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Abstract
In this paper we offer new, texture-based methods for the visualization of multivariate data. These methods 
aim to more effectively convey the results of calculations simulating the formation of nanoparticles in tur-
bulent flows. In these simulations, an entire distribution of nanoparticles is computed at every point across 
a two-dimensional slice of the data space, for every time step. Previous visualization methods have relied on 
multiple separate images to convey summary statistics about the datasets, including mean diameter and stan-
dard deviation of particle sizes. We introduce new methods based on texture which aim to enable the integrated 
understanding of the entire distribution of values at each point across the domain in terms of both summary 
statistics at each point and particle counts for various sizes of particles. Pointillism is used to represent the 
data at each point across the data range as a high-resolution texture. Circular glyphs can also be used to form 
a more discrete, spot-based texture, in which different characteristics of the distribution are encoded in various 
features of the spots. 

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Vapor-phase methods are of primary importance in active  
research into the production of nanoparticles. Simulating 
these production processes may allow us to optimize and 
thereby increase the efficiency of the nanoparticle produc-
tion process [MG03], facilitating economical production of  
materials with unique and useful properties. Use of new  
methods for direct numerical simulation of coagulating  
aerosols have produced multi-dimensional datasets which  
capture the spatial and size distribution of nanoparticles at  
various time intervals in the formation  process 
[GIV89]. Visualization of the geometric properties 
of these nanoparticles represents an interesting and  
relevant problem for scientists because direct visualiza-
tion of physical nanoparticles is impossible- no camera 
device exists capable of capturing images with sufficient 
speed to give a snapshot at small time intervals. Addi-
tionally, the nanoparticles possess the particularly vexing  
quality of scattering light consistent with their diameter 
raised to the sixth power; therefore, were it possible to im-

age the particles directly, scalar considerations would either 
leave the smallest particles invisible or produce an intracta-
bly large image.

 We have examined computed datasets which describe  
quantities of nanoparticles in formation at every point in  
highly intermittent turbulent flows.  This data is separated into 
individual slices of counts of particles one, two, four, eight, 
sixteen, and thirty-two nanometers in size. First, we consider  
visualization of summary statistics of the dataset, consisting of  
the mean diameter and standard deviation of particle sizes at 
each point. We furthermore apply our methods to the particle 
quantity slices with the goal of visualizing all size distribu-
tions simultaneously.

2. Summary statistics visualization

 Researchers compute the mean diameter and stan-
dard deviation of particle sizes for every point across 
the range of data seeking a variety of insights- e.g. the  
deviation at a location can inform scientists about the strength 
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of the effects of transport on the nanoparticles [MG03]. Pre-
vious visualization methods for summary statistics have 
simultaneously utilized two separate images with different 
contexts. One image visualized the mean diameter of par-
ticles at each point and while another conveyed the standard 
deviation. In Modem and Garrick’s work with this dataset, 
both direct visualizations are mapped onto a rainbow color 
scale [ibid]. 

 There can be problems with the rainbow color scale- 
even with a legend the ordering of colors is not necessarily  
intuitive, and it is not perceptually linear from a luminance  
perspective [RT98] which can give rise to visual artifacts.
Research has shown that simultaneous mental combina-
tion of spatially-referenced features in multiple images is at 
best difficult and at worst intractable [e.g. TV98]. We have  
rendered separate-context images (figure 1) in the  
style of Modem and Garrick’s rainbow images [MG03] for 
comparative purposes, albeit using a heated-object scale to 
avoid color-related artifacts. In the separate renderings of 
mean diameter and standard deviation (figure 1 left), each 
statistic is explicitly represented throughout; however, it 
is not trivial to relate a given point in one rendering to its 
equivalent point in the other. Our goal is to combine these 
two renderings into a single, intuitive image. 

