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Abstract

Direct Volume Rendering (DVR) is known to be of diagnostic value in the analysis of medical data sets. However,
its deployment in everyday clinical use has so far been limited. Two major challenges are that the current methods
for Transfer Function (TF) construction are too complex and that the tissue separation abilities of the TF need
to be extended. In this paper we propose the use of histogram analysis in local neighborhoods to address both
these conflicting problems. To reduce TF construction difficulty, we introduce Partial Range Histograms in an
automatic tissue detection scheme, which in connection with Adaptive Trapezoids enable efficient TF design. To
separate tissues with overlapping intensity ranges, we propose a fuzzy classification based on local histograms as
a second TF dimension. This increases the power of the TF, while retaining intuitive presentation and interaction.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tion; I.3.6 [Computer Graphics]: Methodology and Techniques; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism;

1. Introduction

Direct Volume Rendering (DVR) has been used in medical
visualization research for many years and it is well known
that DVR can be of significant diagnostic value when an-
alyzing medical image volumes. The need for and bene-
fit of DVR methods are underlined by the fact that tradi-
tional slice-by-slice viewing is becoming increasingly diffi-
cult [And03] for the large data sets produced in the current
generation of imaging modalities. Furthermore, it has been
shown that many types of clinical work benefit greatly from
DVR, utilizing the exploratory possibilities of flexible Trans-
fer Functions (TFs) and interactive data navigation.

In spite of its great potential DVR has not yet reached
widespread use in non-research medical imaging. This paper
addresses two, in our view, major obstacles for deployment
of DVR in everyday clinical practice. In both cases, we make
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use of local histograms, i.e. properties that can be expressed
in terms of histogram contents for local neighborhoods.

The first problem of DVR usage in the medical context
is the high complexity of TF design. The currently avail-
able tools for TF construction and editing seldom remove the
need for time-consuming manual adjustment. There is thus
an urgent need to bring a substantial amount of automation
into the design of TFs. This problem is particularly perti-
nent when dealing with MRI (Magnetic Resonance Imaging)
data.

The traditional guiding tool used to find tissues of interest
on the intensity scale is the global histogram. However, these
tissues are often minor features, making their contribution
invisible in the global histogram. We propose an automatic
exhaustive detection of tissues, introducing Partial Range
Histograms (PRHs) as a key concept. A PRH is populated by
local neighborhoods in the data set that give a large footprint
in a partial intensity range. Thereby the PRH can effectively
expose obscured minor peaks. In combination, we introduce
Adaptive Trapezoids that enable simple TF generation from
the detected peaks represented by the PRHs.
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The second problem of focus in this paper is a limita-
tion of 1D TFs, namely the failure to separate tissues with
overlapping intensity ranges. We approach this problem by
deriving neighborhood characteristics to make a fuzzy clas-
sification of the voxels in the overlapping range. The clas-
sification value is used as a second attribute for the voxels,
which in connection with a 2D TF results in an enhanced
rendering. The second TF dimension is constructed as a lin-
ear interpolation of the tissue-specific trapezoids, avoiding
added complexity for the user.

Our TF framework is based on traditional color-opacity
trapezoids. This model fits a work flow that we believe is
very intuitive: to identify materials in an intensity scale and
then assign visual features to them. Our focus is on medi-
cal DVR, but we believe that the methods are applicable to
other DVR domains as well. The major contributions are the
following:

• Automatic exhaustive peak detection based on Partial
Range Histograms

• Simplified TF construction using Adaptive Trapezoids
• Extended TF capabilities using classification probability

as a second TF dimension

2. Related work

The difficulty of TF construction is a problem that has been
acknowledged in previous research. Bajaj et al. [BPS97] in-
troduced the Contour Spectrum, which analyzes isosurface
properties for the whole intensity value range. The primary
use is to guide a choice of appropriate values for isosurfac-
ing. A different TF design technique is to automatically ren-
der many thumbnails with various TF settings and let the
user explore that ”gallery” [HHKP96, MAB∗97]. There is a
similar approach in the medical context [KG01], where the
user interface has several levels of complexity for the user to
choose from. Another way to avoid traditional TF construc-
tion is data probing, where multiple voxel attributes can be
automatically integrated in the rendering [TLM03].

