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Abstract

Visualization of medical 3D data is a complex problem, since the raw data is often unsuitable for standard tech-
niques like Direct Volume Rendering. Some kind of pre-treatment is necessary, usually segmentation of the struc-
tures of interest, which in turn is a difficult task. Most segmentation techniques yield a model without indicating
any uncertainty. Visualization then can be misleading, especially if the original data is of poor contrast.
We address this dilemma proposing a geometric approach based on distance on image manifolds and an alter-
native approach based on nonlinear diffusion. An effective algorithm solving Hamilton-Jacobi equations allows
for computing a distance function for 2D and 3D manifolds at interactive rates. An efficient implementation of a
semi-implicit operator splitting scheme accomplishes interactivity for the diffusion-based strategy. We establish a
model which incorporates local information about its reliability and can be visualized with standard techniques.
When interpreting the result of the segmentation in a diagnostic setting, this information is of utmost importance.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [IMAGE PROCESSING AND COMPUTER
VISION]: Segmentation I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional Graphics and Realism - Volume
Rendering I.3.8 [COMPUTER GRAPHICS]: Applications

Keywords: uncertainty, visualization, segmentation,
distance function, manifold, nonlinear diffusion

1. Introduction

With the advent of sophisticated 3D imaging devices for
medical diagnosis and intervention planning, proper visu-
alization of these data sets has become a major challenge.
What is proper and not in this context is strongly depen-
dent on the medical question at hand, but also on the way
medical experts are used and trained to see and interpret
the data. On the one hand 3D data processing and render-
ing techniques can be a valuable supplement to standard 2D
imaging, as e.g. in breast cancer diagnosis [MSKB∗04]. On
the other hand, the possibility to render anatomical struc-
tures in 3D has opened the door to completely new medi-
cal areas like image-guided surgery [FSS∗02]. Renderings of
3D data are frequently based on segmentation results. Seg-
mentation deals with isolating objects from their background
within digital data and usually yields “decided” models. Of-
ten such decided models do not represent the object ade-

quately for several reasons: the structure under examination
might not be sharply defined either due to poor data quality
linked directly to acquisition problems or shortcomings of
the device used for data acquisition, or due to the fact that
the structure’s perimeter itself is indistinct. Tumors in medi-
cal data sets are typical examples: In radiotherapy planning,
defining the tumor’s border and knowing the reliability of
the border delineation is crucial for treatment planning and
quality assurance [vHRRL00,MvHM02]. In mammography
and breast ultrasound, lesion differentiation depends on cor-
rect assessment not only of the lesion’s shape, but also of its
boundary acutance [RFDA97, STR95, HRSB05].
Recently there is an increasing interest in the visualization
of errors and uncertainty [PWL97, CR00, DKLP02, JS03,
KLDP04, GR04, LP05]. While the scientific visualization
community is well aware of the necessity to visualize errors,
this still seems to be neglected in medical data visualization
too often. We therefore want to demonstrate one possible
way to achieve integration of segmentation and error visu-
alization of anatomical structures from real world medical
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data.
We present a two-step segmentation strategy. The first step is
to compute an auxiliary n-dimensional function φ with low
values inside the structures and high values outside. Two dif-
ferent possibilities to compute φ are proposed which can be
used according to the data characteristics of the structures to
be visualized. The second step then performs the actual seg-
mentation on φ (see Fig.1).
The first approach settles in a geometric framework and will
henceforth be called the geometric approach. It considers n-
dimensional data, each point in n-space contributing m fea-
tures (e.g., intensities, channels of an arbitrary color space,
textural features, or the like). The basic concept of this ap-
proach is to treat image data as manifolds embedded in a
higher dimensional space [Soc98, KMS00]. Distances are
then calculated on this manifold with respect to (a) user
specified input point(s) within the structure(s) as a measure
of similarity. Distances will then be low inside the struc-
ture(s) and rise rapidly at locations where the data features
change, i.e. the structure’s border. This strategy is aimed at
segmentation of a single (or few) rather compact structure(s)
like tumors or cysts. It is very flexible since any number of
features characterizing the structure(s) can be embedded to
form a manifold for the calculation of the distance measure,
which can be of advantage if signal strength alone is insuf-
ficient to characterize the structure of interest (for details on
this method see [HPRP05]).
In order to overcome the drawback of having to choose a dis-
tance reference point and to further speed up the method, we
developed a second approach which uses input data filtered
by nonlinear diffusion [Wei98] as a basis for segmentation
and is henceforth called the diffusion approach. This strat-
egy is aimed at segmentation of a single structure or a mul-
titude of structures which show(s) rather homogeneous sig-
nal σ . By remapping the intensities within the original data
such that σ 7→ 0, an auxiliary function φ can be obtained,
which is similar to the distance function of the geometric
approach. A diffusion filter then serves the purpose of edge-
preserving smoothing to deal with small inhomogeneities of
σ within the structure(s). In ultrasound (US) image data for
example, blood vessels of different kind (liver vessels, brain
ventricles, heart chambers,...), follicles and various cysts and
tumors can all appear hypoechoic (low signal embedded in
surrounding tissue of higher signal), in which case not even
remapping of signals has to be performed but the diffusion
approach can be applied directly.
In both scenarios, the segmentation result shall provide, for
every data point, information about the location of the ob-
ject(s) as well as an indication of the reliability of the seg-
mentation. Finally, we aim for a solution which allows to
segment 3D data sets of moderate size at interactive rates.
In the present context, we consider visualization the ulti-
mate goal of the segmentation task. I.e., our work aims at
providing an integrated framework for “soft” segmentation
and visualization of the uncertainty. Despite the capability
of both approaches to operate on n-dimensional data, we

