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Abstract

Due to the amount of data nowadays, automatic detection, classification andvisualization of features is neces-
sary for a thorough inspection of flow data sets. Pattern matching using vector valued templates has already been
applied successfully for the detection of features. In this paper, the approach is extended to automatically com-
pute feature based segmentations of flow data sets. Different problems ofthe segmentation like the influence of
thresholds, overlapping features, and classification errors are discussed. Visualizations of the segmentation dis-
play important structures of the flow and highlight the interesting features. The segmentation algorithm presented
in this paper is applicable to 2D and 3D vector fields as well as to time-dependent data.

Categories and Subject Descriptors(according to ACM
CCS): I.4.6 [Computing Methodologies]: Image Processing
and Computer VisionSegmentation; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering

1. Introduction

A huge amount of data is generated nowadays by flow sim-
ulations and measurements. The resulting vector fields often
contain millions of data values, but even for small datasets
with only thousands of values, direct inspection by the user
is tedious and features are missed easily. Therefore, many
automated feature detection methods have been developed
in the last years (e.g. [ES03, HEWK03, KHL99, Rot00], an
overview can be found in [PVH∗03]). However, often only
one feature class is visualized afterwards. On the other hand,
there are some overall visualizations like Line Integral Con-
volution (LIC) [CL93] and vector field topology [HH91].
LIC results in quite intuitive visualizations in 2D, but the fea-
tures themselves are not emphasized and can still be missed.
Visualization of vector field topology is a widely used tech-
nique in 2D though the topology may have to be simplified
first [Tri02]. A successful adaptation of both approaches to
3D is hard due to the visibility problems in 3D, and has not
been solved completely. Another, quite different, approach
for the visualization is to use information visualization meth-
ods like brushing for interactive exploration of the data sets
[DGH03].

Often, users ask specifically for a feature based segmen-
tation of their data, that is, they want to know all features
with their parameters like position, size, shape, radial ve-
locity, etc. In contrast to image processing, features in vec-
tor fields are scarcely characterized by edges or borders.
Therefore, segmentation based on edge information will not
yield convincing results on flow fields. So far, segmentation
of flow fields has been based mostly on topology [HH91]
or clustering algorithms [GPR∗04]. One feature based seg-
mentation using anisotropic diffusion of LIC was developed
in [DPR00].

In this paper, an algorithm for segmenting vector fields
based on template matching is given. Pattern matching has
already been proven useful for the detection and quantifica-
tion of features in flow fields [ESvdW05]. Using template
matching to compute a segmentation of flow fields has sev-
eral advantages. First of all, the segmentation is based on
the features themselves (Figure2). Another advantage is that
feature models used by engineers can be coded into the tem-
plates and thus automatic determination of the model param-
eters is possible within this framework as well. Furthermore,
in some applications [vdWBY∗04], the user is not interested
as much in the actual flow behavior as in an approximation
of the phenomena using simpler features models. Then, su-
perposition effects have to be taken into account in order to
analyze these features and compute their parameters, which
is possible within this framework.
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2. Related Work

Segmentation is well known from image processing [Jäh02,
Jai89]. However, not all approaches can be transfered to flow
fields due to the inherent properties of the features in the
flow. In Section2.1, an overview of the different techniques
of segmenting an image is given along with a discussion
of whether this approach is promising on flow fields, too.
Existing segmentation approaches on vector fields are pre-
sented within this overview as well. An overview of template
matching in vector fields, including the approach used in this
paper, is described in Section2.2.

2.1. Segmentation of Images

There are several approaches to segment an image. When
the amplitude sufficiently characterizes the features, ampli-
tude thresholding is useful. The results can afterwards be
used for component labeling, where the connectivity of pix-
els with their neighbors is examined in order to assign the
pixel to objects. In vector fields, the amplitude or velocity
of the vector field usually does not code enough information
for segmentation. On the other hand, amplitude threshold-
ing of derived values like vorticity or similarity values from
template matching can be quite useful for first analysis steps.

Another classical approach for segmentation in image
processing is edge based. The edges of objects are combined
to form boundaries, which then determine the objects. In
vector fields, this might work for shock waves, shear flow,
and convergent and divergent lines, as these can be inter-
preted as edges. However, segmentation should also clas-
sify these features. Furthermore, feature models of vortices,
sinks, sources and saddles often have no real boundary, e.g.
the Vatistas vortex [Vat98], a vortex model used by engi-
neers. There, the vortex is assumed to be spread out infinitely
though the influence of the vortex to the flow is nearly zero
outside a certain region around the vortex center. The vortex
core center is given by the maximum of the velocity profile,
but the transition from inside the vortex core to the outside is
usually smooth. This behavior is also typical for other flow
features. Therefore, edge based segmentation in flow fields
will not yield satisfactory results.

