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Abstract

This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are

perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visu-

alization is combined with animation based on motion along the vector field. This decoupling of the line direction

from the direction of animation allows us to choose the spatial frequencies along the direction of motion inde-

pendently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors

are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial fre-

quencies optimized for motion perception. In addition, a filtering process is described to achieve a consistent and

temporally coherent animation of the orthogonal vector field visualization. We present respective visualization

algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those

algorithms lend themselves to efficient and interactive GPU implementations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Vector field visualization—a classic topic within scientific

visualization—addresses the display of the direction and

magnitude of vectors. Direction can be visually encoded

in line-like patterns that follow the vector field; a typical

example is a collection of streamlines, which are the in-

tegral curves of a time-independent vector field. Texture-

based methods, such as LIC (line integral convolution) or

texture advection, achieve a dense coverage by those line

patterns: integral curves are essentially drawn everywhere

on the domain, avoiding the issue of identifying appropriate

seed points for particle tracing. Dense texture-based repre-

sentations are well understood for 2D vector fields and for

tangential vector fields on curved surfaces.

This paper builds upon previous texture-based methods

for 2D manifolds and addresses a specific issue that has been

neglected so far: how well can a human observer perceive

an animated visualization? In general, animation has been

used successfully for vector field visualization because it can

show the direction, orientation, and magnitude of the vec-

tor field. In addition, animation can alleviate the curve inter-

section issues that occur for long pathlines or streaklines of

a time-dependent flow. However, we are not aware of any

previous work that would have considered the perception

of such animations. Based on results from vision research,

we claim that existing approaches like animated streamlines

are non-optimal for local motion perception. Texture-based

methods significantly reduce spatial frequency along inte-

gral curves to display those curves. However, there is sub-

stantial evidence for a spatial frequency tuning of the mo-

tion detectors in our human visual system (HVS), and op-

timal spatial frequencies are typically much higher than the

spatial frequencies produced by texture-based methods (see

Section 3.2).

Therefore, we propose to decouple the direction of the

line-like patterns from the direction of animation. More

specifically, we propose to use an orthogonal vector field

(i.e., the original vector field rotated by π/2) to construct

line-like patterns and use the original vector field to drive

the animation. In this way, the spatial frequencies along the

direction of motion are determined by the spatial frequen-

cies of the input noise (for LIC or texture advection), which
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are independent of the length scales along the line patterns

(controlled by the filter length of LIC or texture advection).

Furthermore, this visualization approach resembles a mov-

ing wave front of the vector field and therefore provides an

intuitive analogy to the real world.

The main contributions of this paper are: (1) The percep-

tual issues of animated flow visualization, which have not

been addressed before, are pointed out and substantiated by

references from the vision research literature. (2) The con-

cept of animated orthogonal vector field representation is in-

troduced for the visualization of steady and unsteady flow.

(3) A filtering process is proposed to obtain a consistent and

temporally coherent animation of the orthogonal vector field

visualization. (4) An efficient texture-based algorithm for 2D

planar vector fields is described. (5) This algorithm is ex-

tended to tangential vector fields on curved surfaces. (6) Fast

GPU implementations of both algorithms are presented.

2. Previous Work

This paper describes a technique for texture-based vector

field visualization. We refer to the survey chapter [WE05]

for an overview of vector field visualization in general and

to the article [LHD∗04] for a presentation of the state of the

art in texture-based methods.

Our visualization approach relies on line integral convo-

lution (LIC) [CL93] as a role model to extract and display

line-like structures. For the visualization of 2D vector fields,

we adopt a GPU version of LIC [WEE03]. For data sets

given on curved surfaces embedded in 3D space, we extend

image-space advection [LJH03, vW03] and combine it with

a related hybrid image/object space method for LIC [WE04].

Animation plays an important role in our visualization

approach, in addition to the spatial structures generated by

LIC. Previous work on animated texture-based vector field

visualization focuses on motion along line-like structures to

show the direction, orientation, and velocity of the vector

field, i.e., visual patterns and animation reveal essentially

the same information. For time-independent vector fields,

patterns typically move along streamlines [CL93, LJL04].

Most methods for time-dependent data directly support an

animated visualization, such as LIC methods [FC95], tex-

ture advection techniques [JEH02, vW02], or unsteady flow

LIC (UFLIC) [SK97] and its recent variants [LM02,LTH06].