content ourselves to standard 3D visualization techniques
such as direct volume rendering. To illustrate the concept as
well as the results one can achieve, we will mainly use 3D
ultrasound data sets, this modality being particularly prone
to mediocre image quality through various imaging artifacts
[SSG95] while requiring very fast segmentation techniques
due to interactive data acquisition.

This paper is organized as follows. In section 2 we briefly
summarize relevant work related to the subject. In section
3 we discuss the calculation of distance on manifolds (3.1)
and the semi-implicit operator splitting scheme for nonlinear
diffusion (3.2), while section 3.3 outlines the actual soft seg-
mentation technique. Finally we discuss results in section 4
and conclude our work with section 5.

2. Related work

Nonlinear Diffusion. Nonlinear or anisotropic diffusion fil-
tering [PM90, CLMC92, Gil02] can be used for effective re-
moval of different kinds of noise. The main disadvantage of
such filters is usually their slow calculation speed, which is
especially crucial in 3D data processing. For our diffusion
approach we therefore use the fast operator splitting scheme
proposed in [Wei98]. Data denoising problems can also be
formulated within a geometric framework.

The Beltrami Framework. In [Soc98] and [KMS00],
Sochen, Kimmel, and Malladi derive a formulation unify-
ing some classical flow-based image denoising algorithms
using concepts of high energy physics. They coin the term
Beltrami framework. The underlying idea is to treat image
processing as an evolution of an image manifold embedded
in a higher dimensional Riemannian space towards a mini-
mal surface. Their framework is capable of edge-preserving
denoising of vector-valued images of arbitrary dimension.
Among the results emanating from this work are, e.g., ori-
entation diffusion filtering [KS02] and Beltrami flow on im-
plicit surfaces [SDP03].

Geometric Segmentation. In addition to geometrically mo-
tivated filtering techniques, there is a number of segmen-
tation methods inspired by geometry. These include level
set propagation [OF02, Set99], geodesic active contours
[CKS97, Kim04], and others [Kim04, Sap01]. Our first ap-
proach settles in a geometric segmentation framework and
employs level sets of distance functions on manifolds.

Distance on manifolds. Distance functions on manifolds are
a central concept in our first approach. For the computation
of such functions, two basic methods have been proposed:
fast marching [MS01, SK04] and fast sweeping [TCOZ03].
Applications concern for example morphology on surfaces
[PSH∗04]. Geodesics already appear in geodesic active con-
tours, but possess a number of remarkable further applica-
tions in image processing and computer vision [Kim04]. In-
stead of geodesics, we use appropriately modified level sets
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Figure 1: Flowchart of the complete process using the geometric
(I) or the diffusion approach (II).

of distance functions on image manifolds for soft segmenta-
tion.

