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1. Introduction 

Many have tried to define or explain what properties 
make for an effective visualization [Sea95][Shn96][Tuf90]. 
Elements such as aspect ratio, density, color usage, and 
typeface variation have been examined separately and in 
combination with varying degrees of success, but no one 
has given a concrete reason as to why these aspects of a 
visualization are important [Sea95][Bra97]. Even when 
measuring proximity and clustering, little evidence is given 
to explain why these features are helpful [Bra97]. Layout is 
also a commonly scrutinized aspect of visualizations, but 
the comparison of layout techniques frequently requires 
exhaustive user studies involving eye-tracking [Sea95], 
which is expensive and time-consuming. Though these user 
studies can give concrete proof that one implementation 
better conveys information than does another, they are 
incapable of explaining the underlying reasons behind why 
some visualizations provide more insight then do others. 
We therefore aim to explain a more fundamental property 
that correlates strongly with preferred visualizations.  

Visualization is ultimately a field of translation. The goal 
of every visualization is to convert raw binary data from a 
machine-readable encoding to a neural encoding 
understandable to the mind. In order to be successfully 
converted, this data must pass through the visual system. 
Therefore, tuning visualizations to the visual system should 
help in their effective translation or perception. In this 
paper, we demonstrate that theories known to 
neuroscientists who study vision can be effectively utilized 
to find patterns in the effectiveness and preference of 
visualizations. As a first step, we replicate computational 

neuroscience experiments and extend them to show that 
their image analysis techniques can be applied to images 
with properties similar to those of visualizations. After 
inspecting measurements of these images, we apply those 
measurements to actual visualizations to find a correlative 
pattern. We then examine how this pattern’s categorization 
of visualizations is similar to that of the InfoVis contest 
results [FGP04][GCD*05] and a timed user study . These 
techniques could potentially contribute to the advancement 
and expansion of our understanding of visualization 
perception and may help influence future visualization 
developments and applications rooted in neuroscience 
foundations. 

2. Background 

For over two decades now, neuroscientists have studied 
images of nature to better understand how our visual 
system perceives them [Fie87][Fie93]. They have found 
that these natural images contain distinctive statistical 
regularities that random images lack and that our brains are 
wired to perceive this natural stimulus [OF96][SO01]. One 
of the fundamental distinctions of natural images is their 
sizing and spacing which can be analyzed by observing the 
images’ spatial frequencies [Fie87]. 

2.1. Spatial frequency 

Spatial frequencies are similar to sound frequencies. 
Sound frequencies are a measurement of compression 
varied over time, whereas spatial frequencies are a 
measurement of intensity varied over distance [Fie87]. 
Since spatial frequencies can only measure a single 
intensity value, brightness is commonly used. 
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2.2. Fourier transforms 

One way to measure the spatial frequencies of a function 
is by using Fourier transforms. Essentially, sine and cosine 
waves of different amplitude and frequency are added 
together to form the intended function. These sine and 
cosine functions make up a Fourier series. For a two 
dimensional image, the Fourier transforms are performed 
over each line in the horizontal axis then over each line in 
the vertical axis or vice versa. In turn, to find the two-
dimensional Fourier transform of an n-by-n image, one 
must find 2n one-dimensional Fourier transforms. 

2.3. Natural and unnatural images 

A natural image is any picture of nature [Fie87]. Pictures 
of a forest scene, a mountain, or a dog would be considered 
natural images. Three examples can be seen in Figure 1. 
This class of images constitutes an infinitely small fraction 
of all possible images [RST01], yet our visual system is 
precisely tuned to perceive them rather than some larger 
range of image types. To measure the spatial frequency 

distribution of these images, one begins by computing the 
Fourier transform. The rotational average of the two 
dimensional result yields a more manageable, one 
dimensional series also known as a power spectrum [Wei]. 
When the amplitude of this spectrum is plotted on a log-log 
scale as a function of frequency, the spatial frequency 
distribution can be visualized.  

