, each FU is assigned (one by one)

a color different from its neighbors. If there are already four

different colors among its neighbors, there is an impasse.

To solve the impasse, we make use of a c-d Kempe chain,

which is a connected component of a colored graph with ver-

tices colored c or d. Interchanging the two colors in a Kempe

chain is referred to as Kempe chaining [MS91]. This is exe-

cuted randomly with neighbors of the impasse FU, until the

impasse is solved. If this does not terminate within a certain

number of attempts, then the FUs are sorted randomly before

restarting the coloring procedure.

In an FU map, FUs below a certain size may be omitted.

Instead of four different colors, four different gray levels are

used here (Fig. 2, left, middle).

5.5. FU Map Connections

Given the FUs, we define the inter-FU coherence c′ at fre-

quency λ between two functional units W1 and W2 as the

sum of the coherence values between one vertex in W1 and

the other vertex in W2, scaled by the total number of edges

between W1 and W2:

c
′
λ(W1,W2) =

∑i, j{cλ(vi,v j) | vi ∈W1,v j ∈W2}

|W1| · |W2|
. (3)

Here, |Wi| indicates the number of vertices in Wi. Note that

coherences between any pair of vertices are taken into ac-

count, to normalize for the size of the FUs.

A line is drawn between FU centers if the correspond-

ing inter-FU coherence exceeds a threshold. We consistently

choose this threshold to be equal to the significance thresh-

c© The Eurographics Association 2007.
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old (Eqn. 1), because we already used this threshold to de-

termine the initial graph.

From the FU maps, the number of FUs k and the num-

ber of connecting lines m can be deduced. To compare the

number of connecting lines across FU maps with varying

numbers of FUs, the relative number of connecting lines r is

computed as the actual number of connecting lines divided

by the possible number of connecting lines, given the num-

ber of FUs: r = 2m
k(k−1)

.

6. Results

FU maps including small FUs fail to give a good

overview (Fig. 2, left). Therefore, we choose to consider

only FUs larger than 5 cells.

In Fig. 3, FU maps are shown for the three datasets. The

top row shows FU maps for the EEG frequency band 1-3Hz,

the bottom row for 13-20Hz. We observe that each FU map

shows less clutter than a straightforward data-driven graph

visualization without any adaptations (compare Fig. 3 with

Fig. 1, left).

In the FU maps (Fig. 3), for each dataset the number

of FUs does not differ much between the two EEG fre-

quency bands (compare top with bottom row). The (rela-

tive) number of connecting lines is always higher for the low

EEG frequency band. This indicates simultaneous activity

at a more global scale for a lower EEG frequency and at a

more local scale for a higher EEG frequency, in accordance

with [NSW∗97]. Furthermore, there is a connecting line be-

tween a large anterior and a large posterior FU for each of the

datasets and for both EEG frequency bands. This is possibly

associated with the two most important sources of brain ac-

tivity for this type of data, located anteriorly (known as P3a)

and posteriorly (known as P3b) [CP99, EvWvdN∗03].

7. Discussion and Conclusions

EEG coherence analysis is the study of coherence between

functional units. Most current analyses use hypothesis-

driven regions of interest (ROIs). Existing data-driven graph

visualizations for EEG coherence commonly visualize ver-

tices representing electrodes as dots and coherences as

edges, resulting in clutter for high-density EEG with up

to 512 electrodes. However, without a hypothesis, all coher-

ences should be considered. Therefore, we have developed a

new data-driven visualization method for high-density EEG

coherence, which strongly reduces clutter and is referred to

as functional unit (FU) map. An FU is a spatially connected

set of electrodes recording pairwise significantly coherent

signals, represented in the graph by a spatially connected

clique. In an FU map, the spatial relationship between cells

representing electrodes is preserved, and all cells in one FU

are assigned an identical color. Adjacent FUs are visualized

with different colors and FUs are connected by a line if the

average coherence between FUs exceeds a threshold.

FU maps are shown for three datasets containing re-

sponses to target stimuli, and for two EEG frequency bands.

Comparable conventional findings are rare, because conven-

tional data-driven high-density EEG coherence analysis is

cumbersome. However, we find that the (relative) number of

connecting lines between FUs is lower for a higher EEG fre-

quency, in accordance with [NSW∗97]. Furthermore, con-

nections between anterior and posterior FUs are possibly as-

sociated with the two most important sources of brain activ-

ity for this data type [CP99, EvWvdN∗03].

The method employs two thresholds; one threshold affects

the configuration of the FUs, the other the number of con-

necting lines between FUs. In this paper, both thresholds are

chosen equal to the significance threshold for the coherence

calculation (Eqn. 1). However, the thresholds may be chosen

different from each other. An interactive adaptation of both

thresholds will allow a user to manipulate the FUs and the

connecting lines, while maintaining a data-driven visualiza-

tion. Additionally, the minimum FU size can be adapted in-

teractively, thereby simultaneously affecting the number of

connecting lines.

Conventional analysis of high-density EEG coherence is

typically based on the selection of a small number of elec-

trodes as markers. Each marker is supposed to be represen-

tative for all other electrodes in a certain ROI. Traditionally,

the selection of these markers is hypothesis-driven. In our

approach, FU maps can be used for a data-driven selection

of markers: the number of markers, their location, and their

region of influence can be derived directly from an FU map.

In other words, FU maps can be used as a preprocessing step

for conventional analysis.

In EEG research, several datasets are usually compared

in a so-called group analysis. Although FU maps vary from

dataset to dataset, there are solutions. Visually, multiple FU

maps can be compared when displayed next to each other.

Analytically, FU maps can be compared on the basis of

their (underlying) graph structure, e.g., using (inexact) graph

matching, which computes a similarity value between two

graphs [BA83].

The FU map based on Voronoi-connected maximal clique

detection is also suitable for the visualization of other simi-

larity measures for signals recorded by spatially distributed

sensors.
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