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Abstract
Transfer function design plays a crucial role in direct volume rendering. Furthermore, it has a major influence
on the efficiency of the visualization process. We have developed a framework that facilitates the semi-automatic
design of transfer functions. Similarly to other approaches we generate clusters in the transfer function domain.
We created a real-time interaction with a hierarchy of clusters. This interaction effectively substitutes cumbersome
settings of clustering thresholds. Our framework is also able to easily combine different clustering criteria.
We have developed two similarity measures for clustering of material boundaries. One is based on the similarity
of the boundaries in the transfer function domain and the other on their spatial relation. We use the LH space
as the transfer function domain. This space facilitates the clustering of material boundaries. We demonstrate our
approach on several examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Gener-
ation I.3.6 [Computer Graphics]: Methodology and Techniques I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.5.3 [Pattern Recognition]: Clustering

1. Introduction

Direct volume rendering is a powerful and flexible visualiza-
tion technique. It has the capability to reveal properties and
shapes of volumetric objects, as well as their spatial relation.
In order to efficiently use this capability, one needs to define
a suitable transfer function (TF). In the medical field the in-
creasing size of the datasets asks for 3D visualization as an
alternative to the traditional 2D slice-by-slice viewing. How-
ever, the cumbersome and nonintuitive design of the TF is an
important factor that inhibits its practical use. Especially the
need to understand the TF domain and the unpredictability
of the resulting rendering are strongly discouraging.

Medical workstations usually tackle the problem of the
intuitive TF design by having several preset transfer func-
tions. The user, similarly to the approach of the design gal-
leries [MAB∗97], picks the best preview. This approach is,
however, not very flexible. If there is no appropriate preset,
the TF has to be again tuned manually. There have been sev-
eral approaches that automate and facilitate the TF design
using clustering techniques [HM03,TM04,RBS05]. Interac-
tion with the clusters seems to be more intuitive than a direct
interaction with the TF.

The overall performance of the clustering techniques is

highly dependent on the separability and compactness of the
clusters in the feature space. For the visualization of mater-
ial boundaries, the space of combination of the scalar value
and the gradient magnitude is commonly used. However, in
that space the boundaries appear as arches that frequently
overlap causing classification ambiguities. Furthermore, it is
rather difficult to take into account the shape of such clus-
ters. For clustering, it is a great advantage if the clusters
have a more simple shape. It has been shown in previous re-
search [SVSG06] that in the, so-called, LH space the bound-
aries between materials have substantially less overlap com-
pared to the space of arches. In addition, boundaries appear
as blobs instead of arches. This space shows more suitable
characteristics for developing a clustering technique.

The usual drawback of clustering techniques is their sensi-
tivity to clustering criteria or parameters. Tuning of such cri-
teria is often a difficult task. Moreover, in order to combine
several criteria, one needs to choose proper weighting which
is even more difficult. In this paper, we show how hierar-
chical clustering methods can facilitate the design of trans-
fer functions. Our first contribution is a framework in which
the user interacts with a hierarchy of clusters. No prede-
fined clustering threshold is needed. The user interacts with
the hierarchy. At any time the user can pick another simi-
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larity measure (clusterig criteria) and the hierarchy is auto-
matically adjusted. Our framework enables an easy combi-
nation of similarity measures. We define the clusters in the
LH space that serves as the TF domain. The second contri-
bution of this paper are two intuitive similarity measures for
the clusters. One evaluates the similarity of the boundaries in
the LH space and the second evaluates their spatial relation
in the volume. We include both similarity measures into the
framework.

2. Related Work

There has been an extensive research aiming to facilitate
the TF design. For an automatic selection of the important
iso-contours Bajaj et al. [BPS97] and Pekar et al. [PWH01]
used the contour spectra and Fujishiro et al. [FAT99] inves-
tigated the behavior of the contours. He et al. [HHKP96]
developed a method that automatically evaluates the quality
of rendered images and adapts the TF. The design galleries
by Marks et al. [MAB∗97] and König and Gröller [KG01]
let the user evaluate the image quality and pick the best
rendering. Tzeng et al. [TLM05] used a position dependent
high-dimensional classification to overcome problems of tra-
ditional transfer functions. Lundstrom et al. [LLY05] intro-
duced transfer functions based on automatic detection of tis-
sues. They added an extra TF dimension based on extensive
neighborhood analysis in order to separate between overlap-
ping tissues. Kniss et al. [KUS∗05] used classification prob-
ability in order to automatically visualize the uncertainty of
tissue membership.