Looking at the vectors within a vortex or a swirling mo-
tion (e.g. Figure6), it can be seen quite well that a vortex
consist of velocities of all possible directions. Thus, it be-
comes quite clear that region based approaches and cluster-
ing [GPR∗04], which group similar velocities, will not work
for a feature centered segmentation of vector fields. Com-
puting the topology of a vector field yields a segmentation
of the flow into regions of same flow behavior. However, the
features can not be classified or quantified well (Figure2 and
6), and the problem of convincing 3D visualizations remains.

Segmentation based on anisotropic diffusion of LIC im-
ages [DPR00] results in a feature based segmentation. How-
ever, there is no criteria to stop the diffusion process, making

the results not easily qualifiable. Furthermore, the problem
of classification and quantification of the segmented features
remains.

The Helmholtz-Hodge decomposition [PP00, PP03,
TLHD03] separates a vector field into a divergent-free and
a curl-free potential and a homogean part. Local extrema of
the two potentials indicate sources, sinks, and swirling flows.
The resulting vector fields can be used for further analysis
of these features. However, other features like saddles are
not included into this approach. Furthermore, features that
are close to the boundary lead to significant changes in the
structure of the whole field.

Pattern matching has been used for segmentation of im-
ages as well. There, similarity information of several dif-
ferent templates is computed at all pixels in the image, the
features are classified according to the results and the im-
age is then segmented into the regions of the features and
background information. This approach is transfered to vec-
tor fields in this paper.

2.2. Pattern Matching on Vector Fields

An obvious approach to image processing of vector fields
is to decompose the field into its components for subse-
quent independent processing using known tools such as
convolution and the Fourier transform. Granlund and Knut-
son [GK95] have investigated this approach in 2D. However,
the template matching should result in a rotation indepen-
dent similarity measure, and thus this approach is not feasi-
ble.

Another definition of the convolution is the generalized
inner product of pertinent vectors. Heiberg et al. [HEWK03]
define convolution on vector fields using the inner (or scalar)
product of two vectors as

(h∗s f )(x) =
Z

Ed
〈h(x′), f (x−x′)〉dx′,

where f is the normalized vector field andh is the filter. The
scalar product provides an approximation to the cosine of the
angle between the direction of patterns present in the vector
field and the direction of the filter. Therefore it can be used as
a similarity measure. This information can also be combined
with the orientation tensor to yield a rotation invariant sim-
ilarity. As the orientation tensor uses the square of the sim-
ilarity values, some pattern like lefthanded and righthanded
rotation in 2D, or divergence and convergence, are not dis-
tinguished anymore. Furthermore, it does not work for arbi-
trary templates. Heiberg et al. [HEWK03] define no Fourier
transform for their vector fields. However, treating the com-
ponents of the vectors separately concerning Fourier trans-
forms will work though it is mathematically unsatisfying.

Yet another approach for template matching of vector
fields makes use of Clifford Algebra [ES03]. Clifford al-
gebra [Hes86] extends the classical description of an Eu-
clideann-space as a realn-dimensional vector space with
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scalar product to a real algebra. In 3D, it has the basis
1,e1,e2,e3,e1e2,e2e3,e3e1,e1e2e3. The elements of the al-
gebra are called multivectors. The multiplication of multi-
vectors is defined as associative, bilinear and by the equa-
tions

1ej = ej , j = 1,2,3

ejej = 1, j = 1,2,3

ejek = −ekej , j,k = 1,2,3, j 6= k

Thus, a multiplication of vectors is described, too. The usual
vectors(x,y,z) ∈ IR3 are identified with

xe1 +ye2 +ze3 ∈ E3 ⊂ G3
.

The Clifford multiplication of two vectorsa,b ∈ E3 results
in

ab=< a,b > +a∧b,

where<,> is the inner product and∧ the outer product,
and both can be extracted out of the multiplication result by
a simple projection. Thus, the product of two vectors de-
scribes the rotation and scaling necessary to transform one
vector into the other. Using this Clifford algebra, Clifford
convolution [ES03] of two multivector valued fieldsf andh
is defined as

(h∗ f )(x) =
Z

IRd
h(x′) f (x−x′)|dx′|.

