
Volume xx (200y), Number z, pp. 1–6

Hardware-Accelerated Glyphs for Mono- and Dipoles in
Molecular Dynamics Visualization

G. Reina and T.Ertl

{reina, ertl}@vis.uni-stuttgart.de
Visualization and Interactive Systems Institute, University of Stuttgart

Abstract
We present a novel visualization method for mono- and dipolar molecular simulations from thermodynamics that
takes advantage of modern graphics hardware to interactively render specifically tailored glyphs. Our approach
allows domain experts to visualize the results of molecular dynamics simulations with a higher number of particles
than before and furthermore offers much better visual quality. We achieve this by transferring only visualization
parameters to the GPU and by generating implicit surfaces directly in the fragment program. As a result, we
can render up to 500.000 glyphs with about 10 fps displaying all the simulation results as geometrical properties
that resemble the classical abstract representation used in this research area. Thus we enable researchers to
visually assess the results of simulations of greater scale than before. We believe that the proposed method can
be generalized to create other kinds of parametrized surfaces directly on graphics hardware to overcome the
bandwidth bottleneck that exists between CPU and GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism,I.3.8 [Computer Graphics]: Applications

1. Introduction

Nowadays, simulations on a molecular level are gaining
more and more importance in research areas like chem-
istry and thermodynamics, materials and several other areas
where nanoscalar particles are of importance. Such simula-
tions are very expensive in terms of computational power,
but with commodity-off-the-shelf clusters becoming more
common and filling this gap at relatively low cost, the sim-
ulations are becoming larger in terms of particle numbers
as well as simulated time. The data generated by such sim-
ulations is only limited by the available processing power,
even including hundreds of thousands of molecules and thus
posing a challenge as well for those striving to visualize the
results.
Simulations bridge the gap between theory and experimen-
tal practice, making it possible to verify the theoretical mod-
els on the one hand and on the other hand replacing experi-
ments under difficult conditions, like extremely small scales
[AT87] or metastable state. Simulations on a molecular level
have been successfully employed since the 1950s, however,
especially on the nanoscalar level, many effects are not yet

completely understood. Since scientists need to continuously
compare the results from experiments and simulations, the
need to visualize these results arises.
The conventional approach would be to generate polygon
models for each of the molecular constituents, composed of
spheres and other geometrical primitives. However, this has
several drawbacks. The tessellation must be adapted depend-
ing on the rendered size to obtain smooth surfaces and not
degrade performance below 5-10 frames per second. This
can be achieved taking advantage of level-of-detail methods
[FS93],[Lak04], to adapt the number of polygons as to guar-
antee smooth surfaces for near objects and coarsely render
distant ones to save performance. However a large number
of polygons has to be sent to the graphics card in any case.
Furthermore the orientation has to be converted into matrices
for each molecule or be kept in memory, which needs four
times as much space. To overcome these problems, we pro-
pose to make use of several different techniques to allow for
high-quality visualization of molecules in a way that is tai-
lored for experts from the problem domain. In our approach
we take advantage of modern graphics hardware to ray trace
an implicit surface representation of a customized glyph for

submitted to COMPUTER GRAPHICS Forum (3/2005).

http://www.eg.org
http://diglib.eg.org


2 G. Reina & T.Ertl / Hardware-Accelerated Glyphs for Molecular Dynamics

each dipole in the fragment units. The data to be sent to
the graphics card is reduced to a single point and some ad-
justable glyph dimensions per dipole. This allows us both to
save bandwidth between CPU and GPU and enhance the vi-
sual quality at the same time, since every pixel is ray traced
distinctly. We demonstrate the performance of this method
with a few example data sets from the molecular dynam-
ics domain. This basic idea of generating geometry on the
graphics card can be applied to a wider range of applications,
because the problem of having to transmit large amounts of
polygons to the graphics hardware is generic and the sys-
tem bus cannot be expected to be accelerated at a pace as
quick as applications demand it. Consumer graphics cards,
however, are always being improved in order to deliver an
increasingly realistic experience to computer gamers. The
concept of mapping a small number of parameters to a 3D
surface on graphics hardware can be exploited to overcome
these bandwidth limitations. This method can be used to re-
place tessellated primitives as well as other kinds of glyphs,
like Haber glyphs [Hab90].
The rest of this document is structured as follows: in section
2 we summarize related work; in section 3 we detail our own
method. The results are shown in section 4 and the respec-
tive performance measurements can be found in section 5;
section 6 concludes this work.

