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Abstract

The huge amount of different automatic clustering methods emphasizes one thing: there is no optimal clustering

method for all possible cases. In certain application domains, like genomics and natural language processing, it

is not even clear if any of the already known clustering methods suffice. In such cases, an automatic clustering

method is often followed by manual refinement. The refined version may then be used as either an illustration, a

reference, or even an input for a rule based or other machine learning algorithm as a new clustering method.

In this paper, we describe a novel interaction technique to manual cluster refinement using the metaphor of soap

bubbles, represented by special implicit surfaces (blobs). For instance, entities can simply be moved inside and

outside of these blobs. A modified force-directed layout process automatically arranges entities equidistant on

the screen. The modifications include a reduction to the expected amount of computation per iteration down to

O(|V | log |V |+ |E|) in order to achieve a high response time for use in an interactive system. We also spend a

considerable amount of effort making the display of blobs fast enough for an interactive system.

Categories and Subject Descriptors (according to ACM CCS): G.2.2 [Discrete Mathematics]: Graph algorithms
H.3.3 [Information Storage and Retrieval]: Clustering

1. Introduction

Clustering deals with the identification and grouping of sim-
ilar entities according to a given metric. Let S be a set of
entities, then a clustering C is a set of clusters C ⊆ 2S (2S

denotes the power set of S). A partition or classification is a
clustering C which satisfies

[

c∈C

c = S

and

∀a,b ∈C : a 6= b → a∩b = ∅.

A strictly hierarchical clustering is a clustering C where
[

c∈C

c = S

and

∀a,b ∈C : a∩b 6= ∅→ (a ⊆ b∨a ⊇ b).

Other types of clusterings may be simply called “common”.

There are two goals that have to be achieved for the man-
ual improvement of clusterings. The first is to effectively
communicate the current structure of the clustering to the

user and the other is to provide him with means to change
that structure.

One method of achieving the first goal is to lay out the
entities, represented by graphical elements, in a scatterplot,
positioning similar entities very close to each other. A clus-
ter is indicated by a high density of points at one location.
This can be used to quickly communicate attributes like size
and extend of a cluster but often suffers from a poor usage of
screen space. Large parts of the screen usually stay blank. As
an improvement, it is possible to use additional information
like color or shape of graphical elements to indicate which
entity belongs to which cluster. Using this method, the posi-
tion of the graphical element has less importance, or – what
is of more importance – there is a larger degree of freedom
for the placement of elements. This larger degree of free-
dom may be used to distribute the entities more uniformly
on the drawing area, but in general, only a small number of
colors and shapes can be properly distinguished by an ob-
server [War04]. So most existing systems combine scatter-
plots with colors and shape and neglect to use the freedom
of positioning elements evenly on the screen.

There is another possibility for increasing the degree of
freedom for placement. Again graphical elements are drawn
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Figure 1: DAG visualization of a clustering.

so that similar items are in similar places. These elements
are then surrounded by a graphical shape per cluster that
directly indicates that all elements inside the region of this
shape belong to the cluster. As long as these graphical shapes
do not overlap each other except for elements that belong to
each cluster simultaneously, this method communicates the
clustering properly. The elements may be distributed more
uniformly on the screen as long as neighborhood relation-
ships between the graphical elements are maintained. We use
blobs as graphical shapes that indicate clusters.

For the distribution of elements on the screen we use a
force-directed layout algorithm. Generally, such a layout al-
gorithm determines the embedding of a graph G = (V,E) in
Rn, where n is usually 2 or 3, using a physical simulation.
Vertices of V are considered to be particles, sometimes hav-
ing a mass or charge, and edges of E are replaced by springs
or springlike connections between the vertex particles. The
simulation then computes the physical forces between the
particles and moves the particles according to these forces
towards a configuration of lowest energy, or at least one con-
figuration of equilibrium, i.e., where the cumulated force on
each particle vanishes. To avoid such local minima simulated
annealing is used.

Finally there is the interaction. Blobs appear to most lay
observers like soap bubbles. In reality soap bubbles are too
fragile, but we allow entities to be pushed inside or pulled
outside of bubbles. For generality, we also allow entities to
be part of multiple clusters, although, again in reality, it is
impossible for two soap bubbles to intersect each other.

