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Abstract

This paper demonstrates the prevalence of a shelnadacteristic between visualizations and imagesattire.
We have analyzed visualization competitions and wssedies of visualizations and found that the more
preferred, better performing visualizations exhibiore natural characteristics. Due to our brain hgiwired to
perceive natural images [SO01], testing a visual@afor properties similar to those of natural iges can help
show how well our brain is capable of absorbing daga. In turn, a metric that finds a visualizati®similarity

to a natural image may help determine the effentigs of that visualization. We have found thatréselts of
comparing the sizes and distribution of the objécta visualization with those of natural standarstsongly
correlate to one’s preference of that visualization

Categories and Subject Descriptors (according t¢ACCS): H.1.2 [Models and Principles]: User/Mawhi
Systems, 1.4.8 [Image Processing and Computer MisiBcene Analysis, H.5.2 [Information Interfacesda

Presentation]: User Interfaces

1. Introduction

Many have tried to define or explain what propertie
make for an effective visualization [Sea95][Shn36fR0].
Elements such as aspect ratio, density, color ysage
typeface variation have been examined separatalyiran
combination with varying degrees of success, bubne
has given a concrete reason as to why these aspeats
visualization are important [Sea95][Bra97]. Evenewh
measuring proximity and clustering, little evidensgiven
to explain why these features are helpful [Bra@ajout is
also a commonly scrutinized aspect of visualizatjdout
the comparison of layout techniques frequently iregu
exhaustive user studies involving eye-tracking f5éa
which is expensive and time-consuming. Though thisse
studies can give concrete proof that one implentienta
better conveys information than does another, they
incapable of explaining the underlying reasons itelvhy
some visualizations provide more insight then doers.
We therefore aim to explain a more fundamental @ryp
that correlates strongly with preferred visualiaas.

Visualization is ultimately a field of translatiomhe goal
of every visualization is to convert raw binary alitom a
machine-readable encoding to a neural
understandable to the mind. In order to be sucolygsf
converted, this data must pass through the visystbs.
Therefore, tuning visualizations to the visual systshould
help in their effective translation or perceptidn. this
paper, we demonstrate that theories known
neuroscientists who study vision can be effectivglijzed
to find patterns in the effectiveness and prefezent
visualizations. As a first step, we replicate cotagional
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neuroscience experiments and extend them to shatv th
their image analysis techniques can be appliedn@ges
with properties similar to those of visualizationfter
inspecting measurements of these images, we appset
measurements to actual visualizations to find aetative
pattern. We then examine how this pattern’s categton

of visualizations is similar to that of the InfoVeontest
results [FGP04][GCD*05] and a timed user study eJéh
techniques could potentially contribute to the ambeament
and expansion of our understanding of visualization
perception and may help influence future visuai@at
developments and applications rooted in neuroseienc
foundations.

2. Background

For over two decades now, neuroscientists havdaestud
images of nature to better understand how our Wisua
system perceives them [Fie87][Fie93]. They havenébu
that these natural images contain distinctive stasl
regularities that random images lack and that oainb are
wired to perceive this natural stimulus [OF96][SP@ne
of the fundamental distinctions of natural imagegheir

encodingSizing and spacing which can be analyzed by ohsgtie

images’ spatial frequencies [Fie87].
2.1. Spatial frequency

Spatial frequencies are similar to sound frequencie
Sound frequencies are a measurement of compression
varied over time, whereas spatial frequencies are a
measurement of intensity varied over distance [Aie8
Since spatial frequencies can only measure a single
intensity value, brightness is commonly used.
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Figurel Left: These are examples of natural images.
Right: These plots correspond to the power speafrdne
images on the left. The x-axis is the frequencyadag
scale, and the y-axis is the amplitude which i® as a
log scale.

