
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Design of Multi-dimensional Transfer Functions Using
Dimensional Reduction

Francisco de Moura Pinto and Carla M. D. S. Freitas

Instituto de Informática, UFRGS, Brazil

Abstract

Direct volume rendering techniques allow visualization of volume data without extracting intermediate geometry.
The mapping from voxel attributes to optical properties is performed by transfer functions which, consequently,
play a crucial role in building informative images from the data. One-dimensional transfer functions, which are
based only on a scalar value per voxel, often do not provide proper visualizations. On the other hand, multi-
dimensional transfer functions can perform more sophisticated data classification, based on vectorial voxel signa-
tures. The transfer function design is a non-trivial and unintuitive task, especially in the multi-dimensional case.
In this paper we propose a multi-dimensional transfer function design technique that uses self-organizing maps to
perform dimensional reduction. Our approach gives uniform treatment to volume data containing voxel signatures
of arbitrary dimension, and allows the use of any type of voxel attribute as part of the voxel signatures.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

In direct volume rendering (DVR), transfer functions (TFs)
are used for emphasizing regions of interest inside volumes.
The most common type of transfer function is the one-
dimensional TF, which assigns optical properties (usually
color and opacity) to voxels based only on their scalar value.
Notwithstanding, one-dimensional TFs have a very limited
classification power because they can not make distinction
between volume regions defined by scalar values within the
same range. On the other hand, multi-dimensional transfer
functions can perform better classification because they take
into account not only the scalar value of a voxel [KKH02],
but also other attributes such as gradient magnitude, direc-
tional second derivative, curvature [KWTM03] and statisti-
cal measures [TLM01]. This way, sets of attributes are inter-
preted as multi-dimensional voxel signatures.

Designing an appropriate transfer function, even a one-
dimensional TF, is a difficult task and much attention has
been given to this issue in the literature [PLB∗01]. As its do-
main increases, the interaction with and the visualization of
the transfer function become more difficult. Thus, specifying
multi-dimensional TFs is a very difficult problem.

In this paper we present a dimensional reduction method

based on self-organizing maps (SOMs) and radial basis func-
tions (RBFs) to simplify the design of multi-dimensional
(nD) transfer functions. In a first step, nD voxel signatures
calculated from the volume data are used to create a two-
dimensional map; then, map coordinates are defined for all
voxels. The transfer function design is performed in the two-
dimensional map space (see details in Section 3). We explore
the use of two types of SOMs: Kohonen maps [Koh97] and
spherical self-organizing maps [SK02]. Since we reduce the
dimension of nD signatures, volume data of any dimension
can be treated uniformly, and any type of voxel attribute can
be part of the signature, allowing selecting those that pro-
vide meaningful visualizations. We also propose a simple
and effective user interface based on dual domain interac-
tion [KKH02] as part of a visualization framework that uses
graphics hardware to provide interactive volume rendering.

This paper is organized as follows. Next section presents
the closest related works, including a brief review of some
concepts. Section 3 describes our approach in detail, while
main implementation aspects are discussed in Section 4.
Section 5 analyzes results we obtained with our method,
while Section 6 draws some conclusions and points direc-
tions for future work.

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

2. Related Work

2.1. Multi-dimensional Transfer Function Design

The design of multi-dimensional transfer functions brings
two main challenges: exploration of the TF domain and ac-
tual representation of the TF for rendering purpose. It is pos-
sible to explicitly define a multi-dimensional transfer func-
tion by interacting in its domain with proper tools. Kniss
et al. [KKH02] proposed a volume rendering environment
containing a set of direct manipulation widgets for volume
inspection, visualization of data distribution and design of
three-dimensional transfer functions, using dual domain in-
teraction.