The structure of a clustering can be described by an
acyclic directed graph. Each entity and each cluster is a ver-
tex in that graph, and there is an edge from vertex A to B,
if and only if there are corresponding clusters CA and CB

with CA ⊃ CB and there is no vertex C with corresponding
cluster CC and CA ⊃ CC ⊃ CB. The layout of a DAG can
also be used to visualize the clustering (Figure 1), but we
will use this constructed DAG only as a data structure later
on. Intersecting blobs remind the observer of Venn diagrams.
Many people are more familiar with them than with directed
acyclic graphs.

Some optimizations used in this paper require common
techniques of computational geometry, namely Voronoï dia-

grams, Delaunay triangulations and trapezoidal maps. The
introduction to these topics and algorithms is beyond the
scope of this paper, they are well known and can be found in
any textbook about computational geometry (e.g. de Berg et

al. [dBvKOS00]). The knowledge of these methods is not
required for the understanding of the interaction techniques
presented in this paper.

2. Related Work

There are many possibilities shapes that can be drawn
around the entities of clusters. Some systems already im-
plement some of them, e.g., Frishman and Tal [FT04] use
rectangles, Kumar and Garland [KG06] use nicely shaded
circles, van Ham and van Wijk [vHvW04] use one sphere per
entity and closely positioned elements automatically clump
together. Sprenger et al. constructed ellipses around entities
of the same cluster using a PCA technique to determine the
orientation and length of the ellipses’ axes. None of these
techniques could guarantee that the shapes would not in-
clude elements from different clusters. Gross et al. [GSF97]
and Sprenger et al. [SBG00] use blobs in 3D but only con-
sider partition and hierarchical clusterings. We also chose
blobs, as they create compact graphical shapes even for awk-
wardly positioned entities. However, we only use the 2D rep-
resentation of them, because it makes the interaction meth-
ods simpler for the user.

The force-directed method was first proposed by
Eades [Ead84], who used electrically charged particles
that repel each other and springs that force vertices con-
nected through an edge to attract each other. Kamada and
Kawai [KK89] modeled the system using springs exclu-
sively. These early approaches were refined by Fruchter-
man and Reingold [FR91]. Most formulations of these force-
directed layout algorithms require the graph to be connected
and suffer from long running times. Our system implements
a simple spring embedder that has been modified to avoid
these two problems. We chose a single-level force-directed
layout mainly, because the user of the system can watch it
work and it has a high “dynamic stability”, i.e., if the graph
is altered after its layout has been determined the layout of
the new graph will look almost the same.

The simple force-directed layout algorithms converge
very slowly, if they converge at all, to readable layouts for
very large graphs. Newer formulations solve this problem
by calculation of the layout on multiple resolutions or levels
(e.g. [HJ04,HK01,ACL04,CCLP03]), which perform better
both in visual appearance as well as running time accord-
ing to Hachul and Jünger [HJ06]. While these algorithms
are useful for an initial layout of the entities on the screen,
during the interaction phase, we actually prefer the simpler
force-directed algorithms for their higher “dynamic stabil-
ity” and because it is easier to trap them in a local minimum.
This leaves more freedom for the user to arrange entities af-
ter their fashion and taste.
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3. Cluster Visualization using Blobs

We visualize clusters by blobs. Let S be a set of vertices. A
(simple) blob of a cluster C ⊆ S,C 6= ∅ is an implicit surface
where each~x on this surface satisfies:

∑
e∈C

ω(e)

‖~x−~xe‖
k

= γ

~xe is the position of the element e, γ is an arbitrary positive
threshold and k an arbitrary positive number. For our imple-
mentation we chose k = 2 and for simplicity γ = 1. ω(e) is
the weight of an element. It is used to give entities of high
importance a larger area around them. If no weights are de-
sired one can safely set ω(e) = 1 for all elements e ∈ E. The
points that satisfy the equation not necessarily form a con-
nected structure. So we either have to guarantee that the blob
is always connected, or indicate blobs belonging together by
an additional attribute, e.g., color. We chose to indicate such
enclaves by color, and draw not only the surface but also the
interior of every blob. A point ~x belongs to the interior if it
satisfies:

∑
e∈C

ω(e)

‖~x−~xe‖
k
≥ γ

However, we modified this formula to the following one:

∑
e∈E

gC(e)ω(e)

‖~x−~xe‖
k
≥ γ (1)

where

gC(e) =

{

1 e ∈C

−0.25 e /∈C

This avoids blobs accidentally overlapping entities that are
not part of the cluster. Even badly positioned entities would
rather create a hole in the blob than to be overlapped by it.