Note that a correlation can be computed via a convolu-
tion by adapting the template. Furthermore, this convolution
gives an approximation of the relative geometric position of
the structures in field and template allowing for rotation in-
variant template matching [ES03]. The direction of the struc-
ture can be computed out of the convolution. The template is
then rotated in this direction and another convolution is com-
puted for an orientation invariant similarity value. In this last
step, only the scalar product is used as similarity value ana-
log to the approach of Heiberg. When template and structure
are equal andγ is removed from the result, then the similarity
is 1.

In the convolution the approximations for the angle are
summed and thus they can erase each other. Therefore it is
not enough to compute one Clifford convolution for the ap-
proximation of the direction of the structure. Additional tem-
plates with different directions have to be used to overcome
this problem. In [ES03], 3 template directions in 2D and 6
directions in 3D are used in order to get a stable and robust
template matching algorithm.

The Clifford convolution is superior to the approach of
Heiberg et al. since it provides a unified notation for convo-
lution of scalar, vector and multivector fields. Furthermore,
a corresponding Fourier transform has been developed for
2D and 3D vector fields and can be used for an acceleration
of the convolution operations in the matching [ES05b]. The

Clifford convolution is an extension of scalar field convolu-
tion from image processing and scalar convolution over vec-
tor fields defined by Heiberg et al. [HEWK03] and is used in
the segmentation algorithm in this paper.

3. Segmentation

Before starting a segmentation, it has to be determined which
features are of interest, and should form the template set.
This includes specifying the type of feature like vortex,
shear, sink, saddle or source (Figure1) as well as the strength
and size of the features and the scale at which they appear.

3.1. Challenges

The basic idea of segmenting a data set via template match-
ing is quite easy: Determine all features present in the data
set, compute their size and shape, and label all positions
within the feature as belonging to it. All positions not labeled
at all will be background, or not interesting at the moment.
However, there are several challenges when trying to use this
approach on vector fields.

3.1.1. Irregular Grids

Convolution and correlation are usually evaluated on uni-
form grids. However, many flow data sets are defined on ir-
regular grids. There are several ways to deal with that. First
of all, convolution can be transfered to irregular grids using
resampling [ES05a]. However, the results depend on the re-
sampling method used, and the convolution computation is
slow. Therefore a resampling of the whole data set to a uni-
form grid is advised, and using a power of 2 for the number
of grid points of each direction. Thus, the convolution theo-
rem and fast Fourier transform algorithms can be applied for
speeding up the convolution computations [ES05b].

3.1.2. Similarity Value

The similarity of two vector valued templates with respect
to a direction is defined by the sum of the scalar product
of their vectors. The similarity value itself depends on the
magnitude of both the pattern in the field and the template
itself. Therefore, the obtained similarity values are usually

Figure 1: A 2d template set. From left to right: rotation,
convergence, saddle, shear flow, convergence line. Note that
counterclockwise and divergence pattern can be found with
these templates as well.
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scaled by the magnitude of the template:

s(x) =
〈h∗ f 〉(x)

∑x′∈h |h(x′)|

Often, this similarity is influenced more by the velocity
magnitude of the vectors than their orientations. For a sim-
ilarity measure which is independent of the velocity magni-
tude, the length of every vector in the field can be artificially
set to one. This will be called normalization of the data set in
this paper. Matching on a normalized data set corresponds to
a matching of the streamlines rather than the vectors them-
selves. It is often used to enhance weak features.

Normalization of the data set will work very well in some
cased, but not when the features are hidden by other com-
ponents of the flow. Furthermore, normalization will shift
the position of features, though only within cells, and can
drastically change the size of features. When the velocity of
vectors in the feature is important, for example in a Vatistas
vortex [Vat98], normalization should not be used at all.

3.1.3. Position, Size and Scale

Scale space considerations should not be neglected within
the segmentation. The size of the features, and thus the scales
at which they appear and dissappear, can play an important
role for the segmentation (Figure2). The classification of the
features, and thus the segmentation, can be done for each
scale separately and be combined with scale space visual-
izations like Gaussian pyramids [Jai89,Jäh02]. Another pos-
sibility is to match each template using different template
sizes. The resulting similarity images can then be combined
into one scale invariant similarity image by using the max-
ima of the values at each position.