A decoupling of spatial structures and temporal behav-

ior through animation is described in a generic texture-

based framework [WEE03], which generalizes dynamic

LIC [Sun03], designed for animated electric or magnetic

fields. In this paper, the framework [WEE03] is adopted

for specifically designed choices for temporal coherence and

spatial patterns. In addition, we extend it to the visualization

on curved surfaces.

Our visualization method targets an easy-to-perceive an-

imation. In general, visual perception is of high inter-

est for scientific visualization and information visualiza-

tion alike [War04]. In previous work, however, motion per-

ception plays a less important role than the perception of

static patterns. Only few prior papers specifically address

motion perception for visualization purposes; examples in-

clude the kinetic visualization of shape [LSM03], preatten-

tive processing [HBE96], filtering and brushing with mo-

tion [BW02], multivariate visualization [LWK89], percep-

tual limits on 2D motion-field visualization [LPR06], and

the influence of color on motion perception [Wei04].

3. Orthogonal Vector Field Representation

We first introduce orthogonal vector field representation in a

formal, mathematical way and then motivate our new visu-

alization method by showing similarities to existing visual-

ization approaches and by providing a perceptual rationale.

The subsequent parts of this section discuss the animation

and temporal coherence of moving visualization patterns.

3.1. Spatial Patterns

We assume a tangential vector field v defined on a smooth

and orientable 2D manifold M (with or without boundary):

v : M −→ T M with v(x) ∈ TxM .

The vector field maps a point x ∈ M to a vector in the cor-

responding tangent space at that point, TxM. Typically, M is

either a flat 2D manifold or a surface embedded in 3D Eu-

clidean space. We refer to the first alternative as a 2D vec-

tor field and to the latter alternative as a 2.5D vector field.

Since M is orientable, we can define an operator Ω that ro-

tates a vector within the tangent plane by an angle π/2. The

inverse operator Ω−1 yields a rotation by −π/2. The orthog-

onal vector field u is defined as

u : M −→ T M , x 7−→ Ωv(x) .

Our idea is to display the orthogonal vector field u instead

of the original vector field v. The actual visualization re-

lies on integral curves (streamlines in the context of flow

visualization, field lines in the context of electric, magnetic,

or related fields) to show the direction of u. In this paper,

we focus on a texture-based visualization of streamlines by

means of LIC (see Sections 4 and 5), but other methods such

as geometrically constructed streamlines might also be em-

ployed. Figure 1 illustrates an example of u and v by means

of a few geometric lines that represent integral curves. So

far, a time-independent vector field has been assumed. For

a time-dependent vector field, we apply the above approach

to an instantaneous vector field for a given time in order to

produce a single visualization for that time.

Before we consider animation—the main aspect of our vi-

sualization approach—we would like to motivate the use of

the rotated vector field for a single frame of the visualiza-

tion. First, the mapping by the rotation operator Ω is one-

to-one, i.e., the original vector field v can be recovered by
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Figure 1: Illustration of two perpendicular families of lines:

one for a circular vector field v (dashed lines) and one for a

radial vector field u (solid lines).

applying the uniquely defined inverse operator Ω−1. While

this argument shows that the same information content is

displayed by u and v, the question remains how effective

the rotated vector field is for visualization purposes. Here,

the special choice of a π/2 rotation angle becomes impor-

tant because analogous uses of perpendicular line structures

are well known and accepted in visualization. One analogy

comes from the representation of 2D scalar fields by either

contour lines (isolines) or gradient directions: gradients and

contours are perpendicular by construction. For example,

Figure 1, which was used to illustrate an orthogonal vec-

tor field, can also be interpreted as a visualization of a scalar

field with maximum value in its center, concentric circles as

contour lines (dashed), and radial gradient lines (solid).

A related analogy is based on the Helmholtz decomposi-

tion of vector fields. Adopting the notation of Polthier and

Preuß [PP00], a vector field v on a 2D manifold can be writ-

ten as v = ∇φ + Ω∇ω + η, with the curl-free part ∇φ, the

divergence-free part Ω∇ω, and the remaining harmonic part

η. Assuming a divergence-free vector field represented by

ω, our orthogonal vector field approach shows the field lines

of the gradient ∇ω. Similarly, a curl-free vector field based

on φ would show the gradient ∇φ by traditional visualization

methods. Therefore, the orthogonal vector field visualization

could be regarded as the “dual” of the traditional flow visu-

alization for curl-free vector fields.