2.1 Pointillism and related work for summary statistics

The concept of applying painterly effects to data visual-
ization in computer graphics has rich historic precedent. 
Laidlaw et al. [LAK*98] and Kirby et al. [KML99] offered  
several approaches to artistic rendering of scientific data using 
layering and “paint stroke” glyphs. Healey et al. [HTE*04] 
have investigated perceptual principles for effectively  
conveying data using nonphotorealistic visualizations. 
There is a wide range of more artistically-motivated  
algorithmic treatments of painterly effects for the purposes of  
computer-enhancement of the artistic process or explo-
ration of computer graphics potential [HAE90][GG01].  
Pointillism was suggested as a useful method for visualizing 
cartographic data as early as 1953 [JEN53] and we feel it is 
a natural vehicle for our datasets as well. Indeed, the term 
pointillism has already been mentioned in correlation with 
nanoparticles in formation [RT98].

 We use Pointillism, a technique through which we repre-
sent a single mean and standard deviation pair with a larger 
area square of pixellated texture in the output image. Pointil-
lism allows us to combine the mean diameter and standard 
deviation statistics in a single image by mapping the aver-
age color in an area to the mean diameter, and the amount 
of color-wise variation in the texture pattern to the standard 
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Figure 1: Direct renderings of mean diameter and standard deviation versus pointillist rendering on the heated-object scale.



deviation. For each pixel in a statistic pair’s texture-square, 
we generate random normally distributed data values from 
the distribution defined by the underlying statistics. We have 
utilized the Box-Muller Polar transform for generating nor-
mally distributed numbers from a pseudorandom uniform 
distribution [BM58]. 

 In our figures, the random normal values are then 
mapped to the conventional heated-object colorscale  
before output. The HOS was chosen to exploit human  
sensitivity to luminance in the yellow-orange hue [LH92]  
and for its familiarity to the chemical engineering  
community. The resultant image (figure 1  right) shows 
both statistics by mapping the mean to the average color 
value in an area, and the standard deviation to the diver-
sity or “graininess” of color within that area. Viewed at 
the original scale, this image gives an intuitive impres-
sion of the overall mean particle dimensions as or more  
effectively than the separate images (figure 1 left). To get a 
feel for the standard deviation in an area, we need only zoom 
for a closer view of the graininess pattern in an area.

 We believe this type of visualization is quite effective for 
showing us these statistics for particles in a given area; how-
ever, it may still lack some the intuitive qualities we strive 
for. One issue is that the user must interpret particle size 
from color intensity. The other is that the standard deviation 
of the distribution is not very obvious at the farthest scales, 
requiring either that the image be viewed on a very large, 
high-resolution display or that the user interactly zoom the 
image to achieve the insight s/he desires. 

 An alternative approach is to portray the mean  
diameter statistic more directly. A second method we have  
developed generates spot glyphs of which the perceptual 
sizes are representative of the nanoparticle sizes found in the 
corresponding regions of the flow.

2.2 Spot glyph production for summary statistics

 The perceptual size of our spots is mapped to the mean  
diameter at a point. Our method uses Gaussian shading to 
control the perceptual size for a given spot. To show the stan-
dard deviation in the data, we follow a model akin to our 
pointillist techniques. We want to vary the diversity of spot 
sizes in a given area in relation to underlying standard de-
viation statistics, i.e. in a texture-square representing a high 
standard deviation we would expect to see spots with a larger 
variety of sizes than in a texture-square representing a low 
standard deviation, with the average size of spots in a square 
linked to the underlying mean diameter statistic.

 To this end, for each potential spot we calculate a val-
ue Σ, which equals the mean diameter µ plus or minus a  
normally distributed stochastic variable R multiplied by the  
underlying standard deviation σ. The Σ value is used in the 
calculation of the Gaussian shading function for a given spot. 
In other words, the Gaussian shading (and hence perceptual 

size) of a given spot varies generally with the mean diameter 
statistic, modified by a random normal distribution around 
that mean defined by the standard deviation. This mapping is 
quite intuitive- it requires no additional information such as 
keys or a legend to convey variation over space, and allows 
us to see not only the mean diameters across the entire space, 
but also the distribution of the standard deviation statistic in 
a given area. Thus we can visualize not only the diameter  
distribution through use of the range of spot sizes, but also the 
diameters’ standard deviation distribution in an area through 
the varying of diversity of spot sizes in that area. Visualizing 
both the distribution of particles at each point (the summary 
statistics) and the distribution of these statistics across the 
whole space is a novel contribution of these methods.