However, the difficulty of exploring the transfer function
domain increases with its dimensionality; therefore some
approaches for transfer function design provide interfaces
based on interaction in a simplified space. Region growing
techniques were used by Huang and Ma [HM03] to seg-
ment volume data from seed points specified by the user;
voxel signatures of the segmented region were used to auto-
matically design a transfer function. Tzeng and Ma [TM04]
clusterized voxel signatures by similarity allowing the user
to specify the desired classification by successively splitting
and merging the clusters. The user sees the results by asso-
ciating visual properties to each material class. The same
authors [TLM05] implemented multi-dimensional classifi-
cation functions using neural networks and support vector
machines. These functions were learned from training sets
selected through a slice painting interface. The user paints
the voxels of interest with a specific color, and the undesired
ones with a different color. This way they implemented bi-
nary classification of voxels. Šereda et al. [vBG06] used hi-
erarchical clustering to group voxels according to their LH
signatures [vBSG06]. The user navigates through the hierar-
chy searching for the branches corresponding to regions of
interest. Takanashi et al. [TLMM02] used independent com-
ponent analysis (ICA) of multi-dimensional voxel signatures
in order to represent them in a space where the classifica-
tion is performed by moving axis aligned separation planes.
Rezk-Salama et al. [RSKK06] created models of transfer
functions that are carefully adjusted by specialists for several
data sets of the same type in order to reveal the desired struc-
tures. Then, they applied PCA to represent the parameter set
of each model by a single variable with an associated seman-
tic. The models can be reused for new data sets by setting
only that variable. Ma et al. [MWT∗98] used SOMs to ex-
tract a reduced number of representative multi-dimensional
voxel signatures from volume data. They built probabilistic
classification functions based on these signatures.

Regarding the actual representation of TFs for rendering,
Kniss et al. [KPI∗03] discussed the high memory require-
ments to store high-dimensional TF lookup tables and pro-
posed Gaussian multi-dimensional transfer functions, which
can be analytically evaluated. In another work [KUS∗05],
Kniss et al. performed volume visualization by separating

data classification from the transfer function. Classification
is done by using a probabilistic approach, while the TF as-
signs optical properties to classes considering uncertainty.

One may think of our method as a non-discrete classifica-
tion scheme (dimensional reduction) combined with transfer
function design in an easily manageable space. Since we use
self-organizing maps to reduce the dimension of the interac-
tion space, we briefly review this topic in the next subsection.

2.2. Self-Organizing Maps

Kohonen’s maps [Koh97] are regular structures containing
cells and neighborhood relations between them (in this work,
a 2D grid topology is employed). Each cell contains an nD
weight vector that represents a subset (class) of the mapped
data. The map is built through an iterative unsupervised
learning process in which the training cases are the multi-
dimensional values to be mapped. For each presented train-
ing case, the winner cell (BMU) — the cell with the most
similar weight vector — is identified (Equation 1). Then, the
current weight vectors of this cell (~Wt ) and of the cells in a
limited neighborhood are modified. Each new weight (~Wt+1)
vector is obtained through interpolation between the training
case and the respective current weight vector (Equation 2).
The coefficient of this interpolation for each cell depends
on a predefined constant (η) and the neighborhood function
(n f ), which is one for the winner cell and decreases for the
other cells according to their topological distance to the win-
ner cell.

BMU = Ci | ∀ j ∈ [1,n], (1)

d(~W (Ci),~T )≤ d(~W (Cj),~T )

~Wt+1(Ci) = (1−a)× ~Wt(Ci)+a×~T (2)

a = η×n f (td(BMU,Ci))

BMU is the winner cell (or best matching unit), Ci and Cj
are map cells, n is the number of cells, d is a distance metric
between vectors, ~W is a function that produces the weight
vector of a cell and ~T is a training case. ~Wt+1 is the new
weight vector of a cell, ~Wt is the current weight vector, η

is a constant between zero and one, n f is the neighborhood
function and td is the topological distance between two cells.
Usually, the distance metric is the weighted Euclidean dis-
tance, i. e., vector elements are multiplied by weights before
the evaluation of Euclidean distance. The weights define the
importance of each vector element.

The weight vectors are initialized with random values be-
tween zero and one. Then, the training cases are presented
to the map in random order until it converges, so each train-
ing case is often presented to the map more than once. The
balance between convergence time and map stability is de-
termined by the value of η. The weight vectors must have
the same dimension of the input data.

c© The Eurographics Association 2007.

132



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

Spherical maps have the same features, except that they
present a spherical topology that is built by subdividing the
triangular faces of an icosahedron in order to obtain more
nodes. In this work we use self-organizing maps to repre-
sent all voxels of a volume data set in a two-dimensional
space. We build the SOMs using, as training cases, multi-
dimensional voxel signatures obtained from the data set.