Visualizing boundaries of objects is crucial for the percep-
tion of their shape. Kindlmann and Durkin [KD98] showed
that by combining the scalar value and the gradient mag-
nitude one may distinguish between boundaries. In this 2D
space the boundaries appear as arches. Kniss et al. [KKH01,
KKH02] used this domain for their 2D transfer functions.
Although the arches enable some distinction between bound-
aries, they often overlap causing selection ambiguities. Lum
et al. [LM04] used two additional samples on the boundary
in order to improve on that. Šereda et al. [SVSG06] went
further and traced the boundary profiles in every voxel to
determine the start and end of the arches. These two inten-
sity values are the coordinates of the voxel in the so-called
LH space. It was shown that in the LH space the boundaries
appear as blobs and are easier to separate then the arches.

Several clustering techniques have been developed in or-
der to shield the user from the TF design in the space of
scalar value and gradient magnitude. Huang et al. [HM03]
generated automatic selections with the help of region grow-
ing in the volume. Tzeng et al. [TM04] used a clustering
technique based on the K-means algorithm. They designed
an interface in which the user can interact with the clusters.
Roettger et al. [RBS05] used a clustering method that groups
two bins of the histogram if the corresponding tuples are
similarly distributed in the volume. These methods require

parameters that determine the number or size of the clusters
or a threshold for the clustering method. In this paper, we de-
scribe a hierarchical clustering method that replaces such pa-
rameters with an interactive selection of the clustering level
using an intuitive interaction with the hierarchy. Our clus-
ters are defined in the LH space where boundaries have far
less overlaps than in the space of scalar value and gradient
magnitude.

3. Hierarchical Clustering

Having an initial set of n elements e1, ...,en, the agglomera-
tive hierarchical clustering [DHS01] describes the order in
which the elements join into clusters. In the initialization
step each element ei is in its own cluster Ci. The hierarchy
has n levels k = 1, ...,n. In level k = 1 there are n clusters,
i.e., no elements are joined. In every following level the two
most similar clusters join. The maximal similarity s at level
k between clusters is found as

sk = max{s(Ci,C j)}; i, j = 1, ...,n− k +1; i �= j

Finally, in level k = n only one cluster remains. The result-
ing hierarchy can be intuitively represented by a binary tree
(supposing no two pairs of clusters have the same similarity)
called dendrogram. Figure 1 shows an example of a dendro-
gram.

Figure 1: Example of hierarchical clustering of five initial
clusters visualized using a dendrogram.

In the following text we describe our approach to find the
initial set of elements e1, ...,en. Further we describe two dif-
ferent similarity measures developed in order to evaluate the
similarity between each pair of clusters.

4. Similarity Measures

We have developed two different similarity measures that in-
tuitively evaluate the correspondence between clusters. The
first measure is designed to group similar boundaries, i.e.
boundaries that lie close to each other in the LH space
[SVSG06]. The second measure evaluates the spatial con-
nectivity of clusters. In the following text, we first describe
how the initial elements ei are obtained. Then we describe
the similarity measures used to generate the hierarchy.
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4.1. Initial Clustering

It has been shown in previous research [SVSG06] that the
boundaries between tissues form blob-like clusters in the LH
space. We use this property to define meaningful initial clus-
tering elements ei. In the LH histogram, every boundary can
be localized as a local peak. Therefore, we label every local
maximum of the 2D histogram, see Figure 2 for an 1D il-
lustration. All bins of the histogram that belong to the same
peak then form one of the initial clustering elements, ei.

Figure 2: A 1D illustration of the initial labelling of the 2D
peaks in the LH histogram. Every peak becomes one initial
cluster.

Having too many initial clusters is not beneficial for the
performance of the clustering technique. The complexity of

generating the hierarchy is O( n3

2 ) where n in the number of
initial clustering elements ei. Depending on the dataset and
the resolution of the histogram (in this paper we used 2562

bins), in some cases there might be several thousands of local
peaks. Large number of them would typically represent only
very small initial clusters consisting of few voxels. From our
observation, reducing the number of initial clusters to several
hundreds, allows an interactive generation of the hierarchy.