3.2. Animation and Motion Perception

So far, we have only discussed the static visualization by a

single image. Although the spatial patterns in one frame are

important, animation plays an even more crucial role in our

approach. The basic idea is to drive the animation by the

original vector field v, i.e., the direction of motion (given by

v) and the integral curves in an image (determined by u) are

perpendicular. Figure 1 illustrates this approach: the solid,

radial lines show the curves of u, which are transported along

the circular flow v, leading to a counterclockwise rotation.

Why is the decoupling of temporal evolution and spatial

patterns useful? The main motivation comes from research

on human visual perception. There is an indication for a spa-

tial frequency tuning of the HVS: how well we perceive mo-

tion depends on the spatial frequency of moving patterns.

Low-level motion perception is based on small receptive

fields that serve as local motion detectors (see, for exam-

ple, [AB87]). Vision research and physiological investiga-

tions have addressed various aspects of motion perception,

including the detection and discrimination of moving pat-

terns, the influence of contrast and color, and the breakdown

of the perception of coherent motion under certain condi-

tions. Although this topic is still an area of active research,

a general observation of a frequency tuning of motion de-

tection can be found in the literature. In the following, we

focus on a few, recent papers and refer the reader to refer-

ences therein for further reading.

One interesting aspect of recent studies is that the charac-

teristics of receptive fields may be adaptive—dependent on

the stimulus. For example, Cavanaugh et al. [CBM02] de-

scribe that at low contrast, a wider spatial region (with less

surround suppression) is used as input to increase sensitiv-

ity, whereas a high-contrast stimulus leads to higher spatial

resolution using increased surround suppression. This prin-

cipal observation can also be found in the context of mo-

tion perception [TL05], where high contrast favors the detec-

tion of high-frequency stimuli and low contrast favors large

stimuli. Tadin and Lappin [TL05] report an optimal size of

0.5deg (degrees with respect to the subtended angle as seen

by the viewer) for a high contrast of 92%. Typically, texture-

based vector field visualization uses patterns of high lumi-

nance contrast and, therefore, high spatial frequency patterns

are appropriate. Another observation is that local and global

motion detectors can be distinguished (see, e.g., [BD02]). In

this paper, we focus on local motion detection, which is op-

timal for certain spatial frequencies. Bex and Dakin [BD02]

report a maximum sensitivity for local motion detection for

spatial frequencies around 2cycles/deg. A similar number of

3cycles/deg is given by Watson and Turano [WT95] as opti-

mal motion stimulus.

The actual value for the optimal spatial frequency of pat-

terns depends on several outside parameters, but many stud-

ies agree upon frequencies somewhere around or above 2 cy-

cles/deg. For a typical setup with a 600
2 window viewed un-

der a 30deg field of view, 2cycles/deg correspond to 2×60

dark or bright LIC lines (with one pair of dark and bright

lines per cycle), or approximately 10 pixels wide line pat-

terns. This is slightly wider than typical LIC lines of 2–3

pixels width, but still in a similar range. In contrast, anima-

tion along extended streamlines of 100–150 pixels length is

much further away from the perceptual optimum.

3.3. Temporal Coherence

We intend to transport integral curves of the rotated vector

field u along the original vector field v in order to control

the spatial frequency of the transported patterns along the

transport direction. Please note that the vector fields may be

time-dependent. This transport could be realized by first con-

structing integral curves of u for an initial time t0 and then

advecting those curves along v to a later time t1. An alterna-

tive way is to first advect the seed points (i.e., initial noise for
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Figure 2: Illustration of two transport and visualization ap-

proaches, applied to a shear flow. The two resulting images

(middle and bottom images in the right column) differ be-

cause LIC and advection are not commutative. Seeds and

streamlines are colored to allow for an easier recognition of

correspondence between images.

LIC) along v from time t0 to t1 and then construct the integral

curves of u for time t1. Figure 2 illustrates both approaches

for the example of a shear flow. Unfortunately, these two

transport approaches do not necessarily lead to the same re-

sult, as illustrated in Figure 2. The first approach guaran-

tees temporal coherence of the transported integral curves

because the curves themselves are advected. The second ap-

proach makes sure that the integral curves are always per-

pendicular to v. Since the two approaches may lead to dif-

ferent results, we are unable to construct a mechanism that

maintains orthogonal vector field lines and achieves tempo-

ral coherence at the same time.