Fuzzy segmentation and statistical approaches. A popu-
lar approach for linking segmentation and uncertainty visu-
alization dates back to the work of Udupa [US96] who intro-
duced the concept of fuzzy connectedness for image segmen-
tation. Fuzzy segmentation approaches usually suffer from
drawbacks such as the result strongly depending on (i) the
choice of the functions defining the pixel affinity, (ii) the
selection of an appropriate threshold for the fuzzy affinity
map. Implementations of fuzzy segmentation algorithms are
often based on dynamic programming, resulting in moder-
ate speed. It exists a lot of work dealing with probabilis-
tic segmentation (e.g. [PT01, KvU05]), being quite differ-
ent from our approach which does not require any statistical
prior model of data features and noise.

3. Materials and methods

In order to segment anatomical structures from 3D medi-
cal data we are first aiming at generating an auxiliary 3D
function φ which contains low values inside the object(s) to
be segmented and visualized and high values outside. The
actual soft segmentation procedure (see section 3.3) is then
performed on φ rather than on the original data. We present
two different approaches to generate φ , which are aimed at
solving different segmentation scenarios. Figure 1 shows a
flowchart of the overall process.

3.1. Geometric Approach

Metric and distance functions. In the geometric ap-
proach, we regard n-dimensional image data compris-
ing m-dimensional feature vectors as an embedding X :

Σ → M of an n-dimensional manifold Σ with coordinates
σ1,σ2, · · · ,σn in an (n + m)-dimensional hybrid space
M of mixed spatial coordinates and feature coordinates
X1,X2, · · · ,Xn+m.

Here, we assume that the embedding space is Rieman-
nian, i.e., in M there is locally an inner product defined by
the metric H which is a symmetric positive definite (spd)
matrix. Then the induced metric G = (gµν ) of the Rieman-
nian space (Σ,G) is explicitly given by the spd matrix

gµν =

(

∂X
∂σ µ

)T
·H ·

(

∂X
∂σν

)

. (1)

In our examples on 3D medical intensity data I(x,y,z),
we chose an embedding (X1,X2,X3,X4) = (x,y,z, I(x,y,z)).
The metric of the embedding space R

4 has been chosen to
be the canonical Euclidean one, i.e., H = (hi j) = δi j . Thus,
we obtain with equation (1) the induced metric

G =





1+ I2
x IxIy IxIz

IxIy 1+ I2
y IyIz

IxIz IyIz 1+ I2
z



 . (2)

Let φ be a function on Σ, i.e., a function in Σ’s parameter
space. The function describes a distance function on Σ iff its
gradient with respect to the given metric is normalized. It
is well known that this is precisely the case if the ordinary
gradient ∇φ satisfies the Hamilton-Jacobi equation

∇φT ·G−1 ·∇φ = 1. (3)

In our applications, we will be given a reference zone Γ
in parameter space D ⊂ R

n, then compute its image on the
manifold Σ, and the distance function to that. The represen-
tation of that distance function in D will simply be called the
distance function φ of Γ.

Fast sweeping. Tsai et al. [TCOZ03] propose a fast scheme
for the numerical solution of a general class of convex
Hamilton-Jacobi equations. The authors derive their scheme
exemplarily for a distance function φ to a set Γ on a 2-
dimensional manifold, i.e., solving Hamilton-Jacobi equa-
tions of the form (3) with a spd 2 × 2 matrix G−1. The
scheme finds the distance transform in O(N) time, where N
is the number of pixels. The generalization to n-dimensional
manifolds can be found in [Zha05]. We implemented Tsai et
al.’s scheme for 2- and 3-dimensional manifolds, i.e., to the
solution of Hamilton-Jacobi equations of the form (3) with
a spd 3 × 3 matrix G−1. The interested reader is referred
to [HPRP05] for more details.