In order to get rid of very small clusters that contain only
few voxels, we perform the following two steps. Firstly, be-
fore the local peak detection, the histogram is blurred using
a 2D Gaussian kernel of a small σ equal to the bin size. This
both removes small noisy local maxima and establishes a
direct neighborhood relation between peaks that were sep-
arated. Secondly, after the initial clusters have been gener-
ated, those consisting of only few voxels (in our method less
than 10, note that this is not a critical threshold, other val-
ues could also have been used) are joined with their direct
neighbors. We can reason that such small clusters have little
effect on the visualization and therefore assigning them to
their neighbors will not introduce any visible artifacts.

4.2. Similarity in the LH Space

This similarity measure is designed to enable grouping of
similar boundaries. In order to achieve that, we use the in-
formation given by the positions sizes and shapes of initial
elements ei in the LH space.

In order to evaluate the similarity of two elements, we
want to take into account the following criteria:

• Distance. Close elements have similar L and H values (see
Figure 4a), i.e., they correspond to boundaries between
similar tissues.

• Separation. A deep valley between two peaks yields a
good separation. If there is little evidence of boundary
profiles that project in between the two peaks, it is likely
that the peaks correspond to different boundaries.

• Direction of elongation. Due to changes of the tissue
intensities that form the boundaries, the corresponding
peaks may be horizontally and/or vertically elongated.
Therefore, we preferably want to join the elements in the
direction indicated by their elongation.

Figure 3: Two probability distributions. The dashed line is
the decision boundary made by a Bayesian classifier. The
red area represents the probability of a wrong decision. We
use an estimate of the overlap of two 2D distributions as our
similarity measure.

All these criteria can be elegantly combined by apply-
ing known techniques from the Bayesian decision theory
[DHS01]. If we look at the clustering elements as bivari-
ate (2D) probability density functions (PDF), we can define
the similarity between two elements as the overlap of their
PDFs. An exact computation of this overlap is not trivial.
However, assuming the elements can be approximated by bi-
variate normal density functions, we can estimate the upper
bound of the overlap by using the so-called Bhattacharyya
bound. It is the upper estimate of the probability of a wrong
decision made by a Bayesian classifier given the PDFs and
the priors (Figure 3).

We define the size of an element, as the number of voxels
that belong to the element, i.e.:

|ei| = ∑
bxy∈ei

|bxy|

where bxy is the bin at discrete histogram position (x,y) and
|bxy| the number of contributions in the bin. Then, the priors
P(ei) and P(e j) can be obtained as

P(ei) =
|ei|

|ei|+ |e j| ; P(e j) =
|e j|

|ei|+ |e j|
The similarity of two elements ei and e j is computed using
the Bhattacharyya bound

s(ei,e j) = 2
√

P(ei)P(e j)e−k
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where 2 scales the values into the range < 0,1 > and

k =
1
8
(µ j −µi)

t
[

Σi +Σ j

2

]−1

(µ j −µi)+
1
2

ln

∣∣∣Σi+Σ j

2

∣∣∣√|Σi||Σ j|
where the mean vector µi and covariance matrix Σi describe
the bivariate normal distribution of element ei. The mean
vector of element ei

µi =
(
µix,µiy

)t =

(
1
|ei| ∑

bxy∈ei

(x|bxy|), 1
|ei| ∑

bxy∈ei

(y|bxy|)
)t

and the covariance matrix Σi =
(

σi xx σi yx
σi xy σi yy

)

In order to avoid Σi to be singular due to clustering elements
that are only 1 bin wide, we split every bin into 4

bxy →{bx± 1
4 y± 1

4
}; |bx± 1

4 y± 1
4
| = |bxy|

4

which is equivalent to adding small regularization terms to
the diagonal elements of Σi, i.e.:

σi xx =
1
|ei| ∑

bxy∈ei

(
|bxy|(x−µix)

2
)

+
1

16

σi yy =
1
|ei| ∑

bxy∈ei

(
|bxy|(y−µiy)

2
)

+
1

16

σi xy = σi yx =
1
|ei| ∑

bxy∈ei

(|bxy|(x−µix)(y−µiy)
)

We compute the similarity of two clusters Ci, Cj by using
the single-link (nearest neighbor) method, i.e.

s(Ci,Cj) = max{s(ei,e j)}; ei ∈Ci,e j ∈Cj

The joined cluster Ci∪ j contains all elements from both clus-
ters.