2.3 Glyphs and spatial frequency for summary statistics

One problem in using spot glyphs of varying size to con-
vey  data is correctly handling the negative space. If the 
layout of spots is strictly uniform, smaller spots (having  
smaller footprints) will appear further apart than their larger  
cousins, which fill the negative space more fully.  
Healey and Enns have shown glyph density to be an effec-
tively detectable artifact [HE99]; therefore, when we gener-
ate the spots we must take care to maintain a perceptually 
similar spatial frequency for small spots and large spots. 
We should also avoid implying false information about 
the density of the underlying nanoparticle distribution by  
packing smaller spots more tightly and hence maintaining a  
consistent spatial frequency across both positive and  
negative space of the pattern. This method also avoids poten-
tial misinterpretations of the data due to regularity of glyph 
spacing, which is another easily detectible artifact [ibid].
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Figure 2: Spot glyph rendering of mean diameter and  
standard deviation on the heated-object scale.



 A conventional Poisson method of distributing spots would 
read like this- pick a random location on the output field and 
calculate the size of a spot at that point based on the mean 
diameter and standard deviation data. If that spot conflicts 
or overlaps with an existing spot, throw it away and repeat 
until the image buffer is full, otherwise, place the spot and 
continue until the buffer is full. There are two problems with 
this algorithm- the random nature of picking spot locations 
implies that the rate of filling the image decreases as the im-
age becomes more full and more spot-placement conflicts 
occur. The other issue is that there is no efficient method of 
determining when the algorithm has filled the space with a 
“sufficient” number of spots; that is, there isn’t a fast way to 
determine when the packing is complete.

appear in a well-packed manner without covering each other 
unless we so desire. For applications in which spot density is a  
concern (e.g. several layers of spots on top of each other), we 
can modify the overall spot density by changing the density 
of the underlying grid of potential spot locations. This sto-
chastic method cannot guarantee an optimal packing, but it 
is computationally efficient and avoids most serious visual 
artifacts due regularity or spatial frequency.

3.  Particle count data visualization and color

Following our work with a summary statistics describing 
mean diameter and standard deviation of particles over space, 
we turned our attention to the underlying data.  In this data 
are six cospatial slices describing the quantity of particles 
at each point for six sizes of particles: one, two, four, eight, 
sixteen, and thirty-two nanometers in diameter. Researchers 
want to examine these datasets simultaneously to learn about 
the diversity of types of nanoparticles (different size-bins, 
that is), the relationships between these sizes, and their quan-
tities in an area. The data are used in various ways. Particle 
size affects chemical reactivity on the surface of the particles; 
hence, one visualization of particular interest will convey 
information about the homogeneity (relative diversity) of  
particle sizes by particle counts at a point. Visualization of 
the particle counts also assists scientists in describing their 
behaviour, e.g. revealing a deficit of large particles in an area 
demonstrates that particles grow more slowly in that region 
[MG03]. To the end of supporting such visualizations, we 
have extended our pointillist and glyph techniques.

 A wide variety of research supports the efficacy of us-
ing color as a differentiating variable among data. (e.g. 
[LH92][RK01]) In our case, values from a given size-bin 
(e.g. all particles 4 nm. in diameter) are consistently tied to 
a single colorscale to differentiate respective quantities from 
those of larger or smaller-sized neighbors. Our choice of 
colors and transformation (mapping) functions is not trivial, 
however, as our display methods and the datasets themselves 
present some challenges. We believe the most effective  
visualization uses a unique transfer function between data 
value and color for each size-bin of particles and employs 
perceptually equiluminant colorscales (figure 4). 
 