A scale-invariant similarity will also ensure a scale-
invariant detection of the position of a feature as these are
usually detected by local maxima of the magnitude of the
similarity values. Note that the position of a feature would
otherwise depend on the scale at which the feature is evalu-
ated, e.g the center of a vortex with an elliptical shape will
have different positions for different scales. Furthermore, the
scale and template size resulting in the maximal similarity
also gives size information of the feature. Though subpixel-
accuracy is possible [ESvdW05], the authors propose to start
with a template of size 3∆ for each direction where∆ is the
(uniform) edge length. Then continue with all uneven tem-
plate sizes as this will result in a growth of the radius of∆.

The computation of the convolutions with different tem-
plate sizes can be accelerated by computing the convolu-
tions in Fourier domain [ES05b]. Another possibility is to
start with a small template size and only compute similar-
ities with larger templates where the similarities with the
small template were above a certain threshold. The results
depend on the choice of the threshold, and large features
may be missed because they are hidden at the small scale.
Furthermore, it also depends on the template itself. While

Figure 2: Vortices generated by an ICE train (top left).
Segmentation of a section plane through the flow (thresh-
old=0.5), overlaid with LIC. The data set was normal-
ized. Red: rotation, orange: shear flow, light blue: conver-
gent/divergent line, green: saddle point. Top right: only 3x3
templates were used to determine the line features shear flow
and convergent/divergent lines. Bottom: templates from size
3x3 till no significant similarities were gained were used to
detect the features. Bottom right: Topology added. Note that
the elliptical vortices are classified as shear flow when using
larger templates.

this approach seems to be stable for e.g. rotational pattern,
the similarities obtained for shear like pattern were often to
small. However, this approach can give fast and useful re-
sults, especially for a first overall view of the data set.

The size of a feature in flow field is usually hard to define.
Point based features, like saddle points, usually have no size,
and are visualized using only very small area. However, for
segmentation and visualization issues, larger areas are pre-
ferred as they are not easily overlooked. The region around
a point or line based feature classifies this feature, and there-
fore can be regarded as belonging to it. This is also the size
that is computed by the approach above.

The size of a line based feature, e.g. a 2D shear flow, can
be the length of the line, or the scale at which they appear.
Due to the smoothing effect of template matching, the re-
gion with similarity values above a threshold will be larger
for larger features. Thus, segmenting and visualizing thresh-
olded similarities is often good enough in this case.

For region based features, the size of a feature model can
be infinite, as e.g. in the Vatistas vortex model [Vat98]. How-
ever, the size of the vortex core region is an important in-
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formation there. Again, this is exactly the size information
given by scale invariant template matching.

3.1.4. Non-Orthogonal Feature Definitions

Some features are orthogonal to each other, that is their de-
scription and subsequent matching will not respond to the
other features at all. One example of an orthogonal feature
pair is pure rotation and pure convergence. Here, the classi-
fication of the features based on template matching and sub-
sequent segmentation is obvious. But feature definitions can
also overlap, for example a rotation and a shear flow both de-
scribe part of the phenomena of the other feature. Other pairs
of features which describe similar phenomena are sinks and
convergence lines, and sources and divergence lines. In these
cases, more than the similarity of one template to the flow is
non-zero at this position. Therefore the different similarity
values have to be compared, and the feature classified ac-
cording to the largest similarity value which has been com-
puted. This also means that misclassification can take place.
For example, an elliptical rotation can be more similar to the
shear flow description than to a circular rotation (Figure2),
though it surely is a vortex. Using vector valued templates
for the feature definition, orthogonality of features can eas-
ily be computed and quantified by correlation of the different
templates: A pair of templates is orthogonal if, and only if,
their (rotation invariant) similarity is zero.

3.1.5. Overlapping Features

There are also other reasons why more than one template
will respond to the flow at a position. Convolution with a
template is a linear operation. The linearity property is also
known as the superposition principle. It means that complex
flow can be analyzed by matching with several quite sim-
ple templates where the similarity values will indicate how
much one template resembles the flow. It also indicates how
much of the flow at this position is due to this particular
feature model, and how much has to be described by other
templates. An example is a swirling vortex which is a su-
perposition of a perfectly circular rotation and a divergent
flow (Figure3). Another example is a wind tunnel, where
the overall velocity of the air flow will usually hide smaller
vortices [ESvdW05]. But this means that there may be more
than one feature at a position, depending on whether this

Figure 3: Superposition of a rotation and a divergence re-
sults in a spiral pattern.

point of view is taken. In this case, segmentation is more
challenging.