3. Design of Multi-dimensional Transfer Functions

Our multi-dimensional transfer function design technique
consists basically of three processes: building of a two-
dimensional map from the voxels’ multi-dimensional sig-
natures; dimensional reduction of the nD signatures, where
each signature is replaced by its coordinates in the map
space; and specification of a transfer function in the re-
duced space — the 2D map. Therefore, the actual multi-
dimensional transfer function is the composition of two
functions: the dimensional reduction function and the trans-
fer function in the map space.

Self-organizing maps have interesting properties for di-
mensional reduction. They can represent a set of multi-
dimensional values (for example, a set of voxel signatures)
in a compact way as well as group the values by similarity,
according to a distance metric. Consequently, similar signa-
tures have similar map coordinates. This feature facilitates
the map exploration and understanding. Additionally, since
the screen is a two-dimensional space, the exploration of 2D
maps for TF design can be very natural.

3.1. Building of maps

The map building process starts with a preprocessing phase,
when complex voxel signatures (such as derivatives and sta-
tistical measures) are extracted from the volume data and
normalized. This way, each voxel has an nD signature (a set
of scalar values represented as a vector) that can be used as
a training case for the map building algorithm. It is impor-
tant to mention that, depending on the source of volume data,
there are many background voxels, which do not carry useful
information (air around scanned objects in CT/MRI volume
data, for example), and would influence the map due to their
high occurrence. Upon user decision, they can be partially
removed from the input set of the training process by a very
simple region growing technique using as seeds the voxels
identified as background in the most exterior regions of the
volume.

The signatures of all non-background voxels are em-
ployed as training cases and presented in random order to the
self-organizing map, and two types of neighborhood func-
tions are applied. In a first stage we define the overall as-
pect of the map by training it using a Gaussian neighbor-
hood function (Equation 3), which depends on the topolog-
ical distance from the winner cell to the cell in focus. Next,
we continue the map training with a modified neighborhood

function (Equation 4) that also depends on the distance (d)
between the training case and the weight vector of the winner
cell (refer to Subsection 2.2). This modified neighborhood
function is designed in order to allow a voxel with a signa-
ture far from the weight vector of the corresponding winner
cell (according to the distance metric) to have more influ-
ence on the map. Without this strategy, large homogeneous
regions of the volume would tend to dominate the map, while
important regions with fewer voxels would be badly repre-
sented (signatures far from their respective winner cells).

n f 1(td) = exp

(
− td2

3

)
(3)

n f 2(td,d) = min(d,1)× exp

(
− td2

3

)
(4)

We use as topological distance the Euclidean distance be-
tween the integer 2D coordinates of two cells in the map
grid. For spherical maps, the topological distance is the num-
ber of edges in the shortest path connecting two cells. At the
end of the process, we have a Kohonen (or spherical) map
where each cell has an associated weight vector that repre-
sents a class of voxels, being the most similar weight vector
for all elements in that class.

3.2. Dimensional Reduction

Dimensional reduction is motivated by the need to provide
a simplified space for the design of multi-dimensional trans-
fer functions. When using Kohonen maps, two-dimensional
map space coordinates, in the interval from zero to one, can
be associated to cells according to their position in the 2D
grid. Dimensional reduction can be performed by replac-
ing each voxel signature by the coordinates of its respective
winner cell, which has the most similar vectorial signature.
However, this would cause unnecessary discretization. To
avoid this, we create two multiquadric radial basis functions
(multiquadric RBFs) [Buh03], for x and y map space coor-
dinates, based on the weight vectors of all cells. For spher-
ical maps we adopt x, y and z position coordinates ranging
from −1 to 1, and use three RBFs to obtain the coordinates
of voxel signatures. Thus, the RBFs support the final step
in dimensional reduction of voxel signatures by producing,
through interpolation, the proper x and y (and z) map coor-
dinates for each nD voxel signature.

Dimensional reduction normally implies loss and distor-
tion of information, but volumetric data usually have prop-
erties that reduce this problem. The voxels signatures are
usually not uniformly distributed in their domain (they form
clusters, which are well represented in the map), and ele-
ments of the voxel signatures are often not completely in-
dependent [TLMM02]. Moreover, voxel signatures that are
not present in the training set do not require space in the
map, since SOMs are able to perform non-linear dimensional

c© The Eurographics Association 2007.

133



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

reduction. This ability and the well-defined topology and
shape of SOMs have guided our choice for this particular
dimensional reduction scheme.