On the right of Figure 1, plots of the power spectra from 
the natural images are shown. These plots have nearly 
straight lines with slopes of approximately -2, which 
corresponds to an f -2 trend. The consistency between the 
plots is not trivial, as these images appear quite dissimilar. 
Unnatural images have very different power spectra. Figure 
2 contains three unnatural images, and on the right their 
corresponding spatial frequency plots are shown. The 
distinctness of natural images becomes more evident in 
these plots, as the unnatural images do not show the f -2 
trend. Many other papers [Fie87] have discussed exhaustive 
studies on large numbers of natural and unnatural images, 

 
 
Figure 1 Left: These are examples of natural images. 
Right: These plots correspond to the power spectra of the 
images on the left. The x-axis is the frequency on a log 
scale, and the y-axis is the amplitude which is also on a 
log scale. 

 

 
Figure 2 Left: These are examples of unnatural images. 
The first is purely random noise. The second is a radial 
gradient repeated ten times. The third is just a scribbling. 
Right: These plots correspond to the power spectra of the 
images on the left. The x-axis is the frequency on a log 
scale, and the y-axis is the amplitude which is also on a 
log scale. 
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and all have repeatedly found the same results. The f -2 
trend sets apart natural images. 

Not all natural images will have a spatial frequency 
distribution of exactly f -2. Image scaling as well as window 
size and shape can be used to explain why certain images 
deviate from the trend, yet whole groups of images such as 
sky scenes or images at a large scale have also been found 
to have unusual power spectra. Michael S. Langer showed 
that these anomalous groups make up only a small subset of 
all natural images and tend to cancel out each other when 
large numbers of images are measured [Lan00]. He also 
noted that these atypical natural images do not contain 
structure that is rich or interesting. For visualizations, 
images without interesting structure would be incapable of 
providing useful insight, and the corresponding 
visualization or its scale would be undesirable. 

2.4. Size distribution 

Daniel Ruderman investigated the cause of natural image 
characteristics being independent of calibration and visual 
environment [Rud97]. Many assume that natural image 
traits “result from edges, each with a power spectrum of 
1/k2” [Rud97]. Ruderman disproves this belief using 
contradiction. Instead, he shows that statistically 
independent ’objects’ are the cause. These objects are place 
randomly on top of each other and have a size distribution 
that follows a power function. The occlusion resulting from 
this collage of specifically sized objects produces the 
observed f -2 power spectrum.  

Ruderman demonstrated this premise by producing 
images made up of a collage of squares. These squares are 
positioned randomly and given a random grayscale value 
that follows a Gaussian distribution. The size distribution 

of the squares is given by a power function or an 
exponential function. The images generated using the 
power function demonstrate a more natural power spectrum 
than those generated by the exponential function. 

We have replicated Ruderman’s natural image generation 
test and extended it to include linear and constant 
distributions along with the power and exponential 
distributions demonstrated in his experiment. Samples of 
the generated images can be seen in Figure 3. Their 
corresponding power spectra can be seen in Figure 4, and a 
linear fit was applied to the plots to obtain the slopes of the 
trends in Figure 5. The trends show that the power function 
size distribution has a slope (-2.5) that is closer to -2 than 

      
  (a)            (b) 

       
  (c)            (d) 
Figure 3  These images were generated by randomly 
placing squares with random Gaussian-fit grayscale 
values. The size distributions are power (a), exponential 
(b), linear (c), and constant (d). 

 
 

Figure 4 The power spectra of images generated by 
occluding squares. Notice that the power function stays 
slightly above the others. 

 
 
Figure 5 The slopes of the linear trends fit to the power 
spectra in Figure 4.  
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those of the others (-2.6). In other words, the power 
function more closely emulates natural images.  

3. Extending Existing Theories 

In visualization, efforts are generally made to avoid 
occlusion. According to Ruderman, visualizations would 
therefore be incapable of having the characteristics of 
natural images. The implication is that we would have 
difficulty perceiving visualizations without occlusion 
because their power spectra would be different than that of 
our visual system. Accordingly, determining if the same 
size distribution rules apply to images without occlusion is 
crucial to knowing if these visualizations can exhibit 
natural traits. 

3.1. Images without occlusion 

We proceeded to revise our image generation program to 
prevent occlusion. Doing so turned out to be more difficult 
than creating the original program, as placement cannot 
simply be random. The squares need to be placed in such a 
way that no square occludes any other. The resulting image 
should form an artificial visualization with measurable 
characteristics. For a given size image, n rows were 
created, where n is dependant on the size distribution 
formula. This sizing applies to area, not width, making n 
reliant on an unexpectedly complex formula:  
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In this equation, f is the size distribution function, h is the 
height of the image, min is the area of the smallest square, 
and max is the area of the largest square. The images of 

non-overlapping squares can be seen in Figure 6. The 
power spectra and their trends (as seen in Figure 7 and 
Figure 8) are similar to those of the images with occlusion. 
The power function’s slope is closest to -2 followed by the 
exponential, linear, and constant functions respectively. 
Clearly, these images show that images without 
overlapping objects can have natural characteristics. 