To overcome this problem, we propose the following two-

part process. The first part is a combination of advection and

integral-curve construction: initial seed points are advected

along v from the initial time t0 to an intermediate time ti
(t0 ≤ ti ≤ t1); then integral curves of u are constructed at

time ti; finally, those integral curves are advected along v

from ti to t1. We denote this overall operation as Tti . For a

texture-based representation, Tti takes an initial noise image

N as input and yields an image of transported integral curves.

The second part applies a filtering process in order to balance

the conflicting goals of temporal coherence and orthogonal

vector field lines. The actual visualization image at time t1 is

I =
Z t1

t0

k(ti)Tti(N)dti , (1)

with a filter kernel k(t) normalized according to
R

k(t)dt = 1.

This filtering process allows us to trade clearly defined line-

like patterns for a consistent and temporally coherent ani-

mation: the width of the filter interval [t0, t1] determines the

amount of smearing out and can be gradually adjusted. In

fact, there are many important flow fields that exhibit no or

only little inconsistencies and thus would not need any fil-

tering. The circular flow of Figure 1 is an example of a com-

pletely consistent advection and integral-curve construction.

An animated visualization produces images for increas-

ing end times t1. For a constant filter width (t1− t0), the start

time progresses accordingly. To achieve temporal coherence

of the final images, the noise images N need to be tempo-

rally coherent for different times t0, which can be ensured

by advecting initial noise images along the vector field v.

4. 2D Algorithm

For a flow on a planar 2D domain, all relevant information is

2D (vector field, input noise images, intermediate and final

visualization images) and can be represented as 2D images,

2D textures, or 2D uniform grids. In the following, we refer

to them as images or textures. Vector data on unstructured,

triangulated grids would also work because a triangle mesh

can be easily rendered (i.e., rasterized) into a 2D image.

The algorithm that produces the final output image can

be seen as a pipeline consisting of three major stages (Fig-

ure 3). Each of these stages creates an intermediate result

that is used as input for the next stage. The first stage (noise

transport) implements two aspects of the abstract approach

from Section 3.3: (1) temporally coherent input noise for dif-

ferent starting times t0 and (2) the advection of noise from

t0 to the intermediate time ti. The second stage (orthogonal

LIC) constructs a LIC image of the rotated vector field u at

time ti. The third stage (advection and blending) implements

the transport of LIC patterns from time ti to t1 and computes

the filter operation from Eq. (1). In the following, the three

stages are explained in more detail.

The first stage is responsible for creating a temporally

coherent noise that should move according to the possibly

time-dependent vector field v. Similarly to [WEE03, Sec-

tion 4], pathlines are traversed from the current time step

backward in time in order to accumulate noise injection in-

put from previous times in a Lagrangian manner. This accu-

mulation yields a convolution in time along pathlines. The

time span of backward particle tracing determines the scale

of temporal correlation: typically, some 15–50 integration

steps are appropriate for an adequate compromise between

computation time and quality of temporal coherence.

The different noise injection images that serve as input

for the temporal convolution need to be uncorrelated. To

noise
transport

orthogo-
nal LIC

blending

random
noise

vector
field

ad-
vection

displayresult

stage 1 stage 2 stage 3

Figure 3: Processing stages and data flow for the 2D algo-

rithm.
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save memory for a large number of noise injection images,

we construct them on-the-fly by reusing a single template

image. We assume that the template noise image is peri-

odic (i.e., a seamless texture), which, for example, is auto-

matically achieved by generating a low-pass filtered noise

via filtering in Fourier space, using FFT. A new, uncorre-

lated noise image is produced from the template image by

Cranley-Patterson rotation [CP76], which adds the same ran-

dom shift to each point of the template image. The random

shifts are applied on-the-fly while a noise injection texture is

accessed.

Inflow and outflow at boundaries of the domain often

cause problems for texture-based methods. This issue is ad-

dressed in two ways. First, the injection noise is periodic

and thus virtually infinite in size. Second, the vector field is

clamped at the boundary, making it virtually infinite as well.

