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Abstract
One of the most common visualization tasks is the extraction of significant boundaries, often performed with iso-
surfaces or level set segmentation. Isosurface extraction is simple and can be guided by geometric and topological
analysis, yet frequently does not extract the desired boundary. Level set segmentation is better at boundary extrac-
tion, but either leads to global segmentation without edges, [CV01], that scales unfavorably in 3D or requires an
initial estimate of the boundary from which to locally solve segmentation with edges. We propose a hybrid system
in which topological analysis is used for semi-automatic initialization of a level set segmentation, and geometric
information bounded topologically is used to guide and accelerate an iterative segmentation algorithm that com-
bines several state-of-the-art level set terms. We thus combine and improve both the flexible isosurface interface
and level set segmentation without edges.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling I.3.6 [Computer Graphics]: Methodology and Techniques I.4.6 [Image Processing and
Computer Vision]: Segmentation

1. Introduction

A common task in medical imaging is locating and segment-
ing objects such as tumors and internal organs. Two principal
methods for segmenting such objects are isosurface extrac-
tion and level set segmentation, but each has drawbacks. Iso-
surfaces, surfaces of the form {x : f (x) = h} for an isovalue
h, are cheap to extract and can be explored interactively, but
often do not coincide neatly with a single object’s boundary,
due to non-uniform scanning, scan artifacts, aliasing, natural
tissue variation, or multiple objects sharing a single isovalue.
Level set segmentation, does not depend on a global measure
of importance, but iteratively relaxes an estimated bound-
ary until energy-minimization terms are met. This produces
superior boundary segmentation, but is computationally ex-
pensive, requires an initial boundary to be specified, and can
depend on global properties, which may not be fundamen-
tally related to the object being extracted.

These approaches have complementary strengths and
weaknesses. Isosurfaces can be explored visually as entire
objects and analysed with contextual geometric and topo-
logical information, but do not always produce good bound-
aries. In comparison, level set methods can produce good
boundaries by minimizing functionals defined with differen-

tial properties of the boundary and medical data. However,
global level set minimizations are typically computationally
intensive and local minimizations are highly dependent on
the initial conditions, i.e. starting boundary.

In this paper, we combine these approaches, using the
flexible isosurface [CS03] with a low-resolution version of
the data for rapid identification of an initial surface of in-
terest, followed by a localized, but full-resolution, level set
refinement driven by several state-of-the-art segmentation
terms, most importantly [CV01]. For the level set implemen-
tation we furthermore utilize highly optimized data struc-
tures and algorithms [NM06]. We thus use the strengths of
several methods to remedy the weaknesses of each other, re-
ducing both computational costs, memory footprints and to
some extent user input. In addition, the topological neigh-
borhoods defined by contour topology can be used to ad-
dress two weaknesses of the original segmentation without
edges, [CV01]. Since this method is based on the solution of
large linear systems of equations, involving global intensity
variance, the resulting segmentation is both relatively slow
and sensitive to (irrelevant) background intensities.

We next review the relevant work on topological analysis
and on level set segmentation. Section 4 then describes our
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Figure 1: A small 3-D data set shown as a sequence a-f of isosurfaces on the left and as a contour tree on the right. Note the
1-1 correspondance between individual contours on the left and points in the tree on the right.

modifications to Chan-Vese level set segmentation using nar-
row band methods for efficiency and local geometric prop-
erties, instead of global properties, for guidance. We then
show how to augment the original global segmentation with-
out edges with several local regularization and edge-based
terms for improved flexibility. Section 6 shows some results,
while Section 7 presents our conclusions and future work.

2. Contour Trees and Flexible Isosurfaces

In a scalar field f : IR3 → IR, the isosurface for an isovalue
h is the set f−1(h) = {x ∈ IR3 : f (x) = h}. This set can be
called a level set, but we use isosurface to avoid confusion,
as level set is also used for the deforming surface represen-
tation described in Section 3.

A contour is a connected component of an isosurface. As
h increases, contours appear at local minima, join or split
at saddles, and disappear at local maxima. Shrinking each
contour to a point gives the contour tree, which tracks this
evolution, as illustrated in Figure 1. Because each contour is
a single point in the contour tree, it gives an abstract repre-
sentation of all possible contours in a data set, with efficient
access to individual contours and the ability to annotate con-
tours with additional geometric and topological information.