 We used unique transfers functions for each size of 
nanoparticles because of scale considerations- the  datasets 
occupy a high dynamic range. The maximum number of par-
ticles of size 8, for example, is many orders of magnitude 
greater than the maximum number of particles of size 32. 
Using distinct transfer functions for each color/size avoids 
problems of data loss that can result from mapping vastly 
different ranges with the same function, e.g. if we use the 
same function for  32 nm. particles as 8 nm. particles, all 
colors for 32 nm particles will appear only in the lower part 
of the colorspace because the maximum quantity of size 8 
particles is so much greater than that of size 32 particles.
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 Secord presents a novel method of evenly packing spots 
through the use of weighted centroidal Voronoi diagrams 
[SEC02]. This method is effective but costly. We have  
reasonably approximated a full Poisson packing through 
more deterministic methods. First, we generate a regular 
grid of potential locations to place the center of a glyph. The  
density of this grid must be sufficient to maintain a high  
spatial frequency for the smallest possible spot size, a single 
pixel. We then jitter the prospective spot locations by a ran-
dom small amount in any direction to produce a non-regular 
but practically constant density distribution of potential spot 
locations throughout the output field. 

 For each potential spot location, we calculate the footprint 
of the would-be spot. By consulting the output buffer so far, 
we can determine whether the footprint overlaps with an  
existing spot. In the overlap case, we simply throw the spot 
away and move on to the next potential location, otherwise we 
place the spot and move on. The high spatial frequency of the 
underlying jittered grid suggests that in most cases spots will 

Figure 3: Enlargement of spot glyphs shows size and  
packing detail



 We chose to link our colorscales to the particle counts di-
rectly and not to the percentage of all particles at a point 
that a given size represents. Using percentages sacrifices all 
information about the actual number of particles- e.g. twenty 
percent of one hundred particles is significantly different 
from twenty percent of one million particles, but a percent-
age-based method would show them as the same color, pos-
sibly leading to erroneous insight into the data.

but one data value to visualize for each pixel is unnecessary, 
and we might instead perform blending of all datasets to see 
everything at once. The following visualizations illustrate 
how such a method breaks down: figure 5 illustrates direct 
visualizations of all particle sizes for comparison purposes. 
Figure 6 compares the blending of direct renderings of all 
nanoparticle sizes versus a pointillist version. It is apparent 
that the blending method fails to give discrete impressions of 
each data subset while the pointillist method retains distinct-
ness, most obviously in areas of high particle count, but also 
those of very low particle count. 

 Instead of randomly choosing which size to render for a 
given pixel in the output texture, we might also consider a 
fully regular spacing for the rendering of each data subset. 
For example, we can consider the case of a square glyph of 
pixels in which the upper-left pixel always corresponds to 
particles of size 1, the upper-right to size 2, and so on. Various 
work discusses the problematic nature of regular sampling 
across a spectrum of graphics research (e.g. [M87][C86]). 
Comparisons with a picture of the same data rendered with 
our random methods shows the superiority of the random-
choice method- even if we zoom in very close (see figures 
7, 8) the colors in the stochastic pointillist rendering are far 
more differentiable than the ordered version. We argue that 
regularity in the texture substantially interferes with our abil-
ity to discern small color variations across space.

3.2 Glyphs for cospatial particle count datasets

Our spot glyphs have been adapted to give a different view on 
these datasets. Instead of a single color representative of 
the mean diameter of particles at a point, we now present 
a target motif glyph using concentric rings of color tied to 
underlying particle count values. The order of colors/sizes is  
progressive; that is, the inner-most ring color corresponds to 
the number of particles of size 1 at the center of the target, 
the next ring out corresponds to particles of size 2, and so on. 
Again we have utilized the perceptually equiluminant col-
orscales (figure 4) to ensure that one colorscale does not gain 
an unfair “perceptual advantage” over any other. The glyph-
packing algorithm is the same as that for the spot glyphs used 
with summary statistics, detailed prior in section 2.3. 

 While the round target glyph is a natural extension to the spots 
we utilized for summary statistic visualizations, it is not the 
only glyph we considered- we also examined line glyphs with  
colors arranged in a pattern, and square targets. These  
options have failed to produce as robust a visualization.  
Interference due to the perceived orientation of the line 
glyphs and the linear qualities of the edges obfuscated the 
relative continuity of the underlying data. The same effect 
can be seen with the square targets due their linear edges, 
though it is not as pronounced. In addition to these factors, 
the rounded qualities of the target glyph more intuitively 
equate to scientists’ mental representations of the nanopar-
ticles.
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 Because of the close proximity of differing colors in 
our representations, we utilize perceptually equiluminant  
colorscales. These colorscales ensure that two colors rep-
resenting the same proportionate value on two colorscales 
appear equally bright. While perceptually equiluminant is, 
at best, an approximation across different viewers, methods 
have been developed to facilitate the selection and evalua-
tion of potential colorscales for perceptual equiluminance. 
One such system is Kindlemann’s Face-based Luminance 
software [KRC02].  In applying both the pointillist and 
glyph techniques to our datasets we have used perceptually 
equiluminant colorscales which represent the best possible 
balance (in our estimation) between diversity of color and 
equiluminance, as shown in figure 4. It should be noted that 
factors outside the scope of this work can also affect percep-
tual equiluminance, such as monitor calibration and CMYK 
color printing.