Therefore, particles can be traced beyond domain bound-

aries. Another issue is divergence or convergence of the flow,

which could change the spatial frequency of injected noise

by stretching or compression. Due to the limited integration

length in time (some 15–50 integration steps), this problem

does not lead to serious artifacts except for extremely large

absolute values of divergence. Finally, the temporal convolu-

tion of uncorrelated noise images leads to reduced contrast.

The convolution corresponds to a summation of (approxi-

mately) independent random variables, resulting in a normal

distribution of values according to the central limit theorem.

Contrast is restored by histogram equalization.

The result of the first stage is a noise texture that moves

along the vector field v and serves as input to the second

stage. The second stage creates LIC lines that visualize the

orthogonal vector field u at a fixed time that corresponds to

the current visualization time, which is similar to the spa-

tial filtering process in [WEE03]. The rotation of the orig-

inal vector field v = (vx,vy) is computed by a mapping to

u = (−vy,vx). Usual particle tracing and LIC integration are

performed with the orthogonal vector field. Vectors are nor-

malized to unit length to obtain LIC lines of equal length.

Boundaries of the domain are taken into account by stopping

the LIC integration once a particle trace crosses a boundary.

Similarly to stage one, contrast is enhanced by histogram

equalization.

The third stage of the pipeline transports LIC patterns

from the second stage and evaluates the filter operation from

Eq. (1). The goal of the third stage is to produce a tempo-

rally coherent and consistent visualization with line patterns

that are (approximately) perpendicular to the vector field. A

generic implementation of the filtering equation (1) would

require to compute and store several intermediate images Tti .

We avoid this additional work and memory consumption by

restricting ourselves to an exponential filter kernel, which

can be discretized in the form of a recurring application of

the over operator (i.e., alpha blending with weights α and

(1−α)) [EJW05]. The alpha value determines the falloff of

the exponential filter. One image used for blending is the re-

sult of the second stage; the other image is the visualization

result of the previous time step, transported to the current

time step by semi-Lagrangian advection.

5. 2.5D Algorithm

This section describes the visualization of tangential vector

fields on curved surfaces embedded in 3D space. We adopt

the same basic pipeline as for 2D vector fields (see Figure 3),

but need to include some modifications and extensions that

are specific to 2.5D data. The following discussion is re-

stricted to those modifications.

The input vector field may either be given as a 3D tex-

ture intersected by the surface or attached to the vertices of

the surface. Since our algorithm is designed for tangential

vector fields, a possibly non-tangential vector field is made

tangential by subtracting the normal component of a vector.

The first stage of the pipeline (noise transport) adopts the

hybrid object/image space LIC method on surfaces [WE04].

This LIC technique is turned into temporal convolution by

the following modifications. First, particle paths are traced

along pathlines backward in time only. Here, the vector field

is not normalized to unit length. Second, a single input noise

is replaced by uncorrelated noise inputs for different times,

according to a Cranley-Patterson rotation. Noise is modeled

as a 3D solid texture in order to achieve temporal coherence

even under camera rotations, i.e., noise is attached to the sur-

face geometry in object space. In addition, a MIPmapping

approach is employed for anti-aliasing [WE04]. The result

of the first stage is a temporally coherent noise image that

moves along the surface. This noise texture is given in im-

age space.

From now on, we work in image space only, reminiscent

of image-space advection techniques [LJH03, vW03]. The

second stage (orthogonal LIC) takes the original vector field

given in 3D space, rotates it by π/2 around the local normal

vector of the surface, and projects the orthogonal vector field

onto image space. The rotation is determined in object space

by computing the cross product of the surface normal and the

tangential vector. The subsequent projection to image space

yields a 2D vector field with respect to image-space coordi-

nates. Finally, LIC is performed in image space, based on the

noise image from stage one and the image-space vector field.

Particle tracing for LIC is stopped at the boundaries (silhou-

ette lines) of the object; the boundary is identified with a

mask that contains the classification of pixels as foreground

or background pixels. Since a complete LIC is evaluated, we

are free to choose any filter kernel. In contrast, image-space

advection techniques [LJH03,vW03] are restricted to an ex-

ponential kernel, which yields lower image quality than the

Gaussian kernel used in our implementation (see the discus-

sion of filter quality in [Wei07]).