The trends of these images have slopes that are all within 
a small range of less than 5%. Such a small range leaves 
too much room for these findings to result from a mere 
statistical anomaly. Many seemingly insignificant factors 
may have been the cause of one type of scaling seeming 
more natural than did another. We therefore addressed 

  
     (a)        (b) 

  
     (c)        (d) 
Figure 6 These Treemap [JS91] resembling images were 
generated by creating rows of non-overlapping squares 
with random greyscale values. The size distributions are 
power (a), exponential (b), linear(c), and constant (d). 

 
 
Figure 7  The power spectra of images generated by 
rows of non-overlapping squares 

 
 
Figure 8  The slope of the linear trends fit to the power 
spectra of the non-overlapping squares. 
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several potentially confounding factors in an attempt to 
deviate from the original outcome.  

• Unusual run: This particular run of the image 
generating program could have resulted in a fluke, so 
the program was run several times.  

• Row order: Each run had random row placement.  
• Orientation: The rotational average of the two-

dimensional Fourier transform treats all orientations 
equally.  

• Extra space: The size of the image was set to precisely 
fit one scaling function for each run, thereby 
eliminating the black bar for that particular image.  

• Image size: Image heights varying from 500 to 1200 
pixels were used.  

• Shape: Circles and randomized shapes were also used. 
Despite the variation of all these factors, the power 

spectrum trends were not significantly affected. The order 
of the slopes always remained the same - power, 
exponential, linear, and then constant.  

All of these slopes are well within the range of what 
could be considered a natural image [Rud97]. However, 
due to their nearly identical values, a means of 
differentiation besides slope needs to be used in tandem.  

3.2. Average deviation 

Natural images have power spectra that adhere very 
closely to a straight line, while the power spectra of 
unnatural images are more likely to have many spikes and 
steep dips. To determine how closely a spectrum follows its 
trend, its the average deviation was calculated. The average 
deviation is found by averaging the absolute value of each 
point’s difference between the actual power spectrum and 
its corresponding trend. This technique will help determine 
a plot’s linearity. The average deviations for two natural 
images as well as those for the non-overlapping squares can 
be seen in Figure 9. The natural images are similar to the 
power and exponential distributions not the linear or 
constant distributions. 

4. Measuring Natural Visualizations 

Neuroscientists have shown that our brains are wired to 
perceive natural images [Fie87][Fie93][KL03][OF96] 
[RST01][SO01]. The distribution of photo receptors in the 
retina follows an f -2 pattern as does the distribution of 
ganglion cell receptors immediately behind the retina. This 
pattern is persistent throughout the visual cortex. Therefore, 
visualizations that are most like natural images should be 
the most cognitional. In order to determine the extent of a 
visualization’s natural characteristics, we propose 
measuring the slope of its power spectrum on a loglog scale 
as well as finding the deviation from a linear-fit trend. A 
visualization with natural characteristics should have a 
slope near -2 with a minimal average deviation. The slope 
is the most important factor because the deviation of a 
spectrum with a slope far from -2 is unimportant. We have 
shown that this metric produces predictable, reproducible 
results for artificial visualizations, so the following 
examples will demonstrate that natural characteristics 

correlate closely with the preference and performance of 
actual visualizations.  

4.1. Testing competition results 

For one test, we looked at the InfoVis 2004 competition 
results [FGP04]. These visualizations all used the same 
dataset, which makes the comparison fairly objective. We 
analyzed an image for each of the first and second place 
winners (samples of which can be seen in Figure 10), and 
the results were better than even we expected. An image of 
each of the visualizations was taken from the Information 
Visualization Benchmarks Repository 
(http://www.cs.umd.edu/hcil/InfovisRepository/contest-
2004/). The images were then converted to grayscale and 
truncated to be square in size, as shown in . Efforts were 
made to only truncate blank space around the sides. We 
then performed a spectral analysis of each of the images. 