2.2. Fourier transforms

One way to measure the spatial frequencies of etiim
is by using Fourier transforms. Essentially, sind aosine
waves of different amplitude and frequency are ddde
together to form the intended function. These samel
cosine functions make up a Fourier series. For a tw
dimensional image, the Fourier transforms are peréol
over each line in the horizontal axis then overhdaee in
the vertical axis or vice versa. In turn, to firte ttwo-
dimensional Fourier transform of an n-by-n imagege o
must find 2n one-dimensional Fourier transforms.

2.3. Natural and unnatural images

A natural image is any picture of nature [Fie87¢tires
of a forest scene, a mountain, or a dog would Imsidered
natural images. Three examples can be seen ind-iggur
This class of images constitutes an infinitely drfralction
of all possible images [RSTO01], yet our visual eystis
precisely tuned to perceive them rather than scanget
range of image types. To measure the spatial frexyue

Figure 2 Left: These are examples of unnatural images.
The first is purely random noise. The second isdial
gradient repeated ten times. The third is just @b$ding.
Right: These plots correspond to the power speatrine
images on the left. The x-axis is the frequencyadag
scale, and the y-axis is the amplitude which i® als a
log scale.

distribution of these images, one begins by compguthe
Fourier transform. The rotational average of theo tw
dimensional result yields a more manageable, one
dimensional series also known as a power spectiiai]]
When the amplitude of this spectrum is plotted dogalog
scale as a function of frequency, the spatial feaqy
distribution can be visualized.

On the right of Figure 1, plots of the power spaedtom
the natural images are shown. These plots havelynear
straight lines with slopes of approximately -2, ehi
corresponds to anf trend. The consistency between the
plots is not trivial, as these images appear gligsimilar.
Unnatural images have very different power speéigure
2 contains three unnatural images, and on the tiggit
corresponding spatial frequency plots are showne Th
distinctness of natural images becomes more evident
these plots, as the unnatural images do not shewf th
trend. Many other papers [Fie87] have discussedustive
studies on large numbers of natural and unnaturages,
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Figure3 These images were generated by randomly Figure4 The power spectra of images generated by
placing squares with random Gaussian-fit grayscale occluding squares. Notice that the power functitays
values. The size distributions are power (a), expdial slightly above the others.

(b), linear (c), and constant (d).

and all have repeatedly found the same results. fThe l
trend sets apart natural images.
Not all natural images will have a spatial frequenc
distribution of exactly f°. Image scaling as well as window '
size and shape can be used to explain why certzgas ‘
deviate from the trend, yet whole groups of imagiesh as
sky scenes or images at a large scale have alsofbeed
to have unusual power spectra. Michael S. Langewst
that these anomalous groups make up only a snizdesof ) -
all natural images and tend to cancel out eachr atthen
large numbers of images are measured [Lan00]. Ee al
noted that these atypical natural images do notagon
structure that is rich or interesting. For visuafians, _w____l— . ]

images without interesting structure would be iratde of
providing useful insight, and the corresponding .
visualization or its scale would be undesirable.

Constant Linear Exponent Power

2.4. Sizedistribution
Figure5 The slopes of the linear trends fit to the power

Daniel Ruderman investigated the cause of natorage spectra in Figure 4.

characteristics being independent of calibratiod aisual

environment [Rud97]. Many assume that natural image of the squares is given by a power function or an
traits “result from edges, each with a power speotof exponential function. The images generated using th
1/k* [Rud97]. Ruderman disproves this belief using power function demonstrate a more natural powectspe
contradiction. Instead, he shows that statistically than those generated by the exponential function.
independent 'objects’ are the cause. These okgeetplace We have replicated Ruderman’s natural image genarat
randomly on top of each other and have a sizeiluligion test and extended it to include linear and constant
that follows a power function. The occlusion reisgjtfrom distributions along with the power and exponential
this collage of specifically sized objects produdbe distributions demonstrated in his experiment. Sasmf

observed 2 power spectrum. the generated images can be seen in Figure 3. Their
Ruderman demonstrated this premise by producingcorresponding power spectra can be seen in Figuaadia

images made up of a collage of squares. Theseexjaae linear fit was applied to the plots to obtain thepss of the

positioned randomly and given a random grayscalaeva trends in Figure 5. The trends show that the pdumsction

that follows a Gaussian distribution. The size rifistion size distribution has a slope (-2.5) that is cldses2 than
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(©) (d)
Figure 6 These Treemap [JS91] resembling images were
generated by creating rows of r-overlapping squares
with random greyscale values. The size distribtiare
power (a), exponential (b), linear(c), and constét)t

those of the others (-2.6). In other words, the g@ow
function more closely emulates natural images.