3.3. Transfer Function Specification

After the dimensional reduction step, the continuous map
space defined by the RBFs becomes the TF domain. The
user can interactively define the mapping from map coor-
dinates (which represent voxel signatures) to optical proper-
ties. We propose an interface for specification of color and
opacity transfer functions that provides dual domain interac-
tion [KKH02] as well as visualizations of the transfer func-
tion and of the voxel signatures.

3.3.1. Interaction in the TF Domain

The visualization of voxel signatures in our interface is
obtained by directly mapping up to three elements of the
weight vectors of the map cells to the three color channels.
The user decides which elements of the nD signatures must
be mapped to each basic color. One element can be associ-
ated to more than one color channel and a color channel may
have no elements mapped to it. This interface feature illus-
trates the distribution of voxel signatures on the map and
can be used to build color TFs as described below. Figure 1
(a and b) shows the distribution of voxel signatures of the
well-known engine data set. The same regions (clusters of
signatures) can be found in both maps.

The transfer function (color and opacity) is represented as
an RGBA image and displayed by blending it with a checker-
board pattern according to the equation Cout = αblending ×
CT F + (1 − αblending)×Cchecker, where colors are repre-
sented by C and opacity by α, and αblending = log(1 + s×
αT F )/ log(1 + s). s is a constant greater than one (we em-
pirically use 200) that allows TFs with small opacities to be
clearly visualized. Figure 1 displays TFs on a Kohonen map
(c) and on a spherical map (d) generated for visualizing the
engine data set. The rendering of the data set using the TF in
Figure 1c is shown in Figure 3a.

Transfer functions are composed by blending several 2D
Gaussian opacity TFs, each one having an associated 2D
color TF. We provide three types of color TFs that can be
associated to a Gaussian opacity function: a constant color
chosen from a colorpicker; map coordinates directly mapped
to color channels; and elements of weight vectors of map
cells mapped to color channels (for each map coordinate the
weight vectors of the near cells are interpolated and mapped
to colors). At each step a new Gaussian TF is specified and
then blended with the current TF according to Equations 5
and 6, for opacity and color, respectively. The result becomes
the current transfer function and the composition continues
until the desired TF is reached. At start, the current TF has
zero opacity and RGB colors for all the map space.

αnew = 1− (1−αcurrent)× (1−αGaussian) (5)

(a) (b)

(c) (d)

Figure 1: Maps of three-dimensional voxel signatures — a
Kohonen map (a) and a spherical map (b). Scalar value is
mapped to red, gradient magnitude to green and directional
second derivative to blue. Transfer functions displayed on a
Kohonen map (c) and on a spherical map (d).

Cnew = αcurrent×Ccurrent+αGaussian×CGaussian
αcurrent+αGaussian

(6)

In our interface, by clicking or dragging the mouse on the
map representation, the user moves a circle whose center is
the peak of a Gaussian function and whose radius is its stan-
dard deviation (σ). The Gaussian opacity TF — defined by
Equation 7, where d is the distance to the center of the circle
— is scaled by a constant k, between zero and one, which is
linearly mapped to the circle color, with blue being zero and
red being one. The parameters σ and k can be increased or
decreased using the keyboard. In order to fully explore the
spherical maps, they can be rotated by dragging the mouse
using the right button.

αGaussian = k× exp

(
− d2

2σ2

)
(7)

The transfer function used for rendering is the composi-
tion of the current color and opacity TF and the Gaussian TF
represented by the circle. This scheme provides interactive
previewing of the effect of the composition while the user
explores the map by moving the circle on it. When the de-
sired effect is reached, the user can set the composition as the
current TF using the space bar, and other Gaussian function
can be further experimented. Our interface keeps track of all
transfer functions defined during a session, and provides a
tree representation of this evolution using static thumbnails
of the volume rendered with the corresponding TF. This al-

c© The Eurographics Association 2007.

134



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

(a) (b)

Figure 2: Visualizations of the tooth data set: a semi-
transparent slice blended with the tooth image rendered us-
ing a transfer function specified in a 2D space built from a
Kohonen map (a); and a fully opaque slice of the tooth col-
ored according to voxel coordinates in a spherical map (b).
The noisy regions can be clearly seen. The red arrow is the
plane normal.

lows simple recovering of previous TFs by clicking on the
thumbnails.