2. Related Work

In recent years, there has been diverse work in the area
of visualization of molecular dynamics simulations. There
have been several approaches which visualize simulation
results in a VR environment and optionally allow simulation
steering if the number of simulated particles is not very high
[AF98], [SGS01]. However also massive data sets of more
than a million molecules have been visualized by using
multiresolution rendering to ensure interactivity [NKV99].
Our work is directly based on the highly optimized visual-
ization algorithm for volumetric point clouds presented by
[HE03] (referred to as pointcloud renderer from now on).
This code base allows us to start from an approach that can
render extremely high numbers of points and to adaptively
coarsen the visualization in areas of low interest should the
hardware not be powerful enough to maintain interactive
frame rates. Besides the possibility of actually visualizing
large data sets, a feature we also require for our approach is
the optimized memory footprint as well as the possibility to
visualize time-dependent data. Points can thus be visualized
even in very high numbers, however, they are not adequate
primitives for visualizing dipoles in molecular dynamics
since the internal configuration, which also defines the
spatial extents of such an element, is lost. There also is
the need to represent the orientation of the molecules. The
algorithms presented in [KE04], [Gum03] were a starting
point for us, since in both cases ellipsoids are generated in
graphics hardware thus providing a primitive that conveys a
detectable orientation. An ellipsoid still has the drawback

of having undistinguishable ends, and we need to customize
the visual representation of the molecules further to map
the relevant parameters onto the final representation in
order to suit the experts’ needs. Different methods to avoid
sending complex geometry to the GPU have been proposed
in [LH04] and [MP03], where, in contrast to our approach,
the concept is to render into a so-called vertex buffer and
thus explicitly create the geometry, but on the graphics card
itself. Another method for accelerating the rendering of
complex geometry is to render it once and use the result as a
texture for a bounding billboard (imposter) [Sch95], updat-
ing it only when the viewing angle change exceeds a preset
threshold. A conventional visualization currently used for
thermodynamics simulations can be seen in figure 1. In our
discussions with users from the problem domain we found
that even this kind of dipole representation is suboptimal.
They really want a visual representation resembling figure
2 and they would also appreciate higher visual quality. The
two spheres of the glyph should represent the molecular
radii, while the cylinder, as a symbolic representation of
a bar magnet, should depict polarity and charge with the
conventional red/green coloring as known even from school
experiments.

Figure 1: Conventional visualization of molecular dynam-
ics simulation with polygonal primitives and simple glyphs
lacking polarity

3. Our Algorithm

The data that is available to us from simulations of molecu-
lar dynamics consists of discrete time steps, each of which
contains a list of the available molecules along with their
spatial position, orientation and type. To alleviate the band-
width problems that come with a polygon-based rendering
method, we decided to extend the pointcloud renderer avail-
able in our department, since it offers high performance and
already creates a hierarchical data structure to give the op-
tion to fit quantized relative positions into one byte instead
of four-byte-long floats. The program is also able to adap-
tively render a scene to guarantee visual quality in a region
of interest as well as sustaining interactive frame rates by

submitted to COMPUTER GRAPHICS Forum (3/2005).