The third stage (advection and blending) consists of

c© The Eurographics Association 2007.

223



S. Bachthaler & D. Weiskopf / Animation of Orthogonal Texture-Based Vector Field Visualization

2D 2.5D

250

150

50

m
s
 p

e
r 

fr
a
m

e

4832 64 80 96 112

a) number of virtual noise textures

350

2D 2.5D

800

200

400

100

25

384256 512 640 768 896 1024

c) resolution

2D 2.5D

250

200

150

100

50

100 120 140 160 180 200

b) LIC integration length

Figure 4: Performance results for varying parameters and squared viewports. All vertical axes show ms/frame.

the following components: projection of the original, non-

rotated vector field onto image space; semi-Lagrangian

image-space advection of the visualization result from the

previous time step; and blending of the advected image with

the image from stage two. The projection of the vector field

is similar to the projection in stage two. Blending is a sim-

ple 2D image operation. However, semi-Lagrangian image-

space advection can cause problems due to inflow at silhou-

ette lines. To avoid inflow of background color, we employ

a modified bilinear interpolation within the previous visual-

ization image. This special filter works basically the same

way as the standard bilinear filter—except for background

texels, which are weighted zero. To decide whether a texel

lies in the background or on the surface geometry, the same

mask as in stage two is used. If all four texels lie on the

background, a gray-scale value of 0.5 is assumed. Currently,

internal edges are neglected, i.e., image information could be

transported across such edges. The approach [LJH03] could

be included to overcome this issue.

For the final display, the texture from stage three is mod-

ulated by a rendered image of the surface geometry to si-

multaneously show the vector field texture and the surface

shape. Our implementation supports the Blinn-Phong model

and cool-warm shading [GGSC98] for surface illumination.

Bump mapping is also available as an option to emphasize

the structure of the vector field texture. Here, the texture

from stage three is interpreted as a height field that perturbs

the normal vectors.

6. Implementation

Our GPU implementations of the 2D and 2.5D algorithms

are based on C++, DirectX 9.0, and HLSL for shader pro-

gramming. The above algorithms are mapped to vertex and

pixel shaders, the data structures are realized by 2D or 3D

textures. Shader model 3.0 is essential because we use loops

in pixel shaders.

For the 2D implementation, each operation in the pipeline

of Figure 3 is mapped to one pixel shader program that

works on 2D images represented by 2D textures. The tem-

plate noise is precomputed on the CPU and low-pass filtered

in Fourier space by using FFTW. Data between different

stages is transferred as 2D textures (16-bit floating point for-

mat) filled by means of the render-to-texture functionality.

Semi-Lagrangian advection uses the built-in bilinear inter-

polation within 16-bit floating point textures.

For the 2.5D implementation, each stage is essentially

mapped to two shaders and two render passes: one shader

implements the different variants of projecting the vector

field onto the image plane; the subsequent shader is respon-

sible for the actual particle tracing and/or integration. Data

between stages is transferred as 2D textures with 32-bit float-

ing point format. Semi-Lagrangian advection is based on a

modified version of bilinear interpolation (see Section 5) that

is explicitly implemented in a pixel shader.

Unsteady flows require only minor changes in the imple-

mentation. The time-dependent vector field is represented as

a temporal stack of textures. The first stage accesses differ-

ent time steps of the vector field during particle tracing. In

contrast to the time-independent case, multiple render passes

are used to trace particles while the different time steps of

the vector field are accessed. Linear interpolation between

two time steps of the vector field allows us to decouple the

animation rate from the temporal sampling of the data set.

The second stage and third stage remain unchanged, pro-

vided that the current time step of the flow is used.

7. Results

The following tests were conducted on a Windows PC with

Intel Dual Core CPU (1.86GHz), 2GB RAM, and NVIDIA

GeForce 7900GS GPU with 256MB of texture memory.