The presented similarity measure is a semi-metric, since it
is positive, symmetric and reflexive but the triangle inequal-
ity does not hold. For our method these properties are suffi-
cient. The triangle inequality is not required since we do not
perform arithmetic operations on the similarities, we only
compare their values.

4.3. Similarity in the Volume

This second similarity measure is designed to group bound-
aries that are connected in the volume. It is an alternative to
the similarity in the LH space. Figure 4 illustrates the use of
the spatial similarity on a phantom consisting of four materi-
als. Figures 4d-4f were generated using the similarity in the
LH space. In 4f boundaries 1 and 4 are grouped since they
are close in the LH space. Combining the LH similarity with
the volume similarity helped to group boundary 1 with 2 and
3 with 4 (see Figure 4g). We evaluate the spatial similarity as
the number of direct neighborhood relations between clus-
ters. Having the initial clustering elements, we evaluate the

number of neighborhood relations for each pair of elements
NR(ei,e j). We look at all 26 neighbors of every voxel vi ∈ ei
and count how many of them belong to element e j, i.e.:

NR(ei,e j) = NR(e j,ei) = ∑
vi∈ei

∑
v j∈e j

N26(vi,v j);ei �= e j

where N26(vi,v j) is 1 if vi and v j are neighbors and 0 oth-
erwise. Since cluster cannot neighbor with itself we define
NR(ei,ei) = 0. The total number of neighborhood relations
of the element is

NR(ei) = ∑
e j

NR(ei,e j)

In order to group clusters that belong to the same boundary,
we weight the relations between voxels. Then the sum of
weighted relations between two elements

R(ei,e j) = R(e j,ei) = ∑
vi∈ei

∑
v j∈e j

N26(vi,v j)r(vi,v j);ei �= e j

where r(vi,v j) ∈< 0,1 > reflects the directional coherence
of boundaries in voxel vi and v j (as used in Šereda et al.
[SVSG06]).

Finally, to make the similarity measure independent on
the size of the cluster, we normalize R(ei,e j) by NR(ei) and
R(e j,ei) by NR(e j). Since generally NR(ei) �= NR(e j) we
choose the maximum of the two relations to make the simi-
larity measure symmetric

s(ei,e j) = s(e j,ei) = max

{
R(ei,e j)
NR(ei)

,
R(e j,ei)
NR(e j)

}

Note that NR(ei) cannot be zero as long as there are at least
two clusters in the data. Further we define s(ei,ei) = 1 in
order to obtain a similarity measure that is semi-metric.

The presented relationships between initial clustering
elements are evaluated in one pass through the volume.
The initial clusters Ci contain each one element ei. There-
fore NR(Ci) = NR(ei), NR(Ci,Cj) = NR(ei,e j), R(Ci,Cj) =
R(ei,e j) and s(Ci,Cj) = s(ei,e j).

When two clusters Ci and Cj join, we have to recalculate
the number of relations of the joined cluster Ci∪ j

NR(Ci∪ j) = NR(Ci)+NR(Cj)−2NR(Ci,C j)

and update its relations with all other clusters Ck;
Ck �= Ci, Ck �= Cj

NR(Ci∪ j,Ck) = NR(Ci,Ck)+NR(Cj,Ck)

R(Ci∪ j,Ck) = R(Ci,Ck)+R(Cj,Ck)

s(Ci∪ j,Ck) = max

{
R(Ci∪ j,Ck)
NR(Ci∪ j)

,
R(Ci∪ j,Ck)

NR(Ck)

}

For both similarity measures the complexity of joining
two clusters is O(K), where K is the number of clusters Ck,
i.e., clusters remaining in the hierarchy.
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(a)

(b) (c) (d) (e) (f) (g)

Figure 4: Phantom data set. (a) shows a slice and the correspondence of four most important boundaries in the LH histogram.
(d) shows the initial clustering. In (e) and (f) the hierarchy based on the LH similarity was used (see dendrogram (b)). The level
chosen in (e) yields each of the four boundaries in own cluster. In (f) boundaries 1 and 4 are grouped since they are close in
the LH space. A hierarchy that combines both similarity measures (c) results in desired clustering (g). The dendrograms (b, c)
show the order of grouping. The right child inherits the color from the left child.