G. Reina & T.Ertl / Hardware-Accelerated Glyphs for Molecular Dynamics 3

replacing elements outside the ROI with summarizing prim-
itives. Support for time-dependent data is also already avail-
able [HLE04].
Having circumvented the bandwidth problem, we want to
render glyphs with only points as input. The general idea
behind our approach is to send ‘fat points’, with all the
attributes that result from the molecular simulation, to the
graphics card. We use the single point per glyph as a bound-
ing representative - or point sprite. However we cannot sim-
ply use textures to obtain the correct representation, since
each molecule type has different attributes which show up
in the proportions of the glyph. This could be resolved by
generating textures for each molecule type, but we also have
to consider spatial orientation, which is different for each
dipole and for each time step. That is why we dynamically
generate an implicit surface representation for each glyph
and ray trace this surface with per-pixel precision on the
point sprite using the fragment units of the graphics card.
The parametrization of a molecule type can be resolved into

r1r2

r3

d

l

colormap
index c

Figure 2: Dipole glyph and the adjustable visualization pa-
rameters

a tuple containing the spatial configuration of a molecule.
For dipoles the tuple can be broken down to the distance be-
tween the two molecules d, the radii of the two molecules
r1,r2, and a color map index c for visual identification. Fur-
thermore there is the need to customize the radius of the
magnet r3 and the length of it to fit the dipole and propor-
tionally show the respective charge (see figure 2).
If we assume that the glyph is always at the origin with the
cylinder lying along the x axis, the implicit surface we can
generate from these parameters is defined as

(

x− d
2

y
z

2

− r2
1) · (

x+ d
2

y
z

2

− r2
2) · (

0
y
z

2

− r2
3) = 0

(1)
Additionally, the infinite cylinder must be capped:1

0
0

 ·−→x = r1 +
l
2
,

−1
0
0

 ·−→x =−r2−
l
2

(2)

Intersecting these surfaces with a generic ray cast from the
eye position

−→r = λ ·−→s +−−−→poseye (3)

yields 3 quadratic equations. Solving those equations leads
to the problem that this glyph is already computationally ex-
pensive as such, even if we do not consider the orientation at
all. To keep the calculations as simple as possible, we emu-
late the local rotation of the glyph by orbiting the eye posi-
tion around it. To minimize the data that has to be sent to the
GPU, we decided to calculate the matrix for the orientation
of a molecule on the GPU from a quaternion.

3.1. The Vertex Program

The data we send to the graphics card consists of the relative
vertex positions, as contained in the hierarchical data struc-
ture, the four components of the orientation quaternion q1..4
and d,r1,r2,r3,c, l, which are passed as texture coordinates.
We can also completely avoid to transmit color information
if we look it up from a color table by using c (see figure
2). What the vertex program actually does is the calculation
of the absolute coordinates from the relative ones. Then the
camera orbit quaternion and the local orientation quaternion
are multiplied together and transformed into a rotation ma-
trix (which is also passed to the fragment shader, see below).
This operation makes most sense in the vertex program since
the result is constant for each glyph and thus for each vertex.
Subsequently the camera is rotated around the molecule. The
point size is adjusted to make sure that the glyph fits inside.

3.2. The Fragment Program

The main part of the calculations for generating the glyph
surface is performed in the fragment program. First we have
to find the vector which connects the eye to the current pixel
starting from the x and y component of the fragment’s win-
dow position WPOS. To that end, we convert x and y to the
View Coordinate System (top t, bottom b, left l and right r
are the parameters of the viewport, w and h its sizes in pixels
and zN is the position of the near clipping plane)x

y
z


VCS

=

 xWPOS
w · (r− l) · zN + l · zN

yWPOS
h · (t−b) · zN +b · zN

−zN

 (4)

and cast a ray through it. Since the eye position orbits the
glyph, we have to apply the rotation passed from the ver-
tex program to this ray as to keep the center of the glyph
in the center of our view. The next step consists of solving
the three quadratic equations given by intersecting the ray
with the two spheres and the cylinder. We first calculate the
expression under the three square roots for an ‘early’ dis-
carding of the fragment if all three of them are negative (and
we hit nothing). We also keep the combined sphere hit result
for later use. After calculating the roots, illegal results are
discarded by assigning a ray parameter λ which positions

submitted to COMPUTER GRAPHICS Forum (3/2005).