3. Extending Existing Theories

In visualization, efforts are generally made to idvo
occlusion. According to Ruderman, visualizationsuldo
therefore be incapable of having the charactesisbt
natural images. The implication is that we wouldvéha
difficulty perceiving visualizations without occlios
because their power spectra would be different thahof
our visual system. Accordingly, determining if teame
size distribution rules apply to images withoutlason is
crucial to knowing if these visualizations can dxhi
natural traits.

3.1. Images without occlusion

We proceeded to revise our image generation progmam
prevent occlusion. Doing so turned out to be maifecdlt
than creating the original program, as placememinca
simply be random. The squares need to be placeddn a
way that no square occludes any other. The reguiltiage
should form an artificial visualization with measahte
characteristics. For a given size image,rows were
created, wheren is dependant on the size distribution
formula. This sizing applies to area, not width,king n
reliant on an unexpectedly complex formula:

h> Z;\/ f [ f *(min) + 1 (ma) - £ _1(”““))]

n

In this equationf is the size distribution functioh,is the
height of the image, min is the area of the smialigsare,
and max is the area of the largest square. Theemaf
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T

-—---Linear

—— Exponent

— Power

Figure7 The power spectra of images generated by
rows of non-overlapping squares

-
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Figure8 The slope of the linear trends fit to the power
spectra of the non-overlapping squares.

non-overlapping squares can be seen in Figure @ Th
power spectra and their trends (as seen in Figuaad/
Figure 8) are similar to those of the images withlasion.
The power function’s slope is closest to -2 follalgy the
exponential, linear, and constant functions respelgt
Clearly, these images show that images without
overlapping objects can have natural charactesistic

The trends of these images have slopes that anathih
a small range of less than 5%. Such a small raegeck
too much room for these findings to result from aren
statistical anomaly. Many seemingly insignificaactors
may have been the cause of one type of scalingisgem
more natural than did another. We therefore adddess
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several potentially confounding factors in an afterto
deviate from the original outcome.

Unusual run: This particular run of the image
generating program could have resulted in a flske,
the program was run several times.

Row order: Each run had random row placement.
Orientation: The rotational average of the two-
dimensional Fourier transform treats all orientasio
equally.

Extra space: The size of the image was set tog@lyci

fit one scaling function for each run, thereby
eliminating the black bar for that particular image
Image size: Image heights varying from 500 to 1200
pixels were used.

Shape: Circles and randomized shapes were also used

Despite the variation of all these factors, the @ow
spectrum trends were not significantly affectede Tider
of the slopes always remained the same power
exponential, linear, and then constant.

All of these slopes are well within the range ofawh
could be considered a natural image [Rud97]. Howeve
due to their nearly identical values, a means of
differentiation besides slope needs to be useandeam.

3.2. Average deviation
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Figure9 The average deviation from the linear-fit trends

'of the power spectra from two natural images ad asl

the images from Figure 6.

correlate closely with the preference and perfoiceaof
actual visualizations.

4.1. Testing competition results

For one test, we looked at the InfoVis 2004 contjosti

Natural images have power spectra that adhere veryresults [FGP04]. These visualizations all used shene

closely to a straight line, while the power spectf
unnatural images are more likely to have many spémd
steep dips. To determine how closely a spectruloviglits
trend, its the average deviation was calculate@. alerage
deviation is found by averaging the absolute valfieach
point’s difference between the actual power spectand
its corresponding trend. This technique will hegietmine
a plot's linearity. The average deviations for twatural
images as well as those for the non-overlappingr&gucan
be seen in Figure 9. The natural images are siroldhe
power and exponential distributions not the linear
constant distributions.