TF construction is closely related to classification chal-
lenges. Segmentation methods in medical imaging often em-
ploy specialized models based on domain knowledge for the
task at hand. One recent example is a method to segment
hip joints [ZSS∗03]. It is difficult to extend these methods
into general-purpose tools, since time-consuming user inter-
action would be required in many situations. A commonly
addressed problem of MRI data sets is the Partial Volume
effect, i.e. that a voxel can contain multiple tissues. Small
neighborhoods have been used to reconstruct the tissue com-
position within each voxel [LFB98]. This subvoxel classifi-
cation task is not addressed in this paper.

Two-dimensional TFs were introduced in 1988 by Levoy
[Lev88], suggesting gradient magnitude as a second dimen-
sion. Kindlmann and Durkin [KD98] proposed a TF model
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Figure 1: Histogram of MR renal arteries data set, full and
magnified scale. The main peak completely dominates the
minor peak from the arteries (orange), which is the interest-
ing tissue. In full scale, the artery peak is hardly visible.

by adding the first and second derivative along the gradi-
ent direction as extra attributes for a voxel. This 3D his-
togram yields good separation of material boundaries and
enables a more advanced rendering. This model has been
extended with TF design tools [KKH02], among others a
data probe with which a user can capture local character-
istics. Curvature-based TFs classify surfaces according to
their shape and have been shown to add visualization pos-
sibilities [HKG00], [KWTM03], e.g. separation within an
isosurface.

Recent work by Lum and Ma [LM04] also explores visu-
alization of material boundaries. During rendering, an addi-
tional gradient aligned sample is retrieved, capturing bound-
ary properties. With two scalars for each sample, a 2D light-
ing TF can be applied. As a preliminary result, this addi-
tional attribute is used for one case of material classification.

It is worth noting that the above multidimensional TFs are
primarily intended to display material boundaries. This type
of rendering is not sufficient for the tasks of medical visual-
ization. One reason is inherent noise that distorts the bound-
aries [PBSK00], another is that the density of a tissue is often
important for the diagnostic work. There are methods that go
further than pure boundary analysis, by deriving local struc-
ture properties as a base for classification [SWB∗00]. How-
ever, separation of unstructured tissues of similar intensity is
not addressed by neither structure nor gradient approaches.

3. Automatic exhaustive tissue detection

In MRI, volume rendering is a very rare tool. MRI data sets
have the great drawback compared to CT data sets that there
is no calibrated intensity scale. The global histogram is then
the main guide when designing TFs. The task of identifying
tissues in the histogram would be easy if they corresponded
to visible peaks. However, this is seldom the case, an exam-
ple is seen in figure 1. The single dominant peak consists
of unimportant features. We propose an unsupervised detec-
tion scheme based on the PRH concept, aiming at finding all
tissues in the histogram.
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3.1. Partial Range Histograms

A PRH is the histogram for a set of neighborhoods that are
typical for a given intensity range. The neighborhoods can
have arbitrary shape, but must fill the volume and be non-
overlapping. We use PRHs based on cubic block neighbor-
hoods. To select the blocks to be part of a PRH, we define
the range weight wr, see equation 1, measuring the size of
the neighborhood footprint in the partial range.

wr(Φ,N) =
|N∩VΦ|
|N| (1)

N is an arbitrary voxel neighborhood, VΦ is the set of vox-
els within a range Φ. |V | denotes the number of voxels in a
set V . A block is added to the PRH if the range weight is
high enough: wr ≥ ε. The data set characteristics determine
the threshold, we use ε = 0.95 to capture narrow features and
ε = 0.5 to pick up inhomogeneous regions. A block size of
83 is used in this paper. This choice is a trade-off between
the simplicity of large blocks and the sensitivity for narrow
features of small blocks. Note that a PRH does not need to
find all blocks containing a material, since the position of the
PRH is the main input to TF construction, not the height.

3.2. Exhaustive multiple-peak search

We propose a fully automatic analysis of the global his-
togram that employs iterative subdivision of the histogram,
with the goal of detecting all peaks corresponding to distinct
materials. The core component of our approach is the PRH
defined above. The steps of the algorithm are:

1. Find the highest peak of the main histogram.
2. Fit a Gaussian to the peak.
3. Create a PRH for the middle part of the Gaussian.
4. Remove the PRH blocks from the main histogram.
5. Run steps 1-4 until the main histogram is empty.
6. Merge peaks that are similar.