4 G. Reina & T.Ertl / Hardware-Accelerated Glyphs for Molecular Dynamics

the fragment behind the far clipping plane. The cylinder is
a bit tricky to calculate. We need the near and far intersec-
tions with the cylinder (CN,CF). Then we must calculate
the planes forming the caps cutting off the cylinder accord-
ing to the length l and decide which intersections is on the
near plane (PN) and which is on the far plane (PF). Now
we can distinguish the five different cases describing which
part of the geometry we are going to hit (see figure 3). The

1 5432

PN

PFCF

CN

AA
B C
K K

Figure 3: The different cases when raycasting the cylinder
alongside indications where the distinguishing conditions
are true

conditions of the five cases are listed along with the action
we need to perform:

1 : λCF > λCN > λPF > λPN Sphere/Kill
2 : λCF > λPF > λCN > λPN Cylinder
3 : λPF > λCF > λCN > λPN Cylinder
4 : λPF > λCF > λPN > λCN Cap
5 : λPF > λPN > λCF > λCN Sphere/Kill

(5)

If we search for distinguishing conditions, we find that three
relations are sufficient for deciding the rendering result:

A : λPN > λCN , B : λCN > λPF , C : λPN > λCF (6)

The condition K = B or C discards all cylinder information
by again setting an impossibly high ray parameter λ, so that
either the spheres are rendered (because the corresponding
λ is smaller) or the fragment is discarded if there was no
sphere hit in the first place. Based on the results of these
calculations we can decide which of the available normals is
the correct one:

−−→
Ncap = A ·C ·−−→Ncap ,

−−→
Ncyl = A ·B ·−−→Ncyl (7)

The discarding condition K conveniently also ensures B and
C, so the only remaining condition is A (the cap is hit) and
A (not the cap, but the cylinder is hit). We then apply Phong

shading to the surface. The color for the poles of the cylin-
der is decided as a by-product using the sign of the cylinder
intersection x coordinate.

Figure 4: A mixture with three different dipoles, colored by
dipole type

4. Results

Figure 4 shows a mixture of three different molecule types in
a fluid. Two of them are dipoles, which can clearly be recog-
nized by the magnet, and the last one is a monopole. The
type is also color-coded. We can see that orientation and po-
larity is easily discernible in this data set. An example for
a simulation in the gas state can be seen in figure 5. The
goal of the simulation was to understand the clustering of
particles, which can be interpreted as germ formation. The
germs can be quite easily made out because of the spatial
closeness. The data set is relatively small (1372 monopoles)
because before now, the domain experts only used conven-
tional visualization methods, which lacked the performance
to display large systems. The supersaturation in this exam-
ple is higher than under realistic conditions to ensure that the
probability of clusters forming is high enough to give results
in the 2500 simulated time steps (which correspond to few
femtoseconds). Future simulations will more closely resem-
ble reality by having a far lower saturation but much higher
scale, thus resulting in a much higher number of particles
and more load for the GPU (but our approach can also han-
dle a lot more glyphs as can be seen in table 1). The overall
distribution would also be thinner than in this example, mak-
ing clusters even better to spot. The ‘massive’ data set is the
setup time step of a very large simulation of which unfortu-
nately no further time steps are available to us.
We also used one very recent data set that comes closer to
the aforementioned future conditions (100,000 more thinly
spread molecules) to compare the performance of the legacy
tool and our method. The legacy tool needed about 3 sec-
onds per frame, while our method reached well beyond 25

submitted to COMPUTER GRAPHICS Forum (3/2005).