3.2. Diffusion Approach

The main disadvantage of the geometric approach is that at
least one input point (Γ) inside each object has to be chosen.
This can be impractical if a multitude of objects have to be
segmented from one data set. Also, elongated structures are
hard to characterize by a distance function which is based on
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a single reference point since the Euclidean part of the dis-
tance tends to produce isodistance surfaces which resemble
spheres (in 3D). As mentioned before, data I ∈ [0, Imax] con-
taining anatomical structures which are already well charac-
terized by their rather homogeneous signal σ can be trans-
formed to resemble the distance function φ of the geomet-
ric approach by linearly mapping 0 7→ σ ,σ 7→ 0, Imax 7→
Imax −σ . The main problem then consists in getting rid of
small signal inhomogeneities like noise. We propose the use
of fast nonlinear diffusion for noise removal based on the
semi-implicit operator splitting scheme described by Weick-
ert et al. [Wei98], which shall be briefly outlined here. The
so-called CLMC filter calculates filtered data φ(x, t) of I(x)
as a solution of the diffusion equation

∂tφ = div[g(|∇φσ |
2)∇φ ] (4)

with the original data as initial state φ(x,0) = I(x) and ∇φσ
the gradient of a smoothed version of φ . We use φ to de-
note the filtered data here, since it will play the same role in
the ensuing soft segmentation process as the distance func-
tion φ described in the previous section. Weickert proposes a
discretization of (4) which leads to a (linear-implicit) semi-
implicit iteration scheme

[11− τA(φ k)]φ k+1 = φ k (5)

ai j(φ k) :=















gk
i +gk

j

2h2 [ j ∈ N (i)] ,

−∑n∈N(i)
gk

i +gk
n

2h2 ( j = i) ,

0 (else) ,

(6)

with A(φ k) = (ai j(φ k)), 11 ∈ R
N the unit matrix, g the dif-

fusivity, h the data grid size, N(i) the set of two neighbours
of pixel i and τ the diffusion time. This requires to solve
a linear system, where the system matrix is tridiagonal and
diagonally dominant. It can be efficiently solved using the
Thomas algorithm. The semi-implicit iteration scheme for
the m-dimensional CLMC equation leads to a linear system
which for m ≥ 2 can no longer be solved using the efficient
Thomas algorithm as in the 1-D case. The proposed solution
is a modification called additive operator splitting (AOS)

φ k+1 =
1
m

m

∑
l=1

[11−mτAl(φ k)]−1φ k. (7)

It treats all coordinate axes in exactly the same manner (the
matrix Al corresponds to derivatives along the lth coordi-
nate axis), in contrast to alternative multiplicative operator
splitting (MOS) schemes.

We have implemented both the AOS and MOS scheme
for processing of 2D and 3D data in an efficient way us-
ing functions from Intel’s IPP library as well as the Intel
C++ compiler with its capability to generate code optimized
for Intel Pentium IV. As diffusivity function g we are using
g(∇I) = e−||∇I|| (see e.g. [PM90]), where the gradient mag-

nitude ||∇I|| is calculated on a Gaussian smoothed version
of the input data.

3.3. Soft Segmentation

We will assume that the function φ has been generated using
one of the two methods described above and henceforth re-
fer to it as ‘distance’. Isodistance hypersurfaces (level sets)
of φ are crucial in our algorithm, but not taken directly as
the segmentation result. Instead, we base our algorithm on
the following ideas: (i) Data points belonging to the ob-
ject will have similar low distance values. (ii) The distance
will increase rapidly in areas where the data (object) fea-
tures change most, i.e., at the object border. (iii) There is one
isodistance hypersurface S(d∗) which can serve as best ap-
proximation of the actual object border. (iv) Based on d∗,
distance values can be mapped to probabilities using an ap-
propriate scheme. Therefore, the rough structure of the algo-
rithm for soft segmentation is as follows:

1. Determine the level set S(d∗) of φ , which best approxi-
mates the object’s boundary; its distance value is d∗.

2. Based on d∗, map distance values to probabilities p1,2.
3. If visualization of the object’s border with its uncertainty

is desired, compute a density function ρ to be used for
display.

Finding the best approximating isodistance hypersur-
face. In [HPRP05] we have described an algorithm for de-
tection of the distance value d∗ marking the isodistance hy-
persurface S(d∗) that approximates the actual object border
best for the geometric approach. If diffusion filtered data is
used as ‘distance’, a simpler strategy for detection of S(d∗)
based on the cumulative histogram of φ has proven fruitful.