4. Measuring Natural Visualizations

Neuroscientists have shown that our brains aredwioe
perceive natural images [Fie87][Fie93][KLO3][OF96]
[RSTO1][SOO01]. The distribution of photo receptarsthe
retina follows an 2 pattern as does the distribution of
ganglion cell receptors immediately behind thengetiThis
pattern is persistent throughout the visual corfdserefore,
visualizations that are most like natural imagesusth be
the most cognitional. In order to determine theeekiof a
visualization’s natural characteristics, we propose
measuring the slope of its power spectrum on atpgtale
as well as finding the deviation from a linearifiend. A
visualization with natural characteristics shouldvé a
slope near -2 with a minimal average deviation. Slope
is the most important factor because the deviatbra
spectrum with a slope far from -2 is unimportane Wave
shown that this metric produces predictable, repeiie
results for artificial visualizations, so the falling
examples will demonstrate that natural charactesist

© The Eurographics Association 2006.

dataset, which makes the comparison fairly objective
analyzed an image for each of the first and sequade
winners (samples of which can be seen in Figure &g
the results were better than even we expectednfagé of
each of the visualizations was taken from the Imfation
Visualization Benchmarks Repository
(http://www.cs.umd.edu/hcil/InfovisRepository/cosite
2004/). The images were then converted to graysmade
truncated to be square in size, as shown in . Bffeere
made to only truncate blank space around the sMies.
then performed a spectral analysis of each ofrtiages.

To compare the results, we found the distance oh ea
slope from -2. Incredibly, all of the first placenmers had
slopes within .4 of -2, while the second place ersnwere
mostly outside of that range. Figure 11 shows arble
discernable distinction between the first and sdcplace
winners. The judges must have an unconscious prefer
for visualizations that are similar to natural ireagas their
evaluation accurately reflected the visualizationatural
measurements. The spatial frequencies have actually

Figure10 Here are select thumbnails from thefoVis
2004 contest. The left two visualizations receilstplace
prizes. The rigt visualization received a 2nd place prize.
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InfoVis Contest 2004
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Figure11l This graph shows our analysis results from the
2004 Infovis contest. We measured the distancehef t
linear-fit trend from -2. We then took the averagd¢hose
who came in first place and those who came in stcon
place. e error bars show the total range for each rank.

InfoVis Contest 2005
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Figure12 In the results from the 2005 Infovis contest, a
pattern between the first place, second place,
honorable mention averages is clearly prevalente Th
error bars show the total range for each rank. éfiithe
entrants’ images can be found at http:
[livpr.cs.uml.edu/infovis(

quantified the judges’ preferences.

To show that this was not a fluke, we tested tkelts of
the next year's competition [GCD*05] as well, arftet
results were even clearer due to the inclusion of a
‘honorable mention’ category (see Figure 12).

4.2. Testing user performance

Beyond simply predicting competition results, wen ca
also show that a visualization’s natural charastes
correlate with users’ performance. To test the rexdé this
property, we analyzed the results of a user stufly o
hierarchical visualizations .

The experiment’s purpose was to time a user’stghii
find structural similarities and differences within
hierarchical data. The experiment looked at thnéerfaces
that implement different hierarchical visualizagorEach
user was assigned one interface which they coutdtos
answer to six questions. The experimenters theorded
the time taken to answer each question. An impbrtan
aspect of this experiment is that, as with the Vigo
competitions, everyone in the experiment used tiaes
data. This aspect helps reduce unforeseen inflgemcehe
results.

After examining the average time taken by the usérs
each interface for each question, the experimeritensd
that Windows Explorer had the worst times, and the
treemap and RINGS interfaces generally had sirtiilaes.
We then used the information to correlate the tiadeen
with the power spectra of screenshots. In this,casenot
only looked for the relative order of the power cp&'s
slopes, but we also looked at the ratio of thosmes
compared to the ratio of the times.