The algorithm starts with the full histogram range. The
highest peak is identified and a Gaussian curve is fitted to its
shape. The Gaussian is described by its midpoint µ, height ĥ,
and deviation σ. The fitting process minimizes the accumu-
lated height difference between the histogram and the middle
part of the Gaussian. The error summation range is µ±ασ,
where α = 1 in this case. This small range is chosen since it
often occurs that only the tip of the histogram peak is visible.

The next step is to create a PRH for the range µ± σ.
This range choice yields many narrow, accurate peaks. Since
the merging step follows, an abundance of peaks is not a
problem here. The PRH is stored and then removed from
the main histogram. This exposes a new peak and the algo-
rithm restarts. If a PRH is empty, the ε value is lowered and
step 3 is performed again. All blocks are thus guaranteed
to become part of a PRH. Then a merging of similar peaks

takes place. To describe the peaks, we fit a Gaussian to each
PRH with the same method as above. Here α = 2, since the
whole peak is exposed. Peaks are joined if they have simi-
lar deviation, σmax/σmin ≤ 4, while their means are close,
µmax − µmin ≤ σmin ·max(1.0,2.0− σmin/40.0). The sec-
ond criterion is thus less strict for narrow peaks. For merged
peaks, a new Gaussian is fitted to allow multiple mergers.
We will use the term PRH also for these merged PRHs.

3.3. Adaptive Trapezoids

The use of PRHs can be taken one step further, to semi-
automatically generate TFs. To this end we suggest the
Adaptive Trapezoid. This trapezoid is a TF component that
adapts center, width, and shape to the Gaussian approxima-
tion of the current PRH, see figure 2. Adaptive Trapezoids
enable a highly efficient work flow when manually defining
a TF from scratch, as follows:

1. Apply automatic tissue detection.
2. Activate an Adaptive Trapezoid. At this stage, the TF

consists of this single trapezoid.
3. Browse the detected PRHs until the adapted trapezoid

highlights an interesting tissue.
4. Fixate the trapezoid at this position, making it static and

temporarily disconnected from the TF.
5. Perform steps 2-4 until all tissues are found.
6. View the full TF, i.e. activate all defined trapezoids. Ad-

just the color and opacity of each trapezoid.

In addition, Adaptive Trapezoids can be used as a manual
tissue exploration tool for the user. Step 1 above is then re-
moved and step 3 is replaced by manually sliding the center
of a partial range across the intensity scale.

4. Separating overlapping tissue ranges

A common problem in medical DVR is tissues with over-
lapping intensity ranges. A typical example is CT angiogra-
phies, where vessels with contrast agent has the same inten-
sity as spongy bone. A TF based on intensity only cannot
achieve a rendering that well separates the two tissues, see
figure 7. We will show that local histogram analysis can ex-
tend the capabilities in this respect. Such an application of
neighborhood operators to classify voxels can be seen as a
type of morphological filtering [MS90].

4.1. Classification probability

When the intensity alone cannot separate materials, neigh-
borhood histogram analysis is often a sufficient tool. The ba-
sic idea is that the different surroundings of equal-intensity
voxels can provide diversifying information. In this paper,
the analysis is based purely on range weights, see section
3.1, but other information derived from local histograms
could also be used.

We will now describe our method using the example of

c© The Eurographics Association 2005.



C. Lundström, P. Ljung & A. Ynnerman / TF Design using Local Histograms

4000

2000

20 40 60 80 100 120 140 160 180

0.3

0.2

0.1

N
um

be
ro

fv
ox

el
s

TF
op

ac
ity

Voxel value

Full histo
PRH

Gauss approx.
Adaptive Trap.