Mapping distances to probabilities. Based on the previ-
ous calculation of d∗, one can set up a probability distri-
bution on the distance scale in order to assess the reliabil-
ity of the segmentation. For the sake of simplicity we have
chosen a Gaussian probability distribution centered at d∗,
G(φ) = e−(φ−d∗)2/2σ2

. It has to be emphasized, that this dis-
tribution is not aimed at mimicking the statistics that led to
the fuzzy appearance of the object boundary, which are a
priori unknown! The probability is defined on the distance
space and not within the spatial domain. The distance func-
tion itself takes care of proper spreading of boundary proba-
bilities across the spatial domain via its varying gradient, i.e.,
the spatial density of isodistance hypersurfaces, see Fig.2.

Two different probability values arise naturally: (i) the
probability p1 for each data point x to be part of the ob-
ject (for an example see Fig.3(b)) and (ii) the probability p2
for each data point to be part of the object border. For the
first one, we assume that all data points x with φ(x) ≤ d∗ are
for sure within the object, whereas probability decreases if
φ(x) > d∗, i.e.,

p1(x) =

{

1 if φ(x) ≤ d∗,

G(φ(x)) if φ(x) > d∗.
(8)
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Figure 2: Cross section of a 3D distance volume (geometric ap-
proach) with some equidistant isodistance surfaces. The bold white
line marks the isodistance surface S(d∗).

Density function for visualization. If modeling of the ob-
ject’s border reflecting its uncertainty is the primary goal, we
propose a two step procedure. First, probability values p2 are
assigned to distances over the complete range covered by the
Gaussian,

p2(x) = G(φ(x)). (9)

This produces maximum probability at S(d∗) with probabil-
ities fading to both sides. In the final step, the probability
values are weighted point-wise with the gradient magnitude
of the distance function ‖∇φ‖ to produce a final density ρ
which can be used for display,

ρ(x) = p2(x) · ‖∇φ(x)‖. (10)

Weighting with ‖∇φ‖ compensates for the fact that S(d∗) is
just a guess of the location of the object’s border at locations
of low distance gradient. An example can be seen in Fig.3(c)
and 4(d). The variance of the Gaussian can be used to modu-
late the spatial extent of the zone of high border probability
within the data set. Thus, if S(d∗) does not correspond well
to the real object’s border at some locations, the border prob-
ability distribution can still reach into the area of the actual
object border and be correctly emphasized by the distance
gradient.
Figure 3 demonstrates steps of the soft segmentation pro-
cess on 2D cross sections through a 3D ultrasound scan
of a breast lesion (input point and distance function based
approach; rendering see figure 5(d)) while figure 4 demon-
strates the process using a diffusion filtered ultrasound scan
of liver vessels (rendering see figure 5(e)).

4. Results

One of the main concerns in medical 3D segmentation and
visualization is calculation speed, above all when it comes
to treating data provided by imaging devices which are op-
erated interactively like ultrasound. The central parts of the
segmentation method presented here are the distance func-
tion calculation via fast sweeping, respectively the nonlinear
diffusion filtering using the semi-implicit operator splitting
scheme, for both of which we devised highly efficient imple-
mentations.