3.3.2. Interaction in the Spatial Domain

At any time the user can rotate and translate the volume and
place a clipping plane to better explore inner structures. The
volume slice defined by the clipping plane is textured by
mapping to color channels the map coordinates of the voxels
sampled by the slice. This causes an interesting coloring ef-
fect that helps in inspecting the volume. The slice is blended
with the rendered volume using an opacity value controlled
by the user, as shown in Figure 2. When Kohonen maps are
employed, the x and y map space coordinates of the vox-
els are mapped to red and green. When using a spherical
map, the x, y and z map space coordinates are mapped to
RGB colors. The user can also click on the clipping plane
to set the position of the Gaussian function peak to the map
coordinates of the voxel pointed by the mouse cursor, em-
phasizing this region. By moving the mouse on the clipping
plane, the user can see the position of the pointed voxel de-
picted as a white cross in the map graphical representation.
This spatial domain interaction mapped to TF domain helps
in understanding the relationship between both domains.

4. Implementation Aspects

We implemented map training and dimensional reduction as
offline processes, but rendering and transfer function specifi-
cation demand interactive rates, which are achieved through
an intensive use of the GPU.

The map coordinates of the voxels are stored in a 3D RGB

texture, which is sampled using view-aligned slices as proxy
geometry. When using a Kohonen map, the transfer function
is stored in a 2D RGBA texture which is accessed by using
the R and G components (the x and y map coordinates) of
the sampled 3D RGB texture. The blue component is used to
identify background (zero) or non-background (one) voxels.
Background voxels must receive zero opacity during render-
ing since they are not well represented in the map. Neverthe-
less, due to hardware interpolation, the blue component can
assume values between zero and one. With this in mind, the
opacity is actually modulated by a smoothed step function
of the blue component. When using a spherical map, the TF
is stored in the GPU memory as an RGBA cube map and
is accessed using the RGB values of the 3D texture, taken
as vectors (the value of each color channel is first converted
to the interval [−1, 1]. Background voxels have null vectors
and the opacity is modulated by a smoothed step function
of the L2-norm of the vectors. The blending of TFs and the
evaluation of Gaussian opacity functions also run in GPU.

When sampling the three-dimensional texture for render-
ing, interpolation must be performed. The hardware can au-
tomatically interpolate the map coordinates stored in the 3D
texture and generally this produces good results. However,
in our approach, it is more correct to interpolate color and
opacity associated to voxels (see [HBH03] for better under-
standing). In our implementation, we use the GPU to create
another 3D texture, with the same size, containing the RGBA
values that result from the evaluation of the transfer func-
tion for each voxel, and this texture is sampled for rendering.
When the transfer function changes, this texture must be re-
computed, but this strategy is fast enough for our purposes.
We also calculate another 3D RGB texture to store the gra-
dient field of the opacity. This is done in GPU by applying
central differences on each voxel. The opposite vector of the
gradient of the opacity is used as surface normal for shading.
Since we are using complex signatures for each voxel, this
scheme for evaluating normals is more accurate than sam-
pling a 3D texture containing the precomputed normals of
the scalar field. Additionally, the normals of the opacity field
do not have ambiguity in their orientation (see [LM04]). In
our implementation, we set hardware interpolation of map
coordinates and precomputed normals as default options, but
the user can select color and opacity interpolation and nor-
mals computed on the fly as high-quality rendering options.

As for the RBF design, we solve the systems of equations
with the Lapack library [ABB∗99]. GLUT and the GLUI
libraries are used for the interface, while the rendering is
based on OpenGL and Cg, with the framebuffer objects ex-
tension of OpenGL used in hardware-accelerated comput-
ing.

5. Results and Discussion

We tested our method using well-known data sets (see Fig-
ure 3), comprising scalar and multivariate volume data.

c© The Eurographics Association 2007.

135



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

Similar results were obtained using Kohonen and spherical
maps. Most of the data sets were successfully visualized us-
ing voxels signatures based on scalar value, gradient magni-
tude and directional second derivative. For noisy scalar data,
however, we achieved better results using statistical signa-
tures, such as mean scalar value, standard deviation and cu-
bic root of the third-order statistical moment, taken from
a small subvolume centered at the voxel under focus. Fig-
ure 3 shows visualizations of test data sets obtained using
different sets of voxel attributes as signatures. In all these
renderings, we used the automatic generated color transfer
functions (see Subsection 3.3.1). For the hurricane data set
we used only the colormap which assigns voxel attributes
to color channels, since the attributes carry a clear physical
meaning: temperature was mapped to red, pressure to green
and wind speed to blue. However, the tooth data set (Fig-
ure 2) was visualized using manually chosen colormaps and
statistical signatures, achieving a very good separation of the
pulp. Since self-organizing maps group similar voxel signa-
tures, the automatic generated color transfer functions pro-
duce very good results because they assign different colors
to different regions of the map, which correspond to voxels
with considerably different attribute’s values. Regarding our
shading using normals computed on the fly, results can be
seen in Figure 3 (b, d and f). It is worth to mention that for
the multivariate data sets, such as the hurricane, we can not
use meaningful precomputed normals.