The results of the initial images analysis were
predictable; Explorer has a power spectrum thégrifrom
the natural standard, whereas the other two havee mo
natural traits. We then plotted the correlatiorwsetn the
average response time and the distance of the power
spectrum slope from -2 (Figure 13). Half of the stiens
had correlations with absolute values of around 9Afer
examining the differences between the stronglyaedkly
correlated questions, we found that the stronglyetated
questions required users to look for data that tiveye
unlikely to have seen in a previous question. lhept
words, most of the weakly correlated questions were
follow-up questions. For example, question one asie

Response time and Naturalness
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0.6 q

0.5 4

0.4 4
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o [Slope +2| /
awg time
0.3 4
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0.1+

1 2 3 4 5 6

Question #

Figure 13 The absolute value of the correlation between
the user response time for each interface and the
respective naturalness of a screenshot of that @nag
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Figure14 These are treemaps generated using power (to@adiimiddle), and constant (bottom) size distribng. Their
corresponding power spectra are next to them. dtie low average deviation for the power function.

find similar folders and question two asked to fivery” observation is made evident by our fascination vvilstals
similar folders. A probable cause of the distinctin [PS88] which have repeating shapes and frequeathg la
correlation is that the influence of naturalness am power spectrum just below  [Sch92]. A possible
interface is strongest while the user is unfamifiad still implication is that visualizations are preferrecedo their

learning; whereas it is less influential once trseruhas appearance rather than their ability to enhancenitiog.
memorized some of the information. Our generalifigds On the other hand, these qualities may not nedgsbar
that a user’s ability to extracgewinformation has a strong mutually exclusive, as the distinction between anid
correlation with the power spectrum of the integfased. utility may not necessarily exist. Obviously thisegtion
leaves much room for research.
5. Improving visualizations
7. Limitations and future work

We have demonstrated a technique for analyzing ésag
to retrieve information about their natural chagsistics. One should note that this measurement techniqus doe
The resemblance of a visualization to a naturalgenhas have limitations. The metric only gauges the sizamgl
been shown to strongly relate with both competitiesults spacing in a visualization. It does not directlyalenate
and user performance. A problem with using image other aspects such as color or font variety. Mogeoit
analysis, however, is that it only gives the exteft does not even provide appreciably helpful feedbasko
naturalness, not the cause. A question therebysaris the cause of a visualization’s unnatural evaluatidbhe
whether this knowledge can be used as a guidetinéhé only appreciable feedback for improvement giventloy
design of visualizations. power spectrum is a rough estimation of the

A likely culprit for an unnatural visualization ithe underrepresented and overrepresented frequencies. T
underlying data. Fitting a visualization’s dataagpower broaden the encompassment of the measurementse futu
function can make resulting visualizations moreuredt work could be done to observe the power spectrueaoh
and treemaps can be used to test that theory. Bem of the colors in a visualization or to study théluance of
[BS02] are a variation of the unoccluding imagesnifr text sizing and distribution.
Section 3.1. When applying the color and size ithigtion Another limitation is the inability to use poweregra as
methods from that section to treemaps, similarltesare an all encompassing, exclusive means of visuatimati
produced. Constant, linear, exponential, and power measurement. A correlation is not causality. Altjou
distributions produce power spectra neaf,fand their natural characteristics show a non-random prevalénc
average deviations decrease respectively. Theggesrand preferred visualizations, some visualizations withry
their results can be seen in Figure 14. The imfitioa of unnatural appearances are useful for certain tasks.
these findings mean that the size distribution of a spreadsheet, for example, is probably the mostctfte
visualization’s data can help determine the vigadion's visualization if the row and column of the desired

natural qualities. Consequentially, distorting datafit a information is known. Nevertheless, the spreadshesta

power distribution may improve the resulting viseation. highly unnatural power spectrum due to its regtyaifhe
natural properties needed for an effective visadilin