In contrast to fast marching methods, the sweeping char-
acteristic qualifies for a straightforward parallelized imple-
mentation using, e.g., Intel’s Streaming SIMD Extensions
(SSE) and thus operating on four single-precision floats si-
multaneously. Our implementation allows for computing φ
for a 150×252×120 8 bit data set within 1,95 seconds per
iteration (eight sweeps) on a 3.0GHz Pentium IV with 2GB
of memory. One to two iterations have proven sufficient for
this application.
For our implementation of the AOS diffusion we have used
functions from Intel’s IPP library as well as the Intel C++
compiler with its capability to generate code optimized for
Intel Pentium IV. This allows for computing the diffusion
process for a 150×252×120 8 bit data set within 700 mil-
liseconds per iteration on the same hardware. One iteration is
sufficient since the degree of smoothing can be steered with
the diffusion time τ alone when using the diffusion scheme
described, the diffusion process being stable, which is one of
this algorithm’s main advantages.
For further speedup, downsampling of the input data can be
an eligible option. Downsampling by a factor 2 in every di-
mension produces speedup by a factor 23 for 3D data if algo-
rithms of O(N) are used. Employing this kind of downsam-
pling, volume data of above mentioned size takes approxi-
mately 590ms to segment if the fast sweeping based distance
function is used (2 iterations), and 146ms for the diffusion
based approach. For all the diffusion based segmentation re-
sults presented here, 1 iteration with τ = 250 has been used.
In figure 5 (bottom row) 3D renderings of soft segmentations
of three different ultrasound data sets are shown: a breast le-
sion (see also figure 3), liver vessels (see also figure 4) and a
fetal heart, all rendered via DVR with gradient shading using
SGI Volumizer [Sil05]. For comparison, results of visual-
ization attempts without prior segmentation are presented as
well (top row). E.g., rendering of the distance function gra-
dient magnitude alone still shows too much confusing clutter
since the distance function’s gradient per se has no “knowl-
edge” of what is noise and what belongs to the object border.
Windowing (remapping of signal intensities) alone, which
is the easiest solution for structures of homogeneous signal,
suffers from similar problems. It is clearly visible how the
soft segmentation based visualization not only improves the
overall appearance of the renderings but also discriminates
between well defined object regions (shiny, surface like ap-
pearance) and ill defined object borders (fuzzy, more trans-
parent appearance), like some rims of the breast lesion, the
lower rim of the big liver vessel or part of the surface of
the upper left heart chamber. Figure 6 shows more render-
ings of 3D soft segmentation results. Fig 6(a) shows a brain
stem segmented from an MR data set, 6(b) shows a render-
ing of a cerebral ventricle system segmented from US data
and 6(d) shows another vessel tree from an US liver scan.
The fuzzy look of one of the ventricle’s ends and some of
the liver vessels indicate data regions of higher uncertainty.
The shell-like result of the soft segmentation process makes
it possible to cut through objects and actually render views
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(a) Original data, reference point
indicated by +

(b) Probability p1 of voxels belonging to
the structure under examination

(c) Density volume ρ , intended for direct vol-
ume rendering of the object’s border

Figure 3: Cross sections of a 150×252×120 8 bit medical ultrasound data set of a breast lesion (Fig.3(a)) and its soft segmentation. The lesion
is sharply defined mostly in the lower central region. Its border is indistinct in the right and very left region. Soft segmentation appropriately
handles the fuzziness of the data, see Fig.3(b) and 3(c).

(a) Liver vessels (cross section of
diffusion with S(d∗) overlaid)

(b) Unweighted soft segmenta-
tion result (probability p2)

(c) Gradient of diffusion filtered
data

(d) Density volume ρ (weighting
of 4(b) with 4(c)). DVR see 5(e).

Figure 4: Demonstration of soft segmentation process using diffusion filtered US data set.

of their interior structure, which has been attempted in fig-
ure 6(c) with the fetal heart from figure 5(f). The chamber
walls as well as a connection between two chambers appear
clearly.
The visualization of uncertainty in our approach is mainly
based on transparency, in contrast to methods which use “ar-
tificial” elements like adding glyphs, color encoding or mod-
ification of the geometry of the object [PWL97]. In medical
visualization, these elements can rather impair the quality
of the rendering, while transparency indicates uncertainty or
missing information quite naturally.

5. Conclusions

We have presented a technique for “soft” segmentation of
data sets of arbitrary dimension n. Two approaches have
been presented which are based on generation of distance
functions, i.e. n-dimensional auxiliary functions φ which
show low values inside the object(s) to be segmented and
high values outside. The first one uses embedding of the
data into a high-dimensional Riemannian space and treats it
as a manifold on which distances with respect to a reference
point or zone within the object can be calculated. The second
one uses nonlinear diffusion filtering. These auxiliary func-
tions are used for segmentation and are mapped to object
border probabilities and densities which in turn can serve as

input for visualization. Our method thus automatically yields
uncertainty information without the need to know the under-
lying nature of the statistics, object properties, or data ac-
quisition imperfections. Due to fast implementations of both
a sweeping algorithm for calculation of a distance function
and a nonlinear diffusion filter, our method allows for real-
time segmentation of 2D and interactivity for 3D data.
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