To compare the results, we found the distance of each 
slope from -2. Incredibly, all of the first place winners had 
slopes within .4 of -2, while the second place winners were 
mostly outside of that range. Figure 11 shows a clearly 
discernable distinction between the first and second place 
winners. The judges must have an unconscious preference 
for visualizations that are similar to natural images, as their 
evaluation accurately reflected the visualizations’ natural 
measurements. The spatial frequencies have actually 

 
Figure 9 The average deviation from the linear-fit trends 
of the power spectra from two natural images as well as 
the images from Figure 6. 

 

   
 
Figure 10 Here are select thumbnails from the InfoVis 
2004 contest. The left two visualizations received 1st place 
prizes. The right visualization received a 2nd place prize. 
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quantified the judges’ preferences.  
To show that this was not a fluke, we tested the results of 

the next year’s competition [GCD*05] as well, and the 
results were even clearer due to the inclusion of an 
‘honorable mention’ category (see Figure 12). 

4.2. Testing user performance 

Beyond simply predicting competition results, we can 
also show that a visualization’s natural characteristics 
correlate with users’ performance. To test the extent of this 
property, we analyzed the results of a user study of 
hierarchical visualizations . 

The experiment’s purpose was to time a user’s ability to 
find structural similarities and differences within 
hierarchical data. The experiment looked at three interfaces 
that implement different hierarchical visualizations. Each 
user was assigned one interface which they could use to 
answer to six questions. The experimenters then recorded 
the time taken to answer each question. An important 
aspect of this experiment is that, as with the InfoVis 
competitions, everyone in the experiment used the same 
data. This aspect helps reduce unforeseen influences on the 
results. 

After examining the average time taken by the users of 
each interface for each question, the experimenters found 
that Windows Explorer had the worst times, and the 
treemap and RINGS interfaces generally had similar times. 
We then used the information to correlate the time taken 
with the power spectra of screenshots. In this case, we not 
only looked for the relative order of the power spectra’s 
slopes, but we also looked at the ratio of those slopes 
compared to the ratio of the times.  

The results of the initial images analysis were 
predictable; Explorer has a power spectrum that is far from 
the natural standard, whereas the other two have more 
natural traits. We then plotted the correlation between the 
average response time and the distance of the power 
spectrum slope from -2 (Figure 13). Half of the questions 
had correlations with absolute values of around 90%. After 
examining the differences between the strongly and weakly 
correlated questions, we found that the strongly correlated 
questions required users to look for data that they were 
unlikely to have seen in a previous question. In other 
words, most of the weakly correlated questions were 
follow-up questions. For example, question one asked to 

 
Figure 11 This graph shows our analysis results from the 
2004 Infovis contest. We measured the distance of the 
linear-fit trend from -2. We then took the average of those 
who came in first place and those who came in second 
place. The error bars show the total range for each rank. 

 

 
Figure 12 In the results from the 2005 Infovis contest, a 
pattern between the first place, second place, and 
honorable mention averages is clearly prevalent. The 
error bars show the total range for each rank. All of the 
entrants’ images can be found at http: 
//ivpr.cs.uml.edu/infovis05 

 

Response time and Naturalness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Question #

C
o

rr
el

at
io

n

|Slope +2| /
avg time

 
 

Figure 13 The absolute value of the correlation between 
the user response time for each interface and the 
respective naturalness of a screenshot of that image 
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find similar folders and question two asked to find “very” 
similar folders. A probable cause of the distinction in 
correlation is that the influence of naturalness on an 
interface is strongest while the user is unfamiliar and still 
learning; whereas it is less influential once the user has 
memorized some of the information. Our general finding is 
that a user’s ability to extract new information has a strong 
correlation with the power spectrum of the interface used. 

5. Improving visualizations 

We have demonstrated a technique for analyzing images 
to retrieve information about their natural characteristics. 
The resemblance of a visualization to a natural image has 
been shown to strongly relate with both competition results 
and user performance. A problem with using image 
analysis, however, is that it only gives the extent of 
naturalness, not the cause. A question thereby arises of 
whether this knowledge can be used as a guideline for the 
design of visualizations. 