3.1 Pointillism and motivation for particle count data

To make use of the pointillist technique with these datasets, 
we have modified the stochastic process first used with sum-
mary statistic datasets to show standard deviation over an 
area by variation (“graininess”) in the texture. As we have 
no explicit deviation data in the second group of datasets, 
we can exploit stochastic sampling to convey data across all 
datasets. For each pixel, we choose randomly which size-
bin to visualize in the final output image and subsequently 
map that data value to its corresponding colorscale. This is a 
simple process for combining the multiple datasets and may 
initially seem rather naïve; however, to justify the utility of 
the method we need only compare it to alternatives that may 
fail to provide similar insight.

 First we examine the notion of random dataset selection in  
the sampling process. Critics might suggest that choosing 

Figure 4: Perceptually equiluminant colorscales for use with 
all renderings of multiple sizes and counts of nanoparticles.



 The target representation may lead to additional insights 
about the data which are not immediately obvious from the  
pointillist visualization. The glyphs have the ability to visu-
ally emphasize borders in regions of the data where numbers 
of particles change quickly. For example, if we examine the 
target rendering in figure 9, we can gain simultaneous insight 
to homogeneity and relative size of particles in the flow eddy. 
The brighter, multi-hued targets at edges of the interfaces in 
the flow pattern in comparison with the smaller, consistently 
blue targets in the core of the eddy may imply that particles 
are coagulating more rapidly at these edges than in the core 
[MG03].

4. Conclusion

We have offered visualization methods to effectively  
convey information about the formation of nanoparticles in  
computed two-dimensional slices of multidimensional  
incompressible particle-laden flows. We have applied 
our techniques to the visualization of summary statistics 
(mean diameter and standard deviation) for nanoparticle 
sizes through use of a pointillist texturization technique, 
in which the average color over space represents the mean  
diameter and the variegation (“graininess”) represents the  
standard deviation. We have also derived methods for the 
production of spot glyphs intuitively representative of the  
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Figure 5: Direct renderings of nanoparticle counts at each point for six sizes of nanoparticles. Clockwise from the upperleft:  
counts for 1, 2, 4, 8, 16, and 32 nm. sizes. Colorscales follow from figure 4. 

Figure 6: Blending versus pointillism for showing multiple datasets. At left, blended rendering for all sizes of nanoparticles.  
At right, pointillized rendering for all sizes preserves relevant details.



summary statistics dataset in terms of the spots’ diameter and 
variation over space. Furthermore, we have extended both 
methods for application to the underlying particle count data 
in which we are interested in the quantities of various sizes 
of nanoparticles forming at each given location. The poin-
tillist method here allows us to simultaneously visualize an  
arbitrary number of distributions through stochastic sampling 
and equiluminant colorscales. The target glyph has the poten-
tial to represent a great deal of data in underlying distributions 
in a unique, compact form.  In our case, these techniques have 
been applied to research scientists’ data of nanoparticles in 
formation in turbulent flows; however, we believe the simplic-
ity of the algorithms, ease of implementation and robustness 

of the techniques should allow their use in a wide variety of  
situations in which simultaneous visualization of multiple 
distributions is called for.  
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Figure 7: Detail view of regularly-spaced pointillist  
rendering.

Figure 8: Detail view of stochastic pointillist  
rendering maintains the integrity of the visualization. 

Figure 9: Target glyph rendering for all nanoparticles in 
formation.

Figure 10: Detail view of target glyph rendering for all 
nanoparticles in formation.
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