If the number of entities is large, it may be preferable to
show only a subset of them. For that we use the standard
zoom and pan technique. We also allow the user to collapse
and expand clusters. We represent collapsed clusters by a
blob of one base point. Subclusters are no longer visible,
i.e., there will be no blob for them. There is a problem when
elements are part of more than one collapsed cluster. In that
case we use one representative for the intersection of both
clusters and one for the rest of the cluster.

Usually the entities are represented on screen by their
name. We do not automatically determine the optimal name
of a collapsed cluster based on its contents as this is highly
application dependent. If an application does not provide a
name for a collapsed cluster, only a number is shown giving
the number of entities in thus cluster.

Instead of using an isosurface algorithm to extract an ap-
proximation of the blob surface, we simply test each pixel
of the screen if it is inside a certain cluster. As we allow ele-
ments to be part of any cluster, i.e., the property that the clus-
tering is a partition or a hierarchy is not required, a pixel may

belong to multiple clusters. When presented on the screen
the pixel will get the average of all colors that have been
assigned to each cluster.

A naïve implementation can be very slow, because each
pixel requires the computation of the distance of it to each
entity position and the summation of the contributions to
each cluster. This results in a complexity of O(A ·N ·M), with
N being the number of entities, A being the area or number
of pixels, and M being the number of clusters. A meaningful
approximation of the area A in our case is A ∈ O(N) as our
layout algorithm will give each element the same amount
of screen space, and rarely clusterings will not satisfy M ∈
O(N logN). So the overall complexity of this method can be
approximated by O(N3 logN).

If the clustering is a strict partitioning, then M ≤N and the
method is bounded by O(N3). If the clustering is strictly hi-
erarchical, then the contribution of each entity to each pixel
has only to be computed for the leaves of the hierarchy tree
and can be propagated in O(M + N) time upwards along
the tree edges. So the overall complexity can be reduced to
O(A(N +N +M)) = O(N2 logN). This idea can be extended
to general clusterings. The clustering can be described by
a directed acyclic graph with M + N vertices, and a propa-
gation tree inside this DAG may easily be constructed and
maintained if the clustering changes.

The method can be sped up using the following heuris-
tic. Most of the time, neighboring pixels belong to the same
cluster. First we determine the set of clusters for each pixel
of a rectilinear grid. Then we test the four adjacent points of
each mesh cell for the equality of the set of clusters. If they
are all equal, we assume that each pixel of the cell belongs
to the same clusters. If one of them differs, we split the cell
in four equally sized cells, compute the five new points, and
proceed recursively, terminating if our cells’ area equals ex-
actly one pixel. This is illustrated in Figure 2. This makes
the method much faster, although still staying in the afore-
mentioned order of time complexity. Additionally it can in-
troduce artifacts, e.g., if the cells of the mesh are too large,
and a blob is fully contained inside it. As a rule of thumb,
our implementation uses a grid size that is the biggest power
of two that is still smaller than the diameter of a blob with a
single entity.

But we can still do better. When testing a certain pixel, we
might neglect entities that are far away from it, because their
contribution to Equation (1) is minimal. So it is sufficient to
just consider entities that are very near. One possibility is to
compute the Voronoï partitioning of the screen space using
the entities positions as input sites. This partitioning is then
used to find the nearest site to each pixel considered in the
quad-tree test and the neighbors of that site. As a site may
have up to N − 1 neighbors, this does not reduce the upper
bound of the time complexity but can be expected to perform
much better.

