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Abstract
An important challenge in the application of direct volume rendering to time-varying data is the specification of
transfer functions for all time steps. Very little research has been devoted to this problem, however. To address
this issue we propose an approach which allows simultaneous classification of the entire time series. We explore
options for transfer function specification that are based, either directly or indirectly, on the time histogram.
Furthermore, we consider how to effectively provide feedback for interactive classification by exploring options
for simultaneous rendering of the time series, again based on the time histogram. Finally, we apply this approach
to several large time-varying data sets where we show that the important features at all times are captured with
about the same effort it takes to classify one time step using conventional classification.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithm I.3.6
[Computer Graphics]: Methodology and Techniques I.3.8 [Computer Graphics]: Applications

1. Introduction

An important challenge in scientific visualization is the
problem of time-varying volume data visualization. Time-
varying data sets are typically produced by simulations in
which a complex model of some physical phenomena is iter-
ated in time. The data is produced by supercomputers and
then stored in depots for subsequent offline examination,
which may include visualization. The characteristics which
uniquely identify this type of data are the additional dimen-
sion of time and the size of the data. Just as visualization of
volumes is not a trivial extension of image visualization, 4D
time-varying volume visualization is not trivially lifted from
3D volume visualization. There are generally two classes of
time-varying visualization: homogeneous, in which all di-
mensions are treated equivalently, and inhomogeneous, in
which the time dimension is considered separately from the
spatial dimensions. A practical challenge of time-varying
volume data is its size. These datasets are typically large;
consider that there may be hundreds of time steps, where
each time step consists of a large multivariate volume stored
in floating-point format. Interactive exploration of such data
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sets can easily overwhelm the capabilities of available com-
puting resources.

In terms of visual exploration of time-varying volume
data, three areas have been the focus of most research:
representation/organization, feature extraction/tracking, and
rendering. Research on representation focuses on how the
data is stored and accessed, including both organization and
reduction. Compression [GS01, LMC01, LPD∗02, BCF03],
multiresolution analysis [SCM99], and differential encod-
ing [SJ94] are prime examples of research conducted in this
area. Feature extraction [SW97, RPS01, PVH∗03] takes a
higher level view of the data, wherein the data is not just a
collection of voxels but rather a set of features evolving over
time. These features could be either volumetric or geometric.
Once defined and extracted, the evolution of these features
can be tracked over time. Research in the area of rendering
attempts to display the 4D data with a 2D view. One ap-
proach computes projections from 4D to 3D followed by vol-
ume rendering [WWS03]. Another alternative is chronovol-
umes [WS03], where an integration over time with appropri-
ate color mappings is used to show several time steps in one
volume. A more comprehensive discussion of research in
time-varying volume visualization is given by Ma [Ma03].

One problem often overlooked when rendering time-
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Figure 1: Histograms are useful in classification and are
often displayed as the backgrounds of transfer function ed-
itors. Here we see a 1D editor/histogram (left) and a 2D
editor/histogram (right).

varying data sets based on direct volume rendering of indi-
vidual time steps is that of classification. As opposed to clas-
sification of single volumes, classification of time-varying
volume data has received very little attention in literature.
We are aware of only two works that deal specifically with
this problem, namely Jankun-Kelly and Ma [JKM01] and
Tzeng and Ma [TM05]. The former describes approaches for
computing one or a few transfer functions for an entire time
series given a transfer function for each time step, whereas
the latter computes transfer functions for all time steps given
transfer functions from a few key time steps. In contrast, our
approach assumes no transfer functions are given for any
time step.

For most time-varying data sets the problem of finding
a classification which works for all time steps and is tem-
porally continuous is not trivial. In this work we propose a
solution which simultaneously classifies the entire time se-
ries. The time histogram is an integral part of this process,
both guiding and participating in the creation of temporal
transfer functions. Two approaches for building the trans-
fer function are developed, with the most promising being a
semi-automatic method which partitions the time histogram
into equivalence classes. In order to interactively classify the
time series some type of visual feedback is required, and
so we explore rendering possibilities which provide a global
view of the data set. Our solution allows interactive classi-
fication of an entire time-varying data set with marginally
more effort than that required to classify a single time step.