5. Hierarchy Interaction Framework

A major disadvantage of clustering techniques is the need to
define a similarity threshold at which the desired partition-
ing of the elements should exist. Tuning such a threshold by
changing its value and restarting the clustering algorithm is
rather cumbersome process. Furthermore, this would be as-
suming that at one level all desired object can be perfectly
partitioned. Our framework enables a real-time interaction
with the cluster hierarchy. This approach is much more in-
tuitive, since the user does not have to deal with threshold
values and gets a better insight into the data set. Moreover,
in our method the objects can be selected at different hierar-
chy levels.

The second weakness of clustering techniques lies in the
similarity measure. It is often the case that more criteria need
to be combined to cover the crucial aspects of the data. How-
ever, the criteria are usually of different nature and their
simple combination (such as the most often used weighted
sum) have little meaning. In practice these weights are usu-
ally tuned for certain data set(s) and their performance for
other data is questionable. Again, tuning of these weights
is difficult, since different data sets may have distinct sensi-
tivity to certain criteria. In our framework, no weights need
to be defined, since only one similarity measure is used at
a time. However, the user can pick different similarity mea-
sure while moving in the hierarchy. This means that different
parts of the hierarchy can be generated by different similarity
measures.

We illustrate the use of the framework in the LH space
using the two similarity measures described in sections 4.2

and 4.3. However, this is just a concrete implementation of
the framework. Using other space and similarity measures or
their combination would be possible.

The input to the interaction process (see Figure 5) are the
initial clustering elements and a default similarity s. After
the hierarchy is generated, the user can interactively change
the level k which results in a new partition of the elements.
If moving to the next hierarchy level does not yield the ex-

Figure 5: The hierarchy interaction framework. First, the
hierarchy is generated for the initial clusters using a default
similarity s. Then the user can interact with the hierarchy
by changing the level k and (de)selecting clusters. The user
can also change the similarity measure or apply constrains
to selected clusters.

pected clustering, the user might want to change the similar-
ity criteria s. In that case a new hierarchy is generated on the
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clusters from level k using another similarity measure (see
Figure 6).

Figure 6: A hierarchy cut at level k = 3 yields clusters that
are further grouped using another similarity measure. The
hierarchy can be, therefore, a combination of several simi-
larity measures. The cluster consisting of elements e1 and e2
was fixed on level 2 and taken out of the hierarchy.

In general, there might be no single hierarchy level at
which the clusters are grouped according to the user’s expec-
tations. In order to handle such situations, several constrains
can be introduced into the hierarchy:

• Fixing a cluster. If a cluster is fixed, it is taken out of the
hierarchy so that it is not split or joined with other clusters
when the hierarchy level changes. This can be used for sit-
uations where certain objects are well selected at different
levels.

• Explicit splitting(joining) of selected cluster(s). Selected
clusters are joined or split and the hierarchy is adjusted
accordingly.

For more complex datasets, the user might find it difficult
to observe and evaluate the completeness off all objects of
interest at the same time. Since it is much easier to interact
only with one object at a time, we enable the possibility to
visualize only one branch of the hierarchy. The users can
then concentrate on one object of interest and after fixing
the object at certain level, they can focus on another object.

The hierarchy interaction allows a large interaction free-
dom based on intuitive actions. However, if an a-priori
knowledge is available, it is possible to automatically in-
clude certain constrains of the hierarchy without compro-
mising the generality of the framework.

6. Transfer Functions From Clustering

The result of a certain clustering is labelling of the LH his-
togram. Since the color and opacity are defined for every
label, we obtain a 2D transfer function. By default, the clus-
ters are automatically assigned random colors and full opac-
ities. When two clusters join they should appear in the same
way, i.e. have the same color and opacity. In our implemen-
tation the smaller cluster inherits the color and opacity from
the bigger (dominant) cluster. Naturally, the user is free to
change colors and opacities of any cluster.

Since our rendering is implemented using the Volume-
Pro1000 board [PHK∗99] that allows only 1D TFs, we label
the volume and perform a 1D TF on the labels. The labelling,
however, needs to be done only once for the initial clusters,
therefore the speed of interaction with the hierarchy is not
compromised. One of the advantages of using the labels is
the possibility to combine the TF with a segmentation (as
shown in the previous work [SVSG06]). The disadvantage
is that techniques such as fuzzy borders between clusters are
not possible. However, the fuzzy borders could be imple-
mented, e.g., in a GPU-based renderer.