An alternative is to compute the Delaunay triangulation
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Figure 2: quad-tree test to approximate boundary

of the entities’ positions and find for each considered pixel
the surrounding triangle and consider the contribution of the
three entities adjacent to the triangle and optionally also the
adjacent entities to the three adjacent triangles. Using this
method a maximum of 6 entities contribute to Equation (1).
The search for the correct Voronoï cell or Delaunay triangle
can be done in O(logN) time using trapezoidal maps so the
overall complexity reduces to O(N logN + A · (logN + h)).
The first part is given by the Voronoï partitioning or De-
launay triangulation, the second part consists of determining
the Voronoï cell or Delaunay triangle and the propagation of
the contribution of the neighboring sites through the directed
acyclic graph for each considered pixel. h is the height of the
propagation tree in the DAG describing the clustering struc-
ture. This height is seldomly outside O(logN) so the overall
complexity can be approximated by O(N logN). It has to be
noted, however, that the later optimizations may result in dis-
continuities along cell or triangle boundaries. As long as the
entities are evenly distributed the artifacts are neglectible.
Fortunately the layout process automatically achieves that
property.

4. Layout

The layout process generates a simple force-directed layout.
Most force-directed layout algorithms require the graph to
be connected, however, some of the datasets we are provided
with contain only entities without any edges between them.
Furthermore, we want to show the clustering structure and
not the full relationships between the entities. We use a sim-
plified van der Waals force for the general forces between
particles:

~Fr(e) = ∑
n∈X\{e}

Ω

(

‖~xe −~xn‖

2 · γ

)

~xe −~xn

2 · γ

where

Ω(d) =

{

−2 d < 1
2

1
d − 1

d2
1
2 ≤ d

It repels particles if their distance is less than 2 · γ and

attracts them otherwise. So this force is sufficient to nicely
distribute the not necessarily connected entities uniformly on
the screen.

If we would implement this method each entity would cre-
ate a force on another one, so our algorithm would be O(N2)
per iteration. However, because the force vanishes quickly
with increasing distance it is sufficient to look only at the
closest entities. Again, the set of neighbors of each entity
can be computed using either Voronoï partitioning or Delau-
nay triangulation. The formula becomes:

~Fr(e) = ∑
n∈N(e)

Ω

(

‖~xe −~xn‖

2 · γ

)

~xe −~xn

2 · γ
.

Because the number of neighbors to consider lies in O(N)
the Voronoï partitioning or Delaunay triangulation respec-
tively become the driving factor for the complexity. Because
of that, the general forces may be computed in O(N logN)
time.

However, if we were initially provided with edges, we
use them in our layout. We use simple logarithmic springs
to determine the current force, setting the optimal spring
length to 2 · γ. The complexity of one layout iteration is
now O(N logN + E), E being the number of edges. Much
more interesting, however, is how to enforce entities of the
same cluster to be grouped together. The straightforward
way would be to add edges or springs that connect entities
of the same cluster. But because each entity might be con-
nected with each other entity of the same cluster and each
entity may belong to multiple clusters, this introduces far
too many edges. Instead, we implemented a probabilistic al-
gorithm. First we choose a cluster randomly, but respect the
size of the cluster, i.e., large clusters have a linearly greater
probability for being chosen. Inside this cluster we choose
two distinct entities and compute the force of a logarith-
mic spring between them. We repeat the process O(N logN)
times. The ideal spring length is set to γ. This results in enti-
ties to be nearer, if they are in the same cluster.

We allow the user to arrange the entities on the screen in
any way he sees appropriate. He can do this by moving either
a single entity, in which case he has to click on that entity and
drag it around with the mouse, or even a whole cluster. To do
that, he clicks somewhere inside the blob, the program will
determine the correct cluster or clusters just like it would
determine the set of blob that contain the pixel. If the mouse
is then dragged, all entities of all selected clusters follow
accordingly.

Because the layout process is active during this interaction
for unselected elements, these will automatically make way.
If the entity or the cluster is released the layout process will
again arrange the items do that entities are uniformly dis-
tributed, but, in general, it will preserve the horizontal and
vertical ordering of the entities.
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(1) (2)

(3) (4)

Figure 3: Addition of an entity to a blob.

(1)

(2)

(3)

Figure 4: Removal of an entity from a blob.

5. Cluster Modification using Blobs

A user can change a given clustering using one of the fol-
lowing methods:

• The user moves one entity very close to another entity
that is in one or more clusters. If the distance of both enti-
ties drops below a certain threshold δ the moved entity is
assigned to all the clusters the other entity belongs to. It
appears as if the entity was pushed into the soap bubble.
This process is illustrated in Figure 3. We chose δ = γ

2 .
• A single entity is moved away from entities of the same

cluster, thereby stretching the cluster. Once the distance to
all the other entities grows beyond a certain threshold ∆, it
is removed from the cluster. It appears as if the entity was
pulled out of the soap bubble. This process is illustrated
in Figure 4. In our implementation we use ∆ = 2 · γ.