Figure 4 documents timings (in milliseconds) for render-

ing a single image. Each plot shows measurements for a 2D

data set (Benard convection) and a 2.5D data set (a spher-

ical object with a vector field given on a 3D texture). Fig-

ure 4a) reports timings for varying LIC integration length

(for stage two). The integration length is given as the length

in one direction, i.e., the total number of integration steps

is twice the displayed number. The viewport size is 512
2

and the temporal convolution length is 16. Figure 4b) shows

the behavior for varying integration length in the first stage

(noise transport), i.e., different temporal convolution of vir-

tual input noise images. The viewport size is 5122 and the

LIC convolution length is 2× 100. The 2D case exhibits an

almost linear behavior. The 2.5D algorithm shows an un-

expected increase of rendering time for long convolution

lengths, which might be explained by an influence of the tex-

ture cache (for the dependent 3D texture lookups due to the

on-the-fly Cranley-Patterson rotation). Finally, Figure 4c) il-

lustrates the influence of the viewport size, for constant tem-

poral convolution length (16 steps) and constant LIC convo-

lution length (2× 100 steps). Please note that the y axis has
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velocity

Figure 5: Visualization of shear flow with different alpha

blending weights: (a) α = 0.1, (b) α = 0.3.

a quadratic scale. As expected, all the plots show almost lin-

ear behavior for the varying parameters. Therefore, quality

(i.e., longer integration or more pixels) can be gradually bal-

anced with rendering speed. In general, typical 2D and 2.5D

visualizations render at some 10 frames per second, which

facilitates interactive applications.

Figure 5 shows the 2D orthogonal vector field visualiza-

tion of a shear flow. As discussed in Section 3.3, a shear flow

is an extremely challenging example because of substantial

inconsistencies in the transport of orthogonal LIC patterns.

Figure 5 compares different alpha values for the blending in

stage three of the algorithm. A smaller alpha value leads to

a wider filtering and thus to a larger blurring of the image

in regions of inconsistency. In addition, the accompanying

videos§ show that alpha blending results in a reduction of

flickering and shower-door effects (overlaid patterns seem to

move at different speed). From experience, useful alpha val-

ues are in the range of 0.05–0.3, depending on the animation

speed and structure of the vector field.

Figure 6 illustrates standard LIC and orthogonal vec-

tor field visualization for a 2.5D data set from an auto-

motive CFD simulation. Unfortunately, the static images

in the paper are not sufficient to convey our visualization

method, which makes heavy use of animation. Therefore, we

strongly recommend watching the accompanying videos§.

The videos, for example, compare traditional animated LIC

and animated orthogonal LIC, demonstrating the differences

in perceived speed of moving patterns (for same physical

speed). Since the motion detectors are tuned for certain spa-

tial frequencies, we suggest that the reader views the videos

from varying distances in order to change the perception of

motion.

8. Conclusion and Future Work

We have presented an orthogonal vector field representation

as a new means of displaying flow on 2D manifolds. The

main motivation for choosing a perpendicular vector field is

§
http://www.cs.sfu.ca/~sbachtha/personal/eurovis07

Figure 6: Flow visualization on curved surfaces: (top) stan-

dard LIC, (bottom) orthogonal vector field visualization.

to decouple the spatial resolution of patterns along their mo-

tion direction from the length scale of those patterns. In this

way, we can tune the spatial frequency to the local motion

detectors of the HVS. Inconsistencies between orthogonal

field lines and a time-coherent transport of those lines are

resolved by an exponential filter implemented via recurring

alpha blending.

For typical data sets, however, these inconsistencies are

not very prominent. For example, incompressible fluid flows

are dominated by the divergence-free parts of the Hodge-

Helmholtz decomposition and therefore often resemble the

circular flow from Figure 1 on a local scale. These kinds

of data sets are ideally represented by animated orthogonal

vector field visualization. In contrast, filtering is only needed

for extreme cases like shear flows. In future work, the qual-

ity of the filter could be improved by including kernels with

a faster falloff in frequency space than the exponential func-

tion (see the related discussion [Wei07]).

While our approach is motivated by the characteristics of

motion perception, more refined investigations of those per-

ceptual aspects are needed to quantify the effectiveness of

animated orthogonal vector field visualization. Future per-

ception studies could measure the discrimination and per-

ceived speed of moving patterns under realistic settings; pre-

vious vision research uses a restricted class of stimuli that

is not identical to LIC patterns. Furthermore, we have fo-

cused on low-level, local motion perception. Therefore, the
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relationship between global motion perception and the effec-

tiveness of conveying flow structures remains an open ques-

tion. Finally, we would like to point out that our approach is

restricted to 2D manifolds and cannot be directly extended

to higher dimensions because there is no unique orthogonal

vector field in 3D or higher-dimensional space.
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