6. Utility or art might be determined by the task being performed. An

L . ) . o interesting future study could compare the natesdrand
Questioning what is being measured by a visuabz&i  performance of visualizations with the type of taming
closeness to a natural image is essential. We ate  nherformed. If large numbers of similar visualizatowere
established any causality between naturalness ancgollected, one could also study the how the Fourier
visualization quality. They may both be caused bn&  transform is affected by the type of visualizatiand its
other factor. A likely candidate for influencingtnealness  gntents. Fourier transforms have been shown tapable
and our preference of one visualization over amotee  of categorizing natural images and determining rthei
aesthetic appeal. Art is usually found to haveisties  contents [TO03]. This approach might be also applie to
similar to those of a natural image [RSTO1][Sch9d)is  yisyalizations for the purpose of content recognitior
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automated feature extraction. We should also nb&t t [Fie87] Field D. J.: Relations between the statsstof

spatial frequency is not the only property of aunait natural images and the response properties ofcabrti
image, and testing for other natural properties hinig cells. Journal of the Optical Society of Americd,
provide more insight. 4(12):2379-2394, December 1987.

Further research of this metric’s implications niegp in [Fie93] Field D. J.: Scale-invariance and self-&ami
understanding how insight is obtained from datac&ithis ‘wavelet’ transforms: An analysis of natural scemes!
measurement shows how well our visual system igtada mammalian visual systems. M. Farge, J. Hunt, and J.
to perceiving an image, we may have a better whitit Vassilicos, editors.Wavelets, Fractals and Fourier
focus and extract information when that informatisn transforms: New Development and New Applications
presented naturally. Past research has studiedpine of pages 151-193. Oxford University Press, 1993.
natural stimulus and found that it has a very spars [GCD*05] Grinstein G., Cvek U., Derthick M., Trutsc
representation in the brain [OF96]. If the integdor data M.: IEEE InfoVis 2005 Contest, Technology Data fire t
is efficiently processed by the brain, more attamtnay be UsS, http://ivpr.cs.um . edu/infovis05

available to focus on the data that the interfacying to [JS91] Johnson B., Shneiderman B.: Tree-maps: Aespa
convey. By naturalizing a visualization, we may be filing approach to the visualization of hierarchic

streamlining the process of perception. With mesearch, information  structures. Proceedings of IEEE
a more concrete neurological foundation for esshiig Visualization1991 Conference, pages 284-291, 1991.
visualization utility might result. [KLO3] Karklin Y., Lewicki M.: Learning higher orde

structures in natural imagebletwork: Computation in
8. Conclusions Neural Systemd 4:483-499, 2003.

. [Lan00] Langer M. S.: Large-scale failuresfdf scaling in

We have shown a strong correlation between therlatu  * aqral image spectrdournal of the Optical Society of
characteristics of a visualization and its prefeesrand America 17:28-33, 2000.
performance. This underlying principle has beerltup [OF96] Olshausen B., Field D. J.: Natural imagdistias
from testlng abstract nonrepresentational _|mageis_hﬁs and efficient codingNetwork: Computation in Neural
been combined with work already done in the fietds Systems7:333-339, 1996.
neuroscience and computer vision. When applied to [PS88] Peitgen H., Saupe D. editors. The Sciendeattal
visualization, a metric based on natural imageassteg has Images. Springer-Verlag, New York, 1988.
been shown to be consistent with assumed prefer@mte [RSTO1] Reinhard E. Shfrley P. Tr;)scianko T.: Nat

competition results regardless of the use of ocmhusThis image statistics for computer graphics. Technicepadrt

connection has been demonstrated both theoretieaity UUCS-01-002, School of Computing, University of bita
practically, and it shows that we can take advantagour March 2001. ' '
brain’s enhanced receptivity to natural images. ¢doity, [Rud97] Ruderman D.: Origins of scaling in natural

we can use this pattern for preferred visualizatiao images\Vision ResearciB7(23):3385-3398, 1997.

design future visualizations that, by their veryune, can [Sch92] Schroeder M.: Fractals, Chaos, Power Laws:

better appeal to the human visual system. Minutes from an Infinite Paradise. W.H. Freeman &
Company, 1992.
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