The contour tree has been used for fast isosurface
extraction [vKvOB∗97, CS03], abstract representation of
scalar fields [BPS97, ZBB04], manipulation of individ-
ual contours [CS03, CSvdP04], and transfer function de-
sign [TFT04, WDC∗], among other purposes. Efficient al-
gorithms are known to compute the contour tree for sim-
plicial meshes [vKvOB∗97, CSA03], for trilinear inter-

polants [PCM03] and for digital 4/8 connectivity [TIS∗95,
TFT04]: since level set methods use a discrete voxel repre-
sentation, we use 6/16 connectivity.

In particular, the contour tree can be used for interactive
exploration of a data set, as it gives a fast, efficient method
of manipulating individual contours using flexible isosur-
faces [CS03]. Moreover, geometric properties can be pre-
computed for contours and stored in the contour tree, allow-
ing exploration to be guided with quantitative measurements
as well as visual feedback [CSvdP04].

Unfortunately, the contour tree only represents boundaries
that can be defined in terms of a single isovalue. In many sit-
uations, particularly for experimentally-acquired biological
data, the boundaries of interest are not isovalued contours,
but need more sophisticated segmentation methods such as
level set segmentation. Since these methods often need to be
initialized with an approximate surface of interest, the flexi-
ble isosurface can be used to advantage in a hybrid interface.

3. Segmentation and Level Sets

Isosurfaces are not the only method available to segment
boundaries between regions of interest and the background.
Other segmentation methods balance the desire to detect
sharp edges against the desire to extract smooth curves, often
by minimizing a variational functional of a deforming con-
tour or surface, with terms that may include first derivatives
(for edge detection) and second derivatives (for smoothness).

An early example of this approach is the “snakes” of Kass
et al. [KWT88] that iteratively deform an active contour rep-
resented by parametric Lagrangian curves until the curves
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converge to a stable solution. Limitations of this model,
however, include aliasing and difficulty handling changes of
topology or self-intersections [MT95]. Worse, these limita-
tions get worse as the dimensionality of the data goes up.

Osher & Sethian [OS88] gave an elegant and robust
multi-dimensional alternative based on an implicit Eulerian
model, called level set segmentation. In this model, a bound-
ary (or interface) is treated as the zero contour of a time-
dependent Euclidean distance function, φ, embedded in the
data set, i.e. {~x(t) | φ(~x(t), t) = 0}. By convention, φ is nega-
tive inside the contour and positive outside. The fundamental
(Hamilton-Jacobi) equations of motion are easily derived by
applying the chain-rule to φ(~x(t), t) = 0. This essentially re-
casts the problem of arbitrary interface deformations into the
problem of solving the following partial differential equa-
tions (PDE),

∂φ

∂t
=−d~x

dt
·~∇φ (1a)

=−F(~x,~n,φ, . . .)|~∇φ|. (1b)

where Eq. (1a) describes advection of φ in the velocity vec-
tor field, d~x(t)/dt, and Eq. (1b) describes propagation of
the interface, φ, in its local normal direction,~n = ~∇φ/|~∇φ|.
F denotes the scalar velocity of this normal motion, i.e.
F ≡ ~n · d~x(t)/dt. Moreover, the mean curvature of the in-
terface, φ, can be computed as ~∇·~n [MBW∗05]. Although
Eq. (1a) and Eq. (1b) are formally equivalent, their numeri-
cal properties are distinctly different, and great care must be
taken to obtain stable numerical discretizations, [OF03].

Medical segmentation is sometimes referred to as an ill-
posed problem in the sense that it requires additional con-
straints (or information) to define a unique solution. These
constraints are often user-defined and imposed through the
regularization of the underlying computational model. As
such it comes as no surprise that a large body of work
exist on different level set methods for medical segmenta-
tion, see [Kim03] for a summary. While several people have
come very close, there is still no “silver bullet” for automatic
level set segmentation. However, one of the most success-
ful is the recent level set method for “segmentation without
edges” by [CV01]. It essentially defines the boundary as a
level set, φ, that partitions the image, I, into approximately
piecewise-constant regions in a least square sense [MS89].
This can be expressed as a minimization problem of the in-
tensity variance of I computed respectively inside and out-
side of φ, which in turn leads to a set of Euler-Lagrange
equations [ZCMO96] that are solved using semi-implicit in-
tegration. All in all this results in a system of globally de-
fined linear equations that are solved iteratively till conver-
gence. Due to its global nature this technique is known to
be relatively invariant to the initial condition (i.e. the initial
guess of φ). However, this robustness comes at the price of
having to solve a linear system of equations globally. The
consequence is that the original method of [CV01] suffers
from two fundamental limitations; the numerical complex-

ity scales with the embedding space, I, as opposed to the size
of the boundary, causing a computational bottleneck in 3D,
and the solutions are sensitive to variations in I that might be
irrelevant for the segmentation (e.g. background intensities).
As will be explained in next section we address this issue us-
ing a localized narrow band formulation. Finally, it is a well
known fact that sometimes boundaries are best defined from
differential properties of I, i.e. using various edge detectors.
For this reason we propose to use a combination of several
proven segmentation techniques that can be summarized in
the following level set equation