G. Reina & T.Ertl / Hardware-Accelerated Glyphs for Molecular Dynamics 5

fps even on a plain GeForce 6800. Using only 10,000 mole-
cules, the results were about 3 fps versus about 100 fps.
The domain experts were quite pleased with the visual re-
sults as far as the performance is concerned, since the new
method allows them to study data sets of several hundred
thousand particles, which was not possible for them before.
Up to now the researchers had to put up with bad visual qual-
ity and still had to wait several seconds for an interaction to
become effective. The increase in quality was also a very im-
portant factor to them, while the glyph itself simply was as
specified.
While experimenting with some of the bigger data sets, we
noticed that the perception of the visualization depth was
lacking. The addition of depth cues could help to better grasp
the spatial distribution of the molecules [WE02]. We imple-
mented a very simple scheme which attenuates the lighting
with the distance from the viewer. The result of rendering
a synthetic data set with 200,000 molecules can be seen in
figure 6.
It should also be mentioned that our approach can be used
with stereo projection and/or tiled displays to allow immer-
sive interaction and better interpret spatial information, since
the pointcloud renderer can be synchronized among many
machines to generate such output.

Figure 5: Supersaturated gas; detected germs(clusters) are
cyan

5. Performance

Our method makes it possible to visualize massive amounts
of our glyphs on current hardware. The measurements were
taken on 3Ghz-class Pentium 4 machines with at least 2GB
of RAM using Nvidia GPUs and ForceWare 61.77 drivers.
Our algorithm is implemented as ARB_vertex_program and
ARB_fragment_program, but since ATI does not support the
window position fragment attribute, which we need for cast-
ing the eye ray, it will not run on current ATI hardware.
There are different aspects we need to consider when evalu-
ating the performance of our approach. Table 1 shows the

particles FX5700 Quadro3K 6800Ultra

mixture 500 30.0 60.1 490.0
gas 1372 10.5 18.4 187.0
fluid 27984 3.4 6.3 52.5
massive 500,000 0.6 1.2 10.0

Table 1: Performance in fps on different Nvidia graphics
cards. All measurements are performed with adaptive ren-
dering switched off as to obtain maximum quality and put
maximum load on the GPU.

performance not decreasing linearly with the number of
glyphs contained in the simulation. This is caused by the
fact that the limiting factor for our approach is the process-
ing power of the fragment units on the GPU. Since the screen
space for each glyph decreases as the number of molecules
in the simulation increase, one factor compensates for the
other, so we are not slowed down that much by a higher
number of particles. When we zoom in, the major part of the
molecules is off-screen, which in turn compensates for the
fact that the visible ones take up more screen space. When
we compare these results with those obtained on the previ-
ous GPU generation, we can see that the approach of sending
less data over the AGP bus has its strong points. With each
new GPU generation we gain performance as more fragment
units are added, the clock speeds increase and so on. It is true
that AGP is being replaced by PCIe today and high perfor-
mance graphics cards are becoming available. This transition
will double the theoretical bandwidth from CPU to GPU, but
as can be seen in table 1, the speedup from one generation of
GPUs to the next is far beyond double and from our experi-
ence these updates happen more frequently.

6. Conclusions and Future Work

We have shown that it is feasible to generate a dedicated
glyph for dipoles in graphics hardware in order to improve
the visual quality compared to polygonal primitives. This ap-
proach can be generalized for generating suitable surfaces,
like geometric primitives or different types of glyphs, in
hardware instead of having to tessellate them and sending
the resulting polygons over the AGP or PCIe bus. We have
also shown that performance and quality by far exceed those
of the straightforward approach with polygons. Using LOD
techniques this difference can be reduced, however without
resorting to fragment programs as well the same shading
quality cannot be obtained. Another benefit is the fact that
our technique significantly gains performance when using
newer GPUs, which justifies the decision to move the load
from CPU and bus to the GPU. We were also able to take
advantage of the highly optimized pointcloud framework,
which in turn brings up a problem to be solved for the fu-
ture: we do not know yet which kind of primitive is optimally
suited to act as placeholder for a cluster of dipoles when we

submitted to COMPUTER GRAPHICS Forum (3/2005).