A likely culprit for an unnatural visualization is the 
underlying data. Fitting a visualization’s data to a power 
function can make resulting visualizations more natural, 
and treemaps can be used to test that theory. Treemaps 
[BS02] are a variation of the unoccluding images from 
Section 3.1. When applying the color and size distribution 
methods from that section to treemaps, similar results are 
produced. Constant, linear, exponential, and power 
distributions produce power spectra near f -2, and their 
average deviations decrease respectively. These images and 
their results can be seen in Figure 14. The implications of 
these findings mean that the size distribution of a 
visualization’s data can help determine the visualization’s 
natural qualities. Consequentially, distorting data to fit a 
power distribution may improve the resulting visualization.  

6. Utility or art 

Questioning what is being measured by a visualization’s 
closeness to a natural image is essential. We have not 
established any causality between naturalness and 
visualization quality. They may both be caused by some 
other factor. A likely candidate for influencing naturalness 
and our preference of one visualization over another is 
aesthetic appeal. Art is usually found to have statistics 
similar to those of a natural image [RST01][Sch92]. This 

observation is made evident by our fascination with fractals 
[PS88] which have repeating shapes and frequently have a 
power spectrum just below f -2 [Sch92]. A possible 
implication is that visualizations are preferred due to their 
appearance rather than their ability to enhance cognition. 
On the other hand, these qualities may not necessarily be 
mutually exclusive, as the distinction between art and 
utility may not necessarily exist. Obviously this question 
leaves much room for research. 

7. Limitations and future work 

One should note that this measurement technique does 
have limitations. The metric only gauges the sizing and 
spacing in a visualization. It does not directly evaluate 
other aspects such as color or font variety. Moreover, it 
does not even provide appreciably helpful feedback as to 
the cause of a visualization’s unnatural evaluation. The 
only appreciable feedback for improvement given by the 
power spectrum is a rough estimation of the 
underrepresented and overrepresented frequencies. To 
broaden the encompassment of the measurements, future 
work could be done to observe the power spectrum of each 
of the colors in a visualization or to study the influence of 
text sizing and distribution.  

Another limitation is the inability to use power spectra as 
an all encompassing, exclusive means of visualization 
measurement. A correlation is not causality. Although 
natural characteristics show a non-random prevalence in 
preferred visualizations, some visualizations with very 
unnatural appearances are useful for certain tasks. A 
spreadsheet, for example, is probably the most effective 
visualization if the row and column of the desired 
information is known. Nevertheless, the spreadsheet has a 
highly unnatural power spectrum due to its regularity. The 
natural properties needed for an effective visualization 
might be determined by the task being performed. An 
interesting future study could compare the naturalness and 
performance of visualizations with the type of task being 
performed. If large numbers of similar visualizations were 
collected, one could also study the how the Fourier 
transform is affected by the type of visualization and its 
contents. Fourier transforms have been shown to be capable 
of categorizing natural images and determining their 
contents [TO03]. This approach might be also applicable to 
visualizations for the purpose of content recognition or 

 
 
Figure 14 These are treemaps generated using power (top), linear (middle), and constant (bottom) size distributions. Their 
corresponding power spectra are next to them. Notice the low average deviation for the power function. 
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automated feature extraction. We should also note that 
spatial frequency is not the only property of a natural 
image, and testing for other natural properties might 
provide more insight. 

Further research of this metric’s implications may help in 
understanding how insight is obtained from data. Since this 
measurement shows how well our visual system is adapted 
to perceiving an image, we may have a better ability to 
focus and extract information when that information is 
presented naturally. Past research has studied perception of 
natural stimulus and found that it has a very sparse 
representation in the brain [OF96]. If the interface for data 
is efficiently processed by the brain, more attention may be 
available to focus on the data that the interface is trying to 
convey. By naturalizing a visualization, we may be 
streamlining the process of perception. With more research, 
a more concrete neurological foundation for establishing 
visualization utility might result. 

8. Conclusions 

We have shown a strong correlation between the natural 
characteristics of a visualization and its preference and 
performance. This underlying principle has been built up 
from testing abstract nonrepresentational images and has 
been combined with work already done in the fields of 
neuroscience and computer vision. When applied to 
visualization, a metric based on natural image statistics has 
been shown to be consistent with assumed preference and 
competition results regardless of the use of occlusion. This 
connection has been demonstrated both theoretically and 
practically, and it shows that we can take advantage of our 
brain’s enhanced receptivity to natural images. Hopefully, 
we can use this pattern for preferred visualizations to 
design future visualizations that, by their very nature, can 
better appeal to the human visual system. 
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