The importance of each voxel attribute is defined by
weights (see Subsection 2.2). We suggest associating smaller
weights with higher-order voxel attributes. The visualiza-
tions presented in this paper were produced using weights
of 1.3, 1.0 and 0.7 for the statistical variables formerly men-
tioned, respectively, and the same weights for scalar and first
and second derivative values, respectively. For the hurricane
data set the weights were 1.0 for wind speed and pressure,
and 0.5 for temperature.

Due to the loss and distortion of information usually
caused by dimensional reduction, our method can not pro-
vide accurate quantitative information about the volume data
during the transfer function specification. However, our ap-
proach is well suitable for revealing qualitative aspects such
as shape of structures and dissimilarity between regions. By
moving the Gaussian opacity function on the map space (see
Subsection 3.3.1), the user quickly obtains an overview of
the main structures in the data volume. After, by carefully
tuning the parameters of the Gaussian functions and com-
bining them, meaningful visualizations can be built. Auto-
matically generated color transfer functions are usually a
good choice, which turns the design process less difficult
(for example, the blood vessels in the Sheep Heart data set
can be easily emphasized using our colormaps). The history
tree, briefly described in Subsection 3.3, provides a power-
ful mechanism for exploring the transfer function domain,
allowing not only “undo” and “redo” operations, but naviga-
tion in the whole history of TF modifications.

Map Training steps/Time
type Neigh. function 1 Neigh. function 2

2D map 3,000,000/57 4,500,000/87
Sph. map 3,000,000/151 5,250,000/264

Table 1: Number of training steps and training time (sec-
onds) for both types of maps in the two stages of training,
which use different neighborhood functions.

Regarding the building of the self-organizing maps for di-
mensional reduction, it involves setting of parameters and
selection of voxel attributes to be mapped. In the following
we provide guidelines for choosing appropriate parameters
values and discuss their impact on processing time.

Self-organizing maps easily converge, becoming stable
along the training, for small values of η (a constant be-
tween zero and one), and large number of training steps, but
one generally has to assume a compromise between stability
and training time. Fortunately, in our method, map stability
is not a critical point. The lower bound of the number of
training steps needed to guarantee stability depends on the
map size, the neighborhood function, the value of η used in
training (see Subsection 2.2), and the characteristics of the
mapped data. Experimentally we found that good results can
be achieved using Kohonen maps with more than 20 × 20
cells or spherical maps with more than seven subdivisions
by icosahedron edge. For building the map, first we set η

to 0.3 and perform training using the neighborhood function
described in Equation 3 (see Subsection 3.1). Then we refine
the map by training it using 0.5 as η value and Equation 4 as
neighborhood function. The values for η were also chosen
based on experiments.

The time needed to train the maps is quadratically re-
lated to the map size (number of cells) and is proportional
to the size of the weight vectors. At each training step, the
search for the winner cell has linear complexity, being de-
pendent on the number of cells; the number of training steps
needed is also directly related to the map size. The size of
the weight vectors have linear influence on the time spent
to search for the winner cell and update weight vectors (see
Subsection 2.2). The time spent in the dimensional reduction
step (see Subsection 3.2) is proportional to the number of
non-background voxels (see Subsection 3.1), the size of the
map, and the size of weight vectors. The RBF evaluation is
performed for each non-background voxel and its time con-
sumption is proportional to the number of cells and the size
of weight vectors.

The results presented herein were obtained using Koho-
nen maps with 32 × 32 cells and spherical maps with ten
subdivisions by icosahedron edge. Table 1 shows the num-
ber of performed training steps and the training time for
both map types. Spherical maps usually require little more
training; and the training steps are slower, mainly because

c© The Eurographics Association 2007.