Figure 2: Adaptive Trapezoid. Top: The peak detection re-
sults in a PRH (gray), to which a Gaussian is fitted (blue),
which defines the Adaptive Trapezoid (red). Bottom: The re-
sulting rendering. A low-opacity gray ramp is added to the
TF for clarity.

the heart data set in figure 8. The classification goal is to
separate the coronary artery from the large vessels. To this
end, domain knowledge of the physician is used. A first cri-
terion is: ”The coronary artery is more narrow than other
vessels”. We define Φ1 as the mutual range of all vessels.
The narrowness can then be described as the range weight
wr(Φ1). The next step is to let the physician define the range
weights where the classification is confident. For instance,
for a range weight of 0.3 a voxel can confidently be assumed
to be part of a large vessel, whereas 0.1 confidently implies
a coronary artery voxel. These confidence levels are denoted
wA1 and wB1, respectively.

The next step is to create a measure p1, being the classifi-
cation certainty from the narrowness criterion. We choose a
signed representation, where the sign denotes the most likely
tissue (here: negative for large vessels) and the magnitude is
the confidence of the classification. This form is achieved as
described in equations 2 and 3, where C2 is a function that
clamps to the [−2.0,2.0] interval. The resulting function is
shown in figure 3.

µ1 = (wA1 +wB1)/2, δ1 = (wB1−wA1)/2 (2)

p1 = C2

(
(wr(Φ1)−µ1)/δ1

)
(3)
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Figure 3: Classification probability. The probability p1 is a
function of the range weight wr(Φ1). The transformation is
defined by the confidence levels wA1 and wB1.

A second criterion from domain knowledge is: ”The coro-
nary artery is close to the heart muscle”. We define Φ2 as the
range of muscle tissue. This proximity criterion can then be
described as wr(Φ2). As for the narrowness, the physician
defines two confidence levels wA2 and wB2 corresponding to
confident classification as either material. The classification
certainty p2 is derived in the same way as p1, see equation 3.
The total classification certainty P is defined as a weighted
sum of p1 and p2.

The general definition of P, valid for the separation of
any two materials A and B, is given in equation 4. There
are n materials used for diversifying criteria, defined by the
ranges Φ1 through Φn. Each pi is derived in accordance
with equation 3. It is possible to steer the contribution from
each criterion with the weights λi, but equal weighting is
used throughout this paper. P is clamped to the [−1.0,1.0]
interval, where the extreme values correspond to fully cer-
tain classification. Since the pi components have a wider
range, [−2.0,2.0], ”extra” confidence from one component
can dominate an uncertain classification in another.

P = C1

( n

∑
i=1

λi pi

)
, where

n

∑
i=1

λi = 1 (4)

In summary, the algorithm requires an a priori analysis of
how neighborhood materials can achieve the wanted separa-
tion of A and B. The information needed for each material
is the range Φ along with the reference levels wA and wB.
Note that wA and wB can have ”unnatural” values outside
[0.0,1.0]. For instance, if a range weight ≥ 0.5 confidently
implies tissue B, whereas 0.0 corresponds to equal probabil-
ity of either tissue, then wB = 0.5 and wA =−0.5.

4.2. TF construction

To separate the tissues in the rendering, our approach is to
use the classification probability P from above as a second
attribute for each voxel in an overlapping range. This yields
a multivariate data set, where the second value is solely in-
tended to separate the overlapping tissues. In the general
case we have an arbitrary number of tissues, whose ranges
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Figure 4: 2D TF. The traditional 1D TF is extended with
a material classification dimension. Trapezoids for overlap-
ping materials are placed at extreme classification values
and the 2D TF is interpolated in between them.

may partly overlap. We restrict the discussion to no more
than two overlapping tissues at any intensity value. This re-
striction is not very limiting in the medical domain.

To render this multivariate data set, we propose a novel
type of 2D TF that is completely defined by tissue-centric
trapezoids. Each trapezoid is placed at either extreme of the
classification dimension in a way that overlapping trapezoids
are always on opposite sides, see figure 4. The second di-
mension is filled by linear interpolation of the 1D TFs at the
extremes. The interpolation is only necessary for overlap-
ping intensity ranges, for other ranges the 1D trapezoid at
one of the extremes is used.

This approach has a number of desirable features. It is
natural for the user to design a TF where one tissue at a time
looks good. The Adaptive Trapezoid work flow from section
3.3 is well suited to this task. The automatic interpolation
of the second dimension then enables the power of a 2D TF
without introducing complexity to the user. Another appeal-
ing property is that the classification dimension integrates a
fuzzy segmentation into the rendering, reducing the impact
of misclassification artifacts.