6 G. Reina & T.Ertl / Hardware-Accelerated Glyphs for Molecular Dynamics

either have to simplify the scene to improve performance or
to implement a focus + context or region of interest visual-
ization to help the user navigate extremely large simulation
results. It also remains to be seen if we can further improve
performance using an approach similar to[Gum03], namely
sending quads instead of points to better approximate the
silhouette of our elongated glyphs, thus saving the fragment
units as much work as possible. We are also planning to fuse
this approach with our efforts to improve interaction with
pointclouds in a VR environment, allowing the users to take
advantage of depth perception for better understanding their
simulation results.

Figure 6: Synthetic data set consisting of 200,000 dipoles,
visualized with depth cues turned on

7. Acknowledgements

We want to thank Jadran Vrabec and Bernhard Eckl from
the Institute of Thermodynamics and Thermal Process Engi-
neering Stuttgart for their valuable input and help with inter-
preting the results of their simulations. We also want to thank
Matthias Hopf for the pointclouds source code and help with
finding our way through the code.

References

[AF98] AI Z., FRÖHLICH T.: Molecular dynamics simu-
lation in virtual environments. Computer Graphics Forum
17 (1998), 267–273. 2

[AT87] ALLEN M. P., TILDESLEY D. J.: Computer Sim-
ulation of Liquids. Oxford University Press, 1987. 1

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive
display algorithm for interactive frame rates during vi-
sualization of complex virtual environments. Computer
Graphics 27, Annual Conference Series (1993), 247–254.
1

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids
with depth correction. In VMV (2003), pp. 245–252. 2, 6

[Hab90] HABER R. B.: Visualization techniques for en-
gineering mechanics. Comput. Syst. Educ. 1, 1 (1990),
37–50. 2

[HE03] HOPF M., ERTL T.: Hierarchical Splatting of
Scattered Data. In Proceedings of IEEE Visualization ’03
(2003), IEEE. 2

[HLE04] HOPF M., LUTTENBERGER M., ERTL T.: Hier-
archical Splatting of Scattered 4D Data. IEEE Computer
Graphics and Applications 24, 4 (2004), 64–72. 3

[KE04] KLEIN T., ERTL T.: Illustrating Magnetic Field
Lines using a Discrete Particle Model. In Workshop on
Vision, Modelling, and Visualization VMV ’04 (2004). 2

[Lak04] LAKHIA A.: Efficient interactive rendering of de-
tailed models with hierarchical levels of detail. In 2nd
International Symposium on 3D Data Processing, Visual-
ization, and Transmission (2004), pp. 275–282. 1

[LH04] LACZ P., HART J. C.: Procedural Geometric Syn-
thesis on the GPU. In Proceedings of the GP2 Workshop
(2004). 2

[MP03] MĚCH R., PRUSINKIEWICZ P.: Generating sub-
division curves with L-systems on a GPU. In GRAPH
’03: Proceedings of the SIGGRAPH 2003 conference on
Sketches & applications (2003), ACM Press. 2

[NKV99] NAKANO A., KALIA R. K., VASHISHTA P.:
Scalable Molecular-Dynamics, Visualization, and Data-
Management Algorithms for Materials Simulations. Com-
puting in Science and Engg. 1, 5 (1999), 39–47. 2

[Sch95] SCHAUFLER G.: Dynamically Generated Im-
posters. In MVD ’95 Workshop "Modeling Virtual Worlds
– Distributed Graphics" (1995), pp. 129–136. 2

[SGS01] STONE J. E., GULLINGSRUD J., SCHULTEN K.:
A system for interactive molecular dynamics simulation.
In SI3D ’01: Proceedings of the 2001 symposium on In-
teractive 3D graphics (2001), ACM Press, pp. 191–194.
2

[WE02] WEISKOPF D., ERTL T.: A Depth-Cueing
Scheme Based on Linear Transformations in Tristimu-
lus Space. Tech. Rep. TR-2002/08, Universität Stuttgart,
Fakultät Informatik, September 2002. 5

submitted to COMPUTER GRAPHICS Forum (3/2005).