136



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

(a) (b) (c)

(d) (e) (f)

Figure 3: Visualizations obtained using Kohonen maps — (a) engine data set and (b) carp data set, both using scalar and
derivative values (gradient magnitude and directional second derivative) as voxel signature; (c) foot data set, using statistical
signatures (mean scalar value, standard deviation, cubic root of the third-order statistical moment); and (e) carp data set,
using the normalized z coordinate of the voxels and same three statistical signatures, thus composing a four-dimensional voxel
signature (z axis is horizontally represented) — and Spherical maps — (d) hurricane data set at the 24th time step, using wind
speed, pressure and temperature as voxel signature; and (f) sheep heart data set, using the same statistical signatures as (c).

Data set Size Non-B. voxels Time
Engine 2562×128 5297265 140
Tooth 1282×256 4193888 110
Foot 2563 4890753 133
Carp 2562×512 32806605 845

Hurricane 2562×128 8388608 220
Sheep heart 2563 16776721 375

Table 2: Size, number of non-background voxels and time
(seconds) spent in the dimensional reduction step, using Ko-
honen maps and three voxel attributes, for the data sets pre-
sented in this paper.

the search for neighbors of the winner cell, for weight up-
date, is more complex. Table 2 shows size, number of non-
background voxels and dimensional reduction time, using
Kohonen maps, of the visualized data sets. Using spherical
maps the times were about thirteen percent greater. The time
needed to extract high-order signatures from scalar volumes
is short and is not considered because this is done only once
for each data set. Our results were generated using an AMD
Athlon 64 3700+, 2.21GHz CPU and 2GB of RAM.

6. Conclusions and Future Work

In this paper we presented a new approach for the design of
multi-dimensional transfer function that uses self-organizing
maps to perform dimensional reduction of the voxel at-
tributes. The strongest points of our technique are sim-
plicity and flexibility. Our approach allows building multi-
dimensional transfer functions through the exploration of
a simplified (reduced) space where traditional interaction
techniques can be employed. A simple and effective inter-
face for transfer function design is provided, and the user
can interact with the system in both spatial and TF domains.

Self-organizing maps have the ability of representing
clusters of voxel signatures in a compact way, and this helps
to understand the data distribution. All relevant voxel sig-
natures are represented in the map and every region of the
map has voxels mapped to it. Moreover, to explore two-
dimensional maps is easier and faster than to navigate in a
class hierarchy. The proposed dimensional reduction scheme
requires a preprocessing step, but it has clear advantages in
relation to volume segmentation techniques because it per-
forms a non-discrete classification which can represent un-
certainty. In addition, with simple interaction, the user can
change the transfer function defined in the map space, in-

c© The Eurographics Association 2007.

137



F. Pinto & C. Freitas / Multi-dimensional Transfer Function Design

teractively obtaining new visualizations. Our automatically
generated color TFs are able to emphasize details that are
hard to be visualized using other approaches. When com-
pared to other visualization techniques based on transfer
functions, ours has the advantage of having a powerful built-
in classification scheme. The existence of classes and class
properties is, however, kept abstract. As a drawback, our ap-
proach suffers from loss of information, caused by the di-
mensional reduction process.

As future work, we intend to assess the usability of
our technique and to experiment our method on visualiz-
ing time-varying multivariate volume data. Coherence of
time-varying transfer functions could be maintained by in-
cremental training of the SOMs for each time step; and
the evaluation time of the RBFs can be reduced using ap-
proximating RBFs. We also want to transport transfer func-
tions designed in map space to the actual multi-dimensional
space using the Gaussian multi-dimensional TFs proposed
by Kniss [KPI∗03]. Another promising future work is the
semi-automatic search for important structures in the map.
This search could be aided by an interface that would pro-
vide additional information about the spatial distribution of
voxels. At last, it is important to emphasize that we have
built a map of voxel signatures for each visualized data set.
The success of performing dimensional reduction of a data
set using a map built from another but similar data set needs
to be assessed, and this is also intended as future work.

Acknowledgments

This work was supported by CNPq (Brazilian Council for
Research and Development). We thank Fausto R. Blanco,
for helping with the RBFs, and the UFRGS’ CG group.

References

[ABB∗99] ANDERSON E., BAI Z., BISCHOF C., BLACKFORD

S., DEMMEL J., DONGARRA J., DU CROZ J., GREENBAUM A.,
HAMMARLING S., MCKENNEY A., SORENSEN D.: LAPACK
Users’ Guide, third ed. 1999.