The implementation used in this paper is further simpli-
fied. The used data sets have 12 bit precision, leaving 4 bits
unused. The value of P, which does not need to be very pre-
cise, is entered in these top 4 bits.

4.3. Neighborhood types

Three different types of voxel surroundings are used in
this paper: single block, voxel-centric, and double block
neighborhoods. Single block neighborhoods are obtained
by a static subdivision of non-overlapping blocks, typically
cubes. This is an efficient but coarse representation of neigh-
borhood properties that was used for PRHs above. A voxel-
centric neighborhood is more precise, since the region varies
for each position in the volume. For further accuracy, we de-
fine that the voxel itself is not part of the neighborhood. In
our voxel-centric examples we use a spherical neighborhood
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Figure 5: A block histogram from a medical CT volume and
its piece-wise constant approximation using 12 segments.

of radius 7, since this choice has proven to yield reliable
statistics for many anatomical features.

Unfortunately, large voxel-centric neighborhoods require
extensive computation. As a complement, we therefore pro-
pose a double block neighborhood that yields voxel-specific
statistics while being fast to process. Two separate block
subdivisions are applied to the volume, where one is shifted
half a block size in all dimensions. Thus, each voxel is a
member of exactly two blocks. Any neighborhood measure
for a voxel is then simply derived as a linear combination of
the values calculated for the two blocks it belongs to. The
interpolation weights c1 and c2 are determined through two
criteria: they are inversely proportional to the distance to the
center of each block (d1 and d2) and the sum is 1 for each
voxel, see equation 5. The block size in this paper is 83 vox-
els also for double block neighborhoods.

{
c1 + c2 = 1

c1/c2 = d2/d1
⇔

{
c1 = d2/(d1 +d2)
c2 = d1/(d1 +d2)

(5)

An additional simplification is to avoid the use of fully re-
solved block histograms. For double block neighborhoods,
we employ the histogram simplification approach of our
previous work [LLYM04]. The simplification is based on
piece-wise constant segments, see figure 5. This method has
proven to efficiently preserve the shape of the histogram, es-
pecially the peaks. For more details we refer to our previous
paper. In this paper, the simplification consists of 12 seg-
ments with a minimum width of 10.

5. Results

5.1. Tissue detection

We have tested our schemes on a number of data sets from
actual clinical use at CMIV. First we turn to the results of
the automatic tissue detection. The correct peaks were de-
fined by manual segmentation for each distinct tissue. Some
peak detection results are presented in figure 6. Very large
and very small peaks have been left out for clarity, our tests
resulted in a total number of 5-10 peaks for each data set.

The first case is an MR examination of the biliary duct,
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Figure 6: Automatic peak detection. Top: MR biliary duct
data set, ε = 0.5. The position of the segmented peaks cor-
respond well to the automatic detection. Bottom: MR renal
arteries data set, ε = 0.95. One of the detected peaks coin-
cides well with the true peak from the segmentation.

where the distinct tissues are liver, kidney, spleen and tumor.
The spleen and the tumor are treated as one tissue below,
since their histograms fully coincide. The automatic peak
detection performs well in finding the position of the tissue
peaks. The height estimation varies in accuracy, depending
on the extent of other soft tissue in the same intensity range.
Deviations in height are a minor concern, since they have
little effect on subsequent TF construction. Not surprisingly,
the biliary duct is not found. Its histogram shows diffuse
spikes below height 20, hardly characterizable as a peak.

The second case of figure 6 is an MR angiography of
the renal arteries (see also figure 2). The single interesting
peak corresponds to the vessels with contrast agent. Despite
the extreme difference in height compared to the main peak
(4.2k vs 520k voxels), the detection scheme accurately lo-
cates the vessel peak: the true value being 126, µ is found at
124. The height is slightly underestimated, since the narrow
vessels do not dominate all their neighborhoods.