∂φ

∂t
=

[
w1(I−C1)

2−w2 (I−C2)
2
]∣∣∣~∇φ

∣∣∣ (2a)

+w3 f (~x)
∣∣∣~∇φ

∣∣∣ (2b)

+w4 κ

∣∣∣~∇φ

∣∣∣ (2c)

+w5∇g(~x) ·∇φ (2d)

+w6 sign(∇I ·∇φ)∆I
∣∣∣~∇φ

∣∣∣ (2e)

Eq. (2a) constitutes the terms for segmentation without
edges, [CV01] where respectively the inside (C1) and out-
side (C2) image variances are given by

C1 =
∫

ΩI

I(~x)H(−φ(~x))d~x/
∫

ΩI

H(−φ(~x))d~x (3a)

C2 =
∫

ΩI

I(~x)H(φ(~x))d~x/
∫

ΩI

H(φ(~x))d~x (3b)

where ΩI denotes the global domain of the image and H(x)
is a Heaviside function (i.e. H(x) = 1 if x ≥ 0 otherwise
H(x) = 0). Eq. (2b) is a “weighted region” regularization
term which minimizes a quantity given by the scalar func-
tion f (~x) inside the boundary. A simple example is f (~x) = 1
for which the volume (i.e. interior) of the boundary is mini-
mized. Eq. (2c) is another regularization term that essentially
minimizes the area (i.e. size) of the boundary through mean
curvature (κ) based diffusion. Eq. (2d) is the “Geodesic Ac-
tive Contour” model of [CKS95] which is essentially an
edge-based attractions term, where g(~x) denotes an inverse
edge detector typically defined as 1/(1 + |∇G ∗ I|2) where
G ∗ I denotes a Gaussian convolution of the image data to
suppress noise. Finally Eq. (2e) is the “Robust Alignment”
term that aligns the boundary normals with the gradient field
of the image. To allow for a flexible weighting of these dif-
ferent state-of-the-art segmentation terms we introduce the
scaling parameters {wi, i = 1, . . . ,6}. We finally note that
in [CV01] w1 = w2 = 1 and w3 = w5 = w6 = 0 whereas w4
is varied to control smoothness of the segmentation, but is
always non-negative to avoid instabilities.

4. Topologically Local Chan-Vese Segmentation

One drawback of the Chan-Vese method [CV01] is that the
segmentation relies on global properties through Eq. (3). Al-
though the global convergence is often cited as the major
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Figure 2: Illustrates the global behavior of the Chan-Vese method and the implications of using a narrow-band scheme ini-
tialized from the contour shown in (1). The upper row (a) and the lower row (b) differ only in the intensity of the background
(black (a) vs. very dark grey (b)). Although semantically this should not affect the final result, the outside image variance term
is affected by it, leading to two different results (2a) and (2b) depending on the background intensity. Narrow-band methods
improve the result as shown in (3a) and (3b), but the intensity difference still causes different results. Our methods, which use
topology to localize the Chan-Vese computation, are more robust to these differences, extracting essentially the same contour
in each case (4a) and (4b).

strength of this method, for some applications in medical
segmentation it is also the major weakness, as it fails to rep-
resent local properties. For our work, it is important to lo-
calize the behavior for two reasons. First, computational ef-
ficiency is required: for 3D medical datasets, which often
exceed 5123 in size, the Chan-Vese method leads to linear
systems of dimensions (> 100 million) that are simply not
feasible to solve. Secondly, the global solution is not very
meaningful for applications where only one object is of in-
terest. Recall that the original Chan-Vese method is auto-
matic in the sense that it does not allow for any direct con-
trol of the result - it always extracts all boundaries separating
constant variance of the image intensities.

Figure 2 illustrates the drawbacks associated with Chan-
Vese segmentation of a single 2D slice, initialized by the
contour shown in Figure 2(1), by comparing the results ob-
tained with two very slightly different background intensi-
ties (a) - black vs. (b) - very dark grey. Since Chan-Vese
depends on global terms, these small intensity changes over
large areas disturb the computation significantly, leading to
two distinct segmentations (2a) and (2b). Moreover, the orig-
inal Chan-Vese method used in these two images leads to the
result being cluttered with unrelated additional structures.