2. The Time Histogram
Histograms have proven to be very useful in conjunc-
tion with transfer function specification. Traditional 1D
histograms showing scalar value versus frequency of oc-
currence (Figure 1 left) are often displayed as the back-
ground of simple 1D transfer function interfaces, where they
are useful for guiding the user to populated areas of the
data range. Even more dependent on histograms are the
2D transfer functions which depict spatial gradient versus
scalar value (Figure 1 right). For volumes in which mate-
rial boundaries are present these histograms are quite useful
in identifying material ranges and boundary ranges in the
data [Lev88, KD98]. In some cases they can play a more ac-
tive role in the classification process as well.

For a time-varying volume data set we can compute a con-

ventional 1D histogram for each time step. If we then con-
catenate these together then we get a histogram which gives
frequency of occurrence for each value and time. This struc-
ture, called the time histogram, contains a wealth of informa-
tion about the entire time series. For one, it provides a con-
cise statistical overview of the data. Second, it offers a global
context within which temporal features (i.e. events) can be
distinguished. In this work we demonstrate two additional
uses of the time histogram: characterization of time series
and temporal classification. The time histogram has only re-
cently been investigated in the context of time-varying data
visualization. Kosara et al. [KBH04] consider the time his-
togram from an information visualization perspective, dis-
cussing different options for display and interaction, includ-
ing brushing techniques. Doleisch et al. [DMG∗04] make
use of the time histogram to analyze the dynamic behav-
ior of a complex diesel exhaust simulation. More recently,
Younesy et al. [YMC05] propose a data structure similar to
the time histogram called the Differential Time Histogram
Table, which is used to provide an encoding that takes ad-
vantage of temporal coherence. This structure is used during
rendering to minimize the amount of data required during an
update.

2.1. Time Histogram Display
As discussed by Kosara et al. [KBH04], the time histogram
is a 2D map which can be displayed either in 3D as a height
field or in 2D as an image (see Figure 2). The latter method is
generally preferred for several reasons. First, in 3D there are
occlusion problems, requiring some sort of navigation. Sec-
ond, color patterns in an image representation are much eas-
ier for the human visual system to discriminate than ridges
and peaks in a 3D display whose sizes are relative to per-
spective. Third, the image display is more compact, allowing
a more efficient use of screen space.

One aspect of the time histogram not sufficiently explored
in the past is the mapping of frequency counts to color in
the image representation. This mapping can have a signifi-
cant impact on the usefulness of the time histogram image.
A simple linear mapping is often unacceptable since it allo-
cates image space equally over the entire data range. In fact,
many time-varying data sets exhibit value clustering, such
that a large portion of the data lies within a small range of
values. A potential solution is to perform histogram equal-

Figure 2: A 2D time histogram can be displayed as a 3D
height field (left) or as a 2D image (right).
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Figure 3: Display of the time histogram from a combustion
simulation using the bias function with different parameter
values.

ization to the histograms of each time step, but then his-
tograms are no longer comparable, as they live on different
scales. Clearly it is expedient to allow a variety of mappings
in order to best bring out patterns in the time histogram. To
this end we propose the use of bias function, as given by Per-
lin in the context of texture mapping [PH89]. This function
is defined as:

b(g, f ) = f ln g/ ln 0.5

where f is the frequency count (normalized to [0,1]) and g
is the bias parameter. Note that when g = 0.5 the mapping is
linear, whereas for other values it is exponential. By manip-
ulating the single parameter g we can effectively map count
to color in a flexible way, as shown in Figure 3.

2.2. Static Versus Dynamic Histograms
Figure 4 shows some typical time histograms. We can im-
mediately observe that in general there are two kinds of
time histograms: those in which the histogram changes with
time and those in which the histogram is constant with time.
Datasets whose time histograms exhibit these traits we call
statistically dynamic and statistically static, respectively. A
statistically static data set is usually dominated by diffusion
processes, with other processes being in equilibrium. On the
other hand, statistically dynamic data sets are characterized
by other transient forces, whether they be chemical, thermo-
dynamic, or nuclear.

Characterization of the time histogram as static or dy-
namic is important because it determines what means must
be employed in order to classify the volumes of the time se-
ries. In the case of statistically static volumes, a single trans-
fer function can be constructed by examining any time step
and then that same transfer function can be used for all other
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Figure 4: Display of some typical time histograms. The time
histogram can characterize a data set as either statistically
static (tjet) or statistically dynamic (all others). Green lines
mark maximum and minimum scalar values.

time steps. However, for statistically dynamic data a differ-
ent transfer function may be needed for every time step, ef-
fectively tracking time-evolving features. Finding a way to
classify these types of data sets presents a unique challenge.