5.2. Tissue separation

The 2D TF approach of section 4.2 has been tested on a
CT pelvis angiography data set. The neighborhoods tested
are of both voxel-centric spherical and double block type.
The parameters of P were derived by manually probing the
volume. Vessel voxels were characterized by neighborhoods
with much soft tissue and little dense bone. The resulting
renderings are shown in figure figure 7. The methods very
well separate the two tissues. The diagnostic value is en-

hanced since the vessels are not disturbed by red bone in
the background. Even the difficult task of preserving thin
vessels close to bone is successful. The fuzzy segmentation
shows uncertain regions in pink, letting the user make the
ultimate classification decision. The spherical neighborhood
achieves a smooth classification. The double block approach
yields faint speckle artifacts in the bone, but performs well
in spite of its simplicity.

The separation can also be applied to identical tissues.
An example for a CT angiography of the heart is given in
figure 8. The 1D TF makes all vessels and heart ventricles
bright, since they are all filled with contrast agent. How-
ever, the primary objective of the examination is to study
the coronary arteries. With P as a second attribute, it is pos-
sible to highlight only narrow vessels close to muscle tissue.
Hence, the visually disturbing large bright regions are re-
moved. A voxel-centric spherical surrounding provides high
image quality. The double block neighborhood causes arti-
facts for large vessel boundaries, being mistaken for narrow
vessels, whereas the coronary artery shows few artifacts.

A final example on tissue separation is the MR biliary duct
volume of section 5.1, see figure 9. There is a large liver tu-
mor that is seen as a slightly darker region when rendering
the liver only. A 1D TF for the tumor is useless, since it
becomes obscured by unimportant tissue. When introducing
the classification dimension to emphasize homogeneous re-
gions with few low-intensity neighbors, the tumor as well as
the spleen (top right) are clearly rendered.

As expected, the performance for the large spherical
neighborhood is low and heavily dependent on the number of
voxels in the overlapping range. The classification requires
about 0.02 ms per overlapping voxel, running a 1.8 GHz In-
tel Pentium M laptop. This amounts to 32 s for the pelvis
angiography data set and 350 s for the heart. With the dou-
ble block approach, these times are reduced to 0.65 s and
1.85 s, respectively, of which about 60% is spent adapting
the classification value to the 4-bit format.

6. Conclusions

In this paper we proposed the use of local histogram analysis
to simplify, but also to extend TF design. The simplification
achieved by automatic tissue detection and Adaptive Trape-
zoids is one step further towards a streamlined work flow
of medical volume rendering. Preliminary results show that
having detected all tissue peaks with our scheme, it is feasi-
ble to automatically adapt TFs between data sets of similar
examination types. Peaks that resemble each other, mainly
in terms of ĥ and σ, can be identified as the same tissue. A
TF connected to the tissues can then easily be repositioned.
A future research goal is to verify the achieved simplicity in
user studies and to further simplify the work flow.

For the more advanced user, voxel neighborhood prop-
erties are shown to extend the TF capabilities. We believe
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Figure 7: Separation of spongy bone and vessels. Left: With a 1D TF, spongy bone turns red. Middle: With a classifying 2D
TF, voxel-centric nbh, the vessels stand out from the background (wA1=0.0,wB1=0.1,wA2=0.2,wB2=−0.1). Right: A classifying 2D TF
for double block nbh achieves the separation with minor artifacts (wA1=0.0,wB1=0.05,wA2=0.2,wB2=−0.2). Ranges: Φ1=[1300,2000],Φ2=

[900,1150].
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Figure 8: Highlighting a coronary artery. Left: With a 1D TF, the brightness of the large vessels disturb the study of the coronary
artery. Middle: With a classifying 2D TF, voxel-centric nbh, the coronary artery stands out (wA1=0.3,wB1=0.1,wA2=0.2,wB2=0.4).
Right: A classifying 2D TF for double block nbh also highlights the coronary artery, while introducing speckle artifacts at the
large vessel boundaries (wA1=0.5,wB1=0.2,wA2=0.2,wB2=0.4). Ranges: Φ1=[1300,1500],Φ2=[900,1150].

that the framework of this paper can be used for many com-
plex rendering tasks. So far, our tissue separation scheme
requires some parameter tuning. Future work includes re-
ducing this need, e.g. by employing the automatic peak de-
tection to adapt these parameters between data sets, as in
TF adaptation. We also aim to raise the performance/quality
trade-off to a higher level.
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