7. Results

We demonstrate the functionality of our methods on four
different datasets. The first two are the CT data sets of the
engine and the carp. The clusters in the LH histogram and
corresponding renderings are shown in Figure 7. These data
sets contain only few important boundaries. We have only
used the LH-based similarity. Visualizing these datasets was
fairly easy. All major boundaries can be seen at the same
time. Therefore, one can easily see if the cluster should grow
more or be fixed.

Figure 7: Renderings of the carp (256x256x512) and engine
(256x256x110) data sets. The green and blue boundaries of
the engine were visualized at a certain hierarchy level. Af-
ter fixing them at that level a further change of the level
grouped the brown boundary. For the carp we first fixed the
bone boundaries at the level where all of them were grouped
and then continued joining the remaining air boundaries.

In the the tooth data set (Figure 8) most of the boundaries
could be completely visualized at one hierarchy level. In or-
der to completely select the enamel-air boundary, we had to
first fix the dentin-air boundary. In Figure 8d we switched

c© The Eurographics Association 2006.



P. Šereda, A. Vilanova & F. A. Gerritsen / Automating TF Design Using Hierarchical Clustering of Material Boundaries

to the spatial-based similarity in order to group the enamel-
air and dentin-air boundaries. In this dataset we had to make
certain boundaries (semi) transparent in order to evaluate the
quality of grouping in the underlying boundaries.

In Figure 9, we show several combinations of important
boundaries in the CTA data set of a head. All the shown
boundaries could be selected at the same level in the hierar-
chy. In Figure 9d we further increased the hierarchy level in
order to select and easily remove the remaining boundaries
inside the skull.

Note that in the presented results we only used moving
in the hierarchy and one constrain, i.e. fixing certain clus-
ters after they were well selected. We did not use other con-
strains such as the explicit joining/splitting of the clusters.
Because of the fast hierarchy interaction, it was easy to se-
lect the proper hierarchy level or to realize that no such level
exists. If no such level existed, the constrains had to be intro-
duced. For the tested data sets we obtained maximum around
200 initial clustering elements. With such a low number, the
hierarchy and its modifications could be generated in real-
time without any noticeable delays.

8. Conclusions and Future Work

In this paper we have presented a flexible framework that en-
ables an intuitive interaction with the hierarchy of clusters.
The clusters serve as the transfer function for the direct vol-
ume rendering. The user works with objects and therefore
does not need to understand the underlying transfer function
domain. Moreover interacting with the hierarchy replaces
the commonly used parameters such as clustering thresholds
and weighting constants for the similarity measures. Our
framework enables an easy combination of different simi-
larity measures.

We have presented a clustering method based on the LH
space. This space seems more suitable for clustering of ma-
terial boundaries than the commonly used space of scalar
value and gradient magnitude. We have introduced two mea-
sures that evaluate similarity of clusters in the LH space and
in the volume space.

However, the current method is sensitive to the initial
clustering that is given by the peaks in the LH histogram.
If there are more boundaries in one initial clustering ele-
ment, in our implementation they cannot separated. Inter-
esting would be to split that element and refine the selection
down to the level of single bins. Such operation would fully
fit into the framework, since it would only mean replacing
the element in the hierarchy by a sub-tree that represents its
division.

The presented implementation of the framework used the
LH space as the domain for the TF. However, the framework
is general and could be applied on any TF domain.

In our current implementation the user interacts with ob-
jects by pointing at corresponding clusters in the TF domain.

In the future we would like to introduce fully 3D interaction
with the rendering. That would further improve the intuitive-
ness of the interaction since the user would be completely
shielded from the transfer function.
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Figure 8: Tooth data set (256x256x161). In (a) the major boundaries were selected by an easy choice of the hierarchy level (see
the red line in the dendrogram). The LH histogram shows corresponding selection. Then the surrounding (pink) boundary was
removed (b) and after fixing the dentin-air (yellow) boundary the rest of the enamel-air (orange) boundary was selected. In (c)
the inside boundaries are shown after making the outside boundaries to (semi)transparent. In (d) we illustrate the possibility of
grouping the outer boundaries (yellow). We achieved that by choosing the spatial-based similarity measure.

Figure 9: CTA data set of a head (512x512x286). One level in the hierarchy and corresponding rendering is shown in (a). In
(b) only two of the clusters were chosen: the skin and the skull. In (c) the skull and the vessels were selected, fixed and the color
of the vessels was changed. Then by changing the level all other clusters inside the head (green) were grouped and removed
from the visualization.
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