2.3. Alternative Time Histograms
We can also compute the distribution of other properties of
the volume besides scalar value and use these to create a
time histogram, such as the spatial gradient magnitude. One
property that is particularly interesting for time-varying data
is the temporal gradient. By computing the temporal gradi-
ent time histogram we can identify and classify highly active
regions as they evolve in time, as shown in Figure 5. Often
these are the most interesting regions in the data, regions of
high energy. By keeping the actual gradient, as opposed to
just the magnitude, we can distinguish regions of increasing
and decreasing value. As can be observed in Figure 5, im-
ages rendered based on classification of the temporal gradi-
ent are very informative, but more importantly they are use-
ful to the scientists.

3. Simultaneous Temporal Classification
The problem we address in this work is that of classify-
ing statistically dynamic time-varying volume data. We ex-
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Figure 5: Time histogram computed from the temporal gra-
dient instead of the scalar value. The images highlight
highly active regions, both positive change (red) and neg-
ative change (blue).

plore two different possibilities and identify the one which
we believe is the most promising. In both of these methods
the time histogram is the common denominator, in one case
guiding and in the other case participating in the generation
of transfer functions. It is important to realize that in our
approach the entire time series is being classified simultane-
ously. Furthermore, our problem is made more difficult by
the fact that we assume no transfer functions are given a pri-
ori.

A straightforward approach is to simply take the preferred
method of classifying a single static volume and then apply
this to every time step. For completely automatic methods
this is an option, but most practical methods rely at least in
part upon user interaction. In these cases it is simply un-
reasonable to require the user to engage in classification of
hundreds of time steps. Even if that were possible, the se-
quence of transfer functions would likely be discontinuous in
time since they would be created independently. This means
that animations in time would be incoherent, and also vi-
sual comparisons of different time steps would be difficult
to interpret. Generally there is a significant amount of coher-
ence between adjacent time steps, and so it makes sense to
take advantage of this coherence to make a dependent clas-
sification, which will in turn lead to coherence in the trans-
fer functions as well. Furthermore, a dependent classifica-
tion has the potential to reduce the amount of interaction re-
quired from the user. The efficacy of our approach depends
strongly on this last point. Since the histogram and the trans-
fer function share the same domain it makes sense to display
them together, as is often done in conventional volume ren-
dering systems. Using this approach the time histogram is
rendered in the background, whereas the transfer function is
displayed in the foreground. A transfer function specified in
this domain can be viewed as a single 2D transfer function or

counts

Figure 6: The constrained freeform interval is a component
defined by two horizontal lines. After drawing the lines, the
user assigns an opacity profile and color which is used along
the vertical axis.

equivalently a series of conventional 1D transfer functions.
We prefer to think of it as a single 2D function in order to
emphasize the fact that the individual 1D functions are not
independent. Letting time be the horizontal axis means that
patterns will predominantly be oriented horizontally. For this
reason the structure of the components we use to build the
transfer function are likewise oriented horizontally.

We now describe two possible approaches which incor-
porate the time histogram in order to interactively classify
a time series. The first uses the time histogram in a passive
sense to guide the user. The second actively uses the time
histogram as a selection tool in the classification.

3.1. Constrained Freeform Intervals

In this approach one or more components are used to build
the complete transfer function. Each component is defined
as an interval that can change arbitrarily in time. The only
restriction is that bifurcation is not allowed; that is, the inter-
val cannot split into two intervals. As shown in Figure 6, a
component is defined by using a paint brush to draw two hor-
izontal freeform lines. Within these lines the user can specify
a vertical profile which is interpolated over the entire length
of the component. The vertical profile defines the opacity
and color mapping which exists within the interval (see left
part of Figure 6). This specification method is intuitive to use
and offers great flexibility; however, it is difficult to specify
a good transfer function due to the many degrees of freedom
available, and it is also quite difficult to be precise.

3.2. Semi-automatic with Equivalence Classes

The second method we propose is unique in that the classifi-
cation is based directly on the time histogram, unlike the pre-
vious approach where it resides passively in the background.
Based on the observation that the interesting features of the
data are generally value intervals, we define some number
of equivalence classes where each class is characterized by
a range of scalar values. Within each class we define a com-
mon transfer function. The union of the equivalence sets is
the entire transfer function domain, and so the union of the
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Figure 7: A quantization of the time histogram creates some
number of equivalence classes covering various regions of
the histogram domain. In classification these classes are se-
lected and assigned properties by the user.

transfer functions from each class defines the total trans-
fer function (see Figure 7). In our scheme the equivalence
classes are implicitly defined by performing a uniform quan-
tization. In the transfer function domain each class is dis-
played with a separate greyscale value. The user builds the
transfer function by first clicking on a class and then setting
the opacity and color profiles for that class in another win-
dow.