One solution is to classify the flow according to the most
dominant feature at this position. But this is short-sighted as
e.g. in the wind tunnel experiment only the overall flow will
remain. Regarding the swirling vortex, one could classify it
into a new class of swirling features. These swirling flows
are then detected by using the already computed similari-
ties to rotation and divergence templates. The percentage of
these two similarities also gives a measure of the skewness
of the swirl.

The issue of superposition and overlapping features leads
to the proposition of computing a classification of the flow
at every position into all of the features found there and the
percentage in which they contribute to the flow. This is also a
kind of segmentation, but one of the flow at one position into
each of the interesting features. Note that when the data set
has been normalized beforehand, the similarity values equal
this percentage. Otherwise, the similarity values have to be
scaled by the energy of the flow to obtain this information.

3.1.6. Choice of Thresholds

The choice of suitable thresholds depends on the properties
of the data set to be analyzed, and different choices of the
threshold gives different results [Jai89, Jäh02] (Figure 4).
When the data set has been normalized, and no constant flow
hides the features, the similaritys is between−1 ≤ s≤ 1.
The authors have found that a threshold of 0.5 for the mag-
nitude ofs is a robust choice for their data. When the data

Figure 4: A swirling jet data set. Segmentation and LIC.
Red: rotation, orange: shear flow, light blue: conver-
gent/divergent line, dark blue: sink/source, green:saddle.
Left: threshold of 0.5, right: threshold of 0.7. Top: segmenta-
tion using the similarity values, bottom: when the difference
between shear and rotation was below 0.05, the flow was
classified as shear rather than rotation.
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has not been normalized, then−∞≤ s≤∞. Then, a possi-
ble approach is to determine all similarities larger than one,
or larger then a certain fraction of the maximal value deter-
mined by the algorithm. Generally, half the maximal com-
puted similarity value is a valid choice.

3.2. The Algorithm

To summarize, the segmentation of vector fields is computed
as follows:

1. Determination of the features of interest and the parame-
ters to be computed

2. Grouping of the features for segmentation as well as vi-
sualization (e.g. all rotations, all shear flows, etc.)

3. Generation of (vector valued) templates describing the
features or feature groups

4. For each feature:

a. Template matching (rotational invariant) using differ-
ent features sizes

b. Thresholding of the resulting similarity values
c. Computation of the maxima of the similarity values at

each position, storing the corresponding feature sizes.
d. Local maxima of the results determine position and

size of the features
e. Computation of possible other parameters of the fea-

tures

5. For non-orthogonal features at one position, the features
resulting in the smaller similarities are discarded

6. For orthogonal features at one position, the dominant fea-
ture is determined but all features are stored

3.3. 2D, 3D and Time-Dependent Data Sets

The vector-valued convolution is defined for arbitrary nD
data sets. However, the rotation invariant matching is only
defined for 2D and 3D so far. As 2D and 3D data sets are
most common, the rotation invariant matching approach us-
ing Clifford convolution poses no disadvantages.

For time-dependent data sets, each time slice can be seg-
mented separately and the resulting regions can be traced
over time. Tracing algorithms are well known from image
processing [Jai89,Jäh02], and can be applied directly as the
similarity data is usually scalar valued. Furthermore, time
dependent data is often visualized using movies which can
be generated directly out of the single segmentations of the
time-steps (Figure5). Due to the averaging effect of the con-
volution, the similarity values are robust in terms of noise
and small changes. This is beneficial for the tracking, and
visual discontinuities over different time steps are not ex-
pected.

4. Results

The first data set used in this paper is a section plane through
vortices generated by an ICE train (Figure2). The train

Figure 5: Segmentations of three successive time steps of
a swirling jet data set data set (from left to right, thresh-
old=0.5). The data has been normalized before match-
ing. Color coding: clockwise rotations in red and counter-
clockwise rotations in blue. From light to dark colors: in-
crease in similarity values.

moves with a speed of 250 km/h. The wind comes directly
from one side but due to the speed of the train, the angle of
attack is 15 degree. A section plane through four of these
vortices with dimensions 51× 51 was computed. This data
set was also included to remind of scale issues (Figure2).
Furthermore, it clearly shows the problem of classifying ro-
tations and shear flow.