In comparison, (3a) and (3b) show the result of the more
efficient narrow band structures - while this suppresses the
additional structures quite effectively, the images still con-
verge to different solutions. Global convergence and the abil-

ity to detect inner contours are results of solving the level set
equation implicitly on the full domain without re-initializing
the function (i.e. solve |∇φ| = 1). Unfortunately, narrow-
band schemes rely on re-initialization to rebuild and propa-
gate the narrow band, thus preventing the Chan-Vese method
from detecting inner contours. Therefore, using the Chan-
Vese model with narrow-bands has significant implications
on its behavior, a consequence which has not, to our knowl-
edge, been noted in previous work. Figure 2(3a) shows the
result of solving the level set equation in a narrow-band
while computing the properties, Eq. (3), on the full domain.
Since the computation is contained within the narrow-band,
the solution does not propagate far from the object of in-
terest. However, it is still very sensitive to changes in re-
gions completely unrelated to the segmentation as shown in
Figure 2(3b). To localize the behavior completely, we pro-
pose a simple but surprisingly robust approach which is well
adapted to current narrow-band data structures; we limit all
our computations to the narrow-band and the inside of the
level set which we know contain the object of interest. This
means i.e. in Eq. (3) ΩI is limited to the domain of I for
which φ < γ assuming φ is a signed distance function with
value −γ inside the narrow band. Given the initialization
based on the contour tree, the segmentation is then based
on topologically distinct regions of data, as selected by the
user. Using this approach gives a stable convergence to the
object of interest, as shown in Figure 2(4a) and Figure 2(4b).
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Figure 3: Screen shot of the flexible isosurface and segmentation interface. From left to right; the isosurface visualization, the
contour tree with the selected contours and the amount of simplification (collapsing).

5. Implementation

For our application, we use a reference implementation of
the contour tree algorithms [CSA00] and the flexible iso-
surface interface [CS03], depicted in Figure 3. Using this
interface one can effectively visualize and evolve contours
individually by means of the contour tree. To deal with the
problem of noisy datasets, it is possible to simplify the tree
by collapsing contours based on certain geometric properties
such as height or volume (right). When a target object has
been selected, the segmentation is started and the parame-
ters of the segmentation model can be tuned in real time.

Since the level set equation, Eq. (2), is a time-dependent
Eulerian PDE, it defines an initial value problem. Conse-
quently we need an efficient and robust procedure to con-
vert the flexible isosurface into a level set so it can serve as
the initial condition. To efficiently accomplish this we have
developed the following procedure; employing the contin-
uation method of [WMW86] we offset the contour by the
selected isovalue of the flexible isosurface. Next to compute
the signed distance we solve the Eikonal equation, |∇φ|= 1,
by means of the Fast Sweeping Method of [Zha04].

For the level set segmentation we use a reference im-
plementation of the very compact and efficient DT-Grid
level set data structure of [NM06]. This allows us to ef-
fectively represent and deform level sets of resolutions ex-
ceeding 20483 on a desktop PC with only 1GB of RAM.
To solve Eq. (2), we use a first order forward Euler dis-
cretization in time and the variable 3rd-5th order WENO
scheme, [LOC94], for the spatial discretization of the hyper-
bolic terms Eq. (2). For more general information on numer-
ical finite difference schemes for solving level set equations
we refer the reader to [OF03, Set99, MBW∗05].

As a final optimization we have developed a simple but
efficient algorithm that localizes the computations of the in-

side (C1) and outside (C2) image variances in Eq. (3) as the
boundary deforms. This is simply done by explicitly track-
ing the grid points that are respectively added and removed
from the propagating narrow band and then incrementally
update Eq. (3). As a result the computational complexity of
the overall level set algorithm now scales with the size of the
boundary as opposed to its enclosing domain.