• The user draws a freehand line around some entities.
These entities will be assigned to a new cluster. This ap-
pears as if the user has made a new soap bubble around
some entities (Figure 5).

(1) (2)

(3) (4)

(5)

Figure 5: Grouping of multiple entities.

• The user double-clicks on a cluster, thereby deleting it.
The bubble appears to be pierced and burst.

Because the layout process is active during this interac-
tion, the user has to move the entities quickly enough, so
that the other entities do not flee to fast (in case of pushing
an entity into a cluster) or follow to fast (in case of pulling
an entity from a cluster). In our implementation we update
the layout exactly 50 times a second and enforce an upper
bound on the velocity of an item empirically. An alternative
would be to use a modifier key (e.g. “Shift”) to slow down
the layout update. We also use the “Ctrl” modifier key, if we
drag entities around and do not want them to leave the blob
regardless of how far it is dragged from its original cluster.
This is really helpful in situations where we want one entity
of an cluster be part of another one as well, but leave the
others as they are.

6. Results

We implemented our methods in a system called “Bub-
bleClusters” in Java. The optimization techniques used make
layout recomputations and redisplay of blobs fast enough to
be interactive on a Pentium IV 2.54GHz. The first users of
our system found it very intuitive and “fun to work with”.
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(a) (b)

(c)

Figure 6: (1) BubbleClusers’ grouping technique was used to create this initial clustering to some randomly created gene

names. (2) An entity has been pushed inside a cluster. (3) An entity has been pulled outside a cluster.

Figure 6 shows the system working on an example that was
inspired by a common task of the domain experts that we de-
veloped the application for. The application depicted is from
the field of genomics, where a given set of genes have been
clustered for same functionality, but genes often are part of
multiple clusters, as they behave differently in the presence
of other genes. Biologists would like to create a partition
of the genes to gene groups using the knowledge they al-
ready have from specific experiments. Figure 7 shows a real
world dataset to illustrates how complex the clusterings be-
fore refinement can get. Another application is the cluster-
ing of words of natural language into topics or grammatical
groups like nouns or verbs. Some word (e.g. space) may be-
long to multiple topics and may even have different mean-
ings in each context.

7. Conclusions and Future Work

Since automatic clustering approaches are helpful but not
perfect for most applications, there is an urgent need for

manual refinement of clusterings. We represented an intu-
itive, interactive system based on blobs that can display ar-
bitrary clusterings and allows for fast and intuitive layout
and clustering manipulation. First user tests demonstrated a
“fun factor” that gives some evidence for the intuitive under-
standing of the system.

While the system is of value to any clustering problem
where manual refinement of clustering or layout is neces-
sary, we have two applications areas as major targets that led
us to the development of the system. First, we are working
closely with biologists looking at clusterings generated from
gene expression data. The initial automatic clustering based
on the data contradicts knowledge from other experiments
to some extend, so they asked us to provide them with a tool
like the developed system. Currently, intensive user testing
with them is the next step in this direction. Second, we co-
operate also with the natural language department group in
our department. They work intensively on topic maps, where
automatic clustering and manual refinement based on human
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Figure 7: The complexity “BubbleClusters” can handle. The shown dataset is a randomly selected part of a real world dataset

of a correlation analysis of genes. It consists of 78 entities and 24 clusters. On average each entity is part of 4 clusters.

understanding are an important subtopic. This different ap-
plication allows us to do intensive user tests with a second
user group in the near future.

We also consider improvements to the actual drawing
method of the blobs. Mixing colors often leads to many
overlapping clusters to be drawn gray. Instead, we could re-
spect information from the clustering structure respectively
the DAG, and only mix colors of unrelated clusters and use
the color of a subcluster in case we detect that the overlap
is only between a cluster and its subcluster. We could also
use simple textures instead of plain colors and mix them. A
method to draw the border of the blobs would also help im-
prove the perception of the blobs.
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