The authors also studied data from CFD simulations de-
scribing a vortex breakdown, here swirling jets entering a
fluid at rest (Figure4 and6). Vortex breakdown can be found
in flows ranging from tornados, wing tip vortices, pipe flows
to swirling jets. Here, the turbulent swirling jets enter a fluid
at rest. The simulation considers a cylinder, so that a pla-
nar cut along the axis of the cylinder can be used as a do-
main. The domain is discretized by a 124×101 respectively.
251× 159 rectilinear grid with smaller rectangles towards
the axis of the cylinder. Since a lot of small and large scale
vortices are present in the flow, a discrete numerical simu-
lation (DNS) using a higher order finite difference scheme
is used to solve the incompressible Navier-Stokes equations.
The vector fields have been normalized before processing.
The segmentation and subsequent visualization of the data
sets highlights the features and thus guides the user through
the data set. Some vortices are found in the data, and the lay-
ers of opposite flow, divided by shear flow, are clearly visible
(Figure4and6). The classification of the most dominant fea-
ture was challenging as the similarity values of matching e.g.
shear and rotational templates at one position in the data set
sometimes differed only by 0.0001, though both similarities
were above the threshold. This usually indicates an elliptical
vortex or a swirling motion generated by shear flow.

Another example of a swirling jet from CFD simula-
tions are 125 timesteps of unsteady vorticity vector field of
swirling jet on a 141× 251 structured grid. The data was
normalized and segmented into clockwise and counterclock-
wise rotations, and background. Three successive time steps
are shown in Figure5. In these timesteps, the split of a vor-
tex into two new ones can be observed. The pairing of two
vortices each of different rotation orientation, and the path of
the moving vortices, can be easily studied using segmenta-
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Figure 6: Segmentation of a simulation of a swirling jet en-
tering a fluid at rest (threshold=0.5). Red: rotation, orange:
shear flow, light blue: convergent/divergent line, dark blue:
sink/source, green: saddle. Top: whole data set. Middle and
bottom left: zoomed in. Streamlines respectively. topology
added. Bottom right: some details. Hedgehogs and stream-
lines added.

tion throughout all timesteps. Only a part of the data sets of
these time steps is shown as the rest was classified as back-
ground.

An interesting data set is a gas furnace chamber as it is
used for heating a house. The simulation solves compress-
ible Navier-Stokes equations using a turbulent model ap-
plied on a irregular grid consisting of 174341 tetrahedra with
32440 vertices. For computational issues, the data was re-
sampled onto a uniform grid with dimensions 126×65×57.
In Figure7, the swirling gas enters the chamber in the center
of the left face while the air enters from 9 openings on the
top and 9 openings on the bottom, so that the combustion
takes place in the center area of the chamber. The products
of the combustion leave the chamber on the right. The flow is
highly turbulent and exhibits a lot of different scale vortices.

The structures in the flow can easily be identified by the
segmentation. Note that the shear flow at the front bottom
(in yellow) is a misclassification, it is actually an elliptical
vortex. This is one reason why the vortex core itself (in red)
extends into this area. Note also the saddle line behind these
vortices (in green), it is clearly visible in the bottom image.

Figure 7: Segmentation of the normalized gas furnace cham-
ber (Threshold: 0.5). Isosurfaces of the results (Value 0.5):
Red: rotations, yellow: shear flow, green: saddles. The cores
of the regions are displayed, too, and in the same colors.
Templates of divergence/convergence resulted in similarities
below the threshold. Top: The velocity of the original data
set is displayed at an isovalue of 15. Bottom: The results of
the segmentation can also be used for streamline seeding.

Additional information of the gas furnace chamber can be
gained by displaying an isosurface of the velocity of the orig-
inal data set (Figure7, blue isosurface). Using this isosur-
face, the gas and air inflow streams are clearly visible. Note
the vortices besides them, and how they follow the shape of
adjacent air streams.

5. Conclusion

The authors have presented an algorithm for automatic com-
putation of a feature-based segmentation of 2D, 3D, and time
dependent vector fields. The segmentation is based on tem-
plate matching, thus obtaining intuitive results and robust-
ness in terms of noise. Furthermore, the template matching
allows an unified approach for the detection of different fea-
tures.

Several challenges on designing the algorithm like mis-
classification and superposition effects have been presented
and discussed. Some results have been presented, and espe-
cially the classification problem will be studied further.

The visualizations of the segmentations clearly depict the
structures of the flow data as the features are displayed in
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conjunction with each other. Thus, even highly turbulent
data can be studied easily.
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