6. Results

In Figure 4, Figure 5 and Figure 6, we show some sample
segmentations obtained with our system. For Figure 4, we
took the well-known UNC head MRI data set, computed the
contour tree at full (256× 256× 109) resolution, then ap-
plied the flexible isosurface interface (a) - (c) to select the
contour shown in Figure 4(c) to initialize the level set seg-
mentation. We then ran the modified Chan-Vese segmenta-
tion to produce the final surface shown in Figure 4(d). As
we see, traditional isosurfaces, shown in Figure 4(a), pro-
duce large surfaces relating to the skull as well as the desired
surface representing the brain. We then apply local contour
segmentation [MHS∗96] based on a simplified contour tree
to show the set of maximal topologically distinct large ob-
jects in the data in Figure 4(b). Although the brain is more
clearly identifiable in this image, when we display it inde-
pendently of the other surfaces, we note that the surface is
incompletely developed, with numerous sharp edges instead
of the rounded folds we would expect. This artifact occurs
because the actual folds of the brain do not correspond to
sharp isovalued edge features, and because, below the iso-
value shown, a spurious narrow spur connects the brain to
the skull fragments shown in Figure 4(b), resulting in an
incorrect segmentation. Applying the modified Chan-Vese
method, however, results in an appropriate segmentation in
Figure 4(d).
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(a) Isosurface (b) Local Contours

(c) Single Contour (d) Final Surface

Figure 4: Interactive Brain Segmentation. In (a), an isosurface has been chosen, but the skull surface occludes the brain. In
(b), local contours are used to display the largest topologically distinct surfaces. In (c), one of these contours has been selected
visually as the initialization surface for level set segmentation. This contour fails to segment the brain properly since at lower
isovalues a spurious connection is formed with the skull fragments. In (d), the final level set segmentation is shown. Using a
level set segmentation instead of the single-isovalue contour of (c) allows us to produce a markedly superior result.

In Figure 5 we show a segmentation based on MRI scans
of a knee joint (512× 512× 28), in which the clinical goal
is to perform quantitative tests on the synovial capsule. As
we see in Figure 5(a), isosurfaces generate multiple sur-
faces, only one of which (shown in (b)) is relevant. Further-
more, for isovalues lower than the one chosen, the contour
representing the synovial capsule starts merging with these
other contours into a single surface. While this single con-
tour is not ideal, it is the best available using isosurface tech-
niques alone, and we therefore choose it using the flexible
isosurface interface as the initializing surface for our local-
ized Chan-Vese segmentation. As we see from the magnified

view in (c), the level set methods have significantly improved
the extracted capsule, filling in many of the visible holes
and smoothing the surface significantly. Moreover, when we
compared the segmentation with each slice of the image, it
matched closely to the visual boundaries that demarcate the
capsule. This segmentation completed in 6 minutes on an
AMD Athlon 2.1 GHz machine.

Finally, Figure 6 shows a segmentation of a blood ves-
sel in a 112× 512× 416 dataset. As we see in (a), ordi-
nary isosurfaces generate multiple surfaces, which may not
be helpful in initializing level-set methods. In (b), however,
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(a) Initial Isosurface (b) Initializing Contour (c) Final Segmentation

Figure 5: Synovial Capsule Segmentation. In this data set, the clinical goal is to segment the synovial capsule for further
processing. (a) shows a coarse-resolution isosurface with a reference slice of the data set. (b) shows a single contour selected
from the isosurface using the flexible isosurface interface. (c) shows the final segmented boundary initialized from the contour
in (b).

(a) Initializing Isosurface (b) Initializing Contour (c) Segmented Level Set Surface

Figure 6: This figure illustrates that our segmentation method is capable of segmenting thin structures, such as blood vessels,
given a rough initial surface. Due to the relatively large dataset (112×512×416) the initial contour was extracted at quarter
scale resolution to achieve rapid feedback when exploring the data.

we have used the flexible isosurface interface with a coarse
28× 128× 104 version of the data to select a single con-
tour, then used that contour to initialize our localized Chan-
Vese segmentation, resulting in the surface shown in (c). As
we can see, the localized Chan-Vese segmentation can ex-
tract even complex branching structures effectively based on
a coarse approximate contour chosen from a visual interface.

7. Conclusions and Future Work

We have shown that topological analysis, in the form of the
contour tree, and boundary segmentation, in the form of level
set methods, can be combined to produce a segmentation
method that is less vulnerable than contours to unevenness

of isovalue, but allows intuitive exploration of contours to
initialize level set segmentation methods.

In the future, we would like to explore methods of re-
ducing the memory footprint of the contour tree computa-
tion, especially since much of the memory is currently used
to represent small noisy features of the data set. We would
also like to explore whether topological analysis can be per-
formed for specific level set segmentation methods, allowing
visual exploration of the space of possible segmentations.
Furthermore, we are interested in solving the level set PDEs
using semi-implicit schemes for faster convergence. Finally,
we acknowledge that we still need to explore the full pa-
rameter space of our combined segmentation model given in
Eq. (2), and validate the results quantitatively.
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