In some sense this approach is like feature extrac-
tion/tracking in the time histogram domain. Although this
approach is less flexible than the previous technique it is very
simple and intuitive to use. As shown in Figure 8, by adjust-
ing two parameters, the time histogram mapping parameter g
and the number of equivalence classes, a very coarse to very
fine partitioning of the domain can be achieved. This greatly
facilitates exploration of the data at different levels, with a
typical scenario being to start with a coarse classification,
followed by classification using successively finer transfer
functions. We refer to this technique as semi-automatic since
the initial classification into equivalence classes is auto-
matic, whereas the choice of which classes to use is manual.
Of the two methods presented we believe this one to be the
most promising. Specification is very simple, the parameters
offer flexibility in terms of feature granularity, and the dis-
crete number of classes (or features) both limit and guide the
user towards a meaningful classification.

3.3. Visual Feedback
Interactive classification is a trial-and-error process in which
the user relies on visual feedback to modify and refine the
transfer function. For a single volume we would simply ren-
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Figure 8: By adjusting the histogram display mapping and
the granularity of the quantization, a very fine to very coarse
classification can be obtained.

der the classified volume directly, but this approach does not
scale well for time-varying data. Since we are effectively
classifying the entire time series at once, it makes sense that
in terms of visual feedback we need to "see" the entire time
series at once. In general this may not be possible; however,
for many data sets we can reduce the problem to viewing a
representative subset of the data.

The problem of providing a global view of the data can
be simplified if we make two assumptions. The first assump-
tion is that given two identical histograms the desired trans-
fer function will be identical as well, regardless of the data
itself. As long as the two histograms are from the same data
set then this assumption is reasonable, as features are gener-
ally defined according to value ranges. Second, we assume
that if two histograms are similar then their desired transfer
functions will be similar as well. Based on these assumptions
and the observation that most time-varying data sets exhibit
significant temporal coherence, we can reduce the data in the
time dimension by only considering unique statistical behav-
ior. To this end we propose an algorithm that successively
merges time steps into time intervals, thereby reducing the
problem of viewing a large number of time steps to that of
viewing a small number of time intervals. We then divide the
screen space into multiple views, where each interval gets its
own view.

The algorithm for temporal reduction takes as input the
number of available views, t, and proceeds as follows:

1. Begin with the sequence of histograms from each time
step, {h0,h1, . . . ,hn}.

2. Compute the distance between each consecutive pair of
histograms; that is, compute di = dist(hi,hi+1) f or i =
0 . . .n−1.

3. Merge the two closest histograms. If the merged repre-
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Figure 9: Time intervals resulting from the histogram merg-
ing procedure are displayed in multiple views. The render-
ings are of the midpoint of each interval.

sentation is h∗ then h∗ = merge (hk,hk+1), where dk =
min di.

4. Repeat steps 2 and 3 until there are only t time intervals
remaining.

The results of this algorithm depend entirely upon the
choice of the two functions dist and merge. The most rea-
sonable choices are the Euclidean distance (based on the L2
norm) for dist and the average for merge, although other
choices are certainly possible. Once we have reduced the
data to some small number of time intervals, the question is
how do we render a time interval. This is more of a subjec-
tive question and could depend largely on the characteristics
of the data set under consideration. Volume rendering of a
single time step from the interval is a simple solution. For
instance, we could pick the midpoint, a random point, or the
point with the highest temporal variance. Another possibility
is to compute an average volume for the interval, although
interpretation of the resulting rendering could be difficult.
Finally, we could use existing techniques for rendering of
4D data, such as the chronovolumes method [WS03].

Figure 9 shows the results of applying the merging algo-
rithm to a time histogram with t = 6 (six views). The stan-
dard distance metric is used for computing histogram dis-
tances, and the merge simply computes the average. For ren-
dering the midpoint of the interval is used.