[Buh03] BUHMANN M. D.: Radial Basis Functions: Theory and
Implementations. 2003.

[HBH03] HADWIGER M., BERGER C., HAUSER H.: High-
quality two-level volume rendering of segmented data sets on
consumer graphics hardware. In Proceedings of IEEE Visual-
ization (2003), pp. 40–47.

[HM03] HUANG R., MA K.-L.: Rgvis: Region growing based
techniques for volume visualization. In Proceedings of the
11th Pacific Conference on Computer Graphics and Applications
(2003), pp. 355–363.

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Multidi-
mensional transfer functions for interactive volume rendering.
IEEE Transactions on Visualization and Computer Graphics 8,
3 (2002), 270–285.

[Koh97] KOHONEN T.: Self-organizing maps. 1997.

[KPI∗03] KNISS J., PREMOZE S., IKITS M., LEFOHN A.,
HANSEN C., PRAUN E.: Gaussian transfer functions for multi-
field volume visualization. In Proceedings IEEE Visualization
(2003), pp. 497–504.

[KUS∗05] KNISS J. M., UITERT R. V., STEPHENS A., LI G.-
S., TASDIZEN T., HANSEN C.: Statistically quantitative vol-
ume visualization. In Proceedings of IEEE Visualization (2005),
pp. 37–44.

[KWTM03] KINDLMANN G., WHITAKER R., TASDIZEN T.,
MÖLLER T.: Curvature-based transfer functions for direct vol-
ume rendering: Methods and applications. In Proceedings of
IEEE Visualization (October 2003), pp. 513–520.

[LM04] LUM E. B., MA K.-L.: Lighting transfer functions using
gradient aligned sampling. In Proceedings of IEEE Visualization
(2004), pp. 289–296.

[MWT∗98] MA F., WANG W., TSANG W. W., TANG Z., XIA

S., TONG X.: Probabilistic segmentation of volume data for
visualization using som-pnn classifier. In Proceedings of IEEE
symposium on Volume visualization (1998), pp. 71–78.

[PLB∗01] PFISTER H., LORENSEN B., BAJAJ C., KINDLMANN

G., SCHROEDER W., AVILA L. S., MARTIN K., MACHIRAJU

R., LEE J.: The transfer function bake-off. IEEE Computer
Graphics and Applications 21, 3 (2001), 16–22.

[RSKK06] REZK-SALAMA C., KELLER M., KOHLMANN P.:
High-level user interfaces for transfer function design with se-
mantics. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 1021–1028.

[SK02] SANGOLE A., KNOPF G. K.: Representing high-
dimensional data sets as closed surfaces. Information Visualiza-
tion 1, 2 (2002), 111–119.

[TLM01] TENGINAKAI S., LEE J., MACHIRAJU R.: Salient iso-
surface detection with model-independent statistical signatures.
In Proceedings of IEEE Visualization (2001), pp. 231–238.

[TLM05] TZENG F.-Y., LUM E. B., MA K.-L.: An intelligent
system approach to higher-dimensional classification of volume
data. IEEE Transactions on Visualization and Computer Graph-
ics 11, 3 (2005), 273–284.

[TLMM02] TAKANASHI I., LUM E. B., MA K.-L., MURAKI S.:
Ispace: Interactive volume data classification techniques using
independent component analysis. In Proceedings of the 10th Pa-
cific Conference on Computer Graphics and Applications (2002),
pp. 366–374.

[TM04] TZENG F.-Y., MA K.-L.: A cluster-space visual in-
terface for arbitrary dimensional classification of volume data.
In Proceedings of the symposium on Data visualisation (2004),
pp. 17–24.

[vBG06] ŠEREDA P., BARTROLI A. V., GERRITSEN F. A.: Au-
tomating transfer function design for volume rendering using
hierarchical clustering of material boundaries. In Proceed-
ings of IEEE/EuroGraphics Symposium on Visualization (2006),
pp. 243–250.

[vBSG06] ŠEREDA P., BARTROLI A. V., SERLIE I. W. O., GER-
RITSEN F. A.: Visualization of boundaries in volumetric data
sets using lh histograms. IEEE Transactions on Visualization and
Computer Graphics 12, 2 (2006), 208–218.

c© The Eurographics Association 2007.

138