4. Applications
Combining all the elements of the previous section we de-
veloped a time-varying data visualization system capable of
temporally simultaneous classification. Three types of trans-
fer functions are available: the usual 1D for statistically static
data and the two from the previous section for statistically
dynamic data. We use hardware volume rendering with a
variable number of views to provide feedback, where all of
the views are linked in terms of rendering parameters such
as orientation. The user can select to display the scalar value
time histogram, temporal gradient time histogram, or spatial
gradient magnitude time histogram.

Figure 10: Since the turbulent jet data set is statistically
static, we can define a single 1D transfer function to clas-
sify the entire time series.

We present results from three different time-varying sim-
ulations. We applied our approach to many more data sets
with similar results, but space limitations prohibit us from
presenting all the cases.

4.1. Turbulent Jet Data Set
The turbulent jet data set is from a simulation consisting of
160 time steps, where each volume is of size 104x129x129.
The interesting features of this small data set are the vortices
resulting from the turbulent flow. Despite the fact that the
flow is turbulent, the statistical behavior of the volume is
mostly constant with time, as can be observed by examining
the scalar value time histogram. In Figure 10 we show that a
single 1D transfer function is sufficient to classify the entire
time series.

4.2. Argon Bubble Data Set
The argon bubble data set is from a simulation modeling
shock refraction and mixing, wherein the evolution of a
shock wave disturbing an argon bubble is observed. The data
set consists of 264 time steps, where each time step consists
640x256x256 voxels. The effects of the shock create a ’jel-
lyfish’ structure with a head that begins as an amorphous
mass and turns into a ring, and a tail that consists of small
turbulent structures which disband over time. The primary
feature of interest in this data set is the ring structure, how-
ever. Since the value range which defines the ring changes
over time it is difficult to capture this feature using existing
methods. Using our approach this feature is captured in all
time steps in only a few minutes. Figure 11 shows a sample
from such a classification which took the authors less than 5
minutes to create. The semi-automatic method was used to
obtain this result.

4.3. Combustion Data Set
The combustion data set is from a direct numerical sim-
ulation of turbulent combustion, in which fuel is injected
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Figure 11: Classification of the argon bubble data set. The
rows show selected timesteps: 195, 210, 225, 240, 255(top
to bottom). The two columns on the left show the results of
using 1D transfer functions(shown at the bottom). Neither
function is able to isolate the feature of interest (the ring)
for all the time steps. The right column shows the results of
using our approach, which is able to capture the feature in
all time steps.

into two countercurrent air streams, and the mixing cre-
ates turbulent regions wherein the combustion occurs. The
data set consists of 128 time steps, where each volume is of
size 480x720x120. This data set is also multivariate, storing
several physical properties and chemical concentrations per
voxel. Of particular interest to scientists is the vorticity mag-
nitude field. As shown in Figure 12, a 1D transfer function is
incapable of capturing the interesting vortical structures over
all time steps. With our approach, a classification that works
for all time steps is effortlessly constructed in a matter of
minutes (less than 5 minutes for the classification actually
shown). In order to obtain this result, the semi-automatic
method is used to find a initial classification and the con-
strained free-form interval method is then used for refining
the classification.

5. Conclusions and Future Work
In this work we address the problem of finding transfer func-
tions that classify all the time steps of a time-varying volume
data set. We offer two methods that simultaneously classify
the entire time series at once. The time histogram plays a
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Figure 12: Classification of the vorticity magnitude field in
the combustion data set. The rows show selected timesteps:
5, 35, 60, 90, 120(top to bottom). The two columns on the left
show the results of using 1D transfer functions. The right
column shows the results of using our approach, which is
able to show the vortical structures from all time steps.

critical role, guiding and participating in the classification.
Visual feedback for interactive trial-and-error transfer func-
tion specification is also discussed, and a general algorithm
for reducing the problem of viewing the entire time series
simultaneously is presented. We finally demonstrate that our
approach is able to successfully classify time-variant fea-
tures from various data sets.

Additional research in the area of time-varying data visu-
alization may uncover even better methods for simultaneous
classification. We have developed herein a novel approach
that is both simple and powerful, demonstrating its efficacy
on several time-varying data sets.

Our proposed solution demonstrates among other things
that ideas from information visualization can be applied to
help solve problems in scientific visualization. In fact, many
visualization tools incorporate components of both types of
visualization, sometimes linking the two. We believe that a

c© The Eurographics Association 2006.

Hiroshi Akiba et al. / Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram 177



furtive area of scientific visualization research is the middle
ground between these two disciplines.
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