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Abstract
While vortex region quantities are Galilean invariant, most methods for extracting vortex cores depend on the
frame of reference. We present an approach to extracting vortex core lines independently of the frame of reference
by extracting ridge and valley lines of Galilean invariant vortex region quantities. We discuss a generalization
of this concept leading to higher dimensional features. For the visualization of extracted line features we use
an iconic representation indicating their scale and extent. We apply our approach to datasets from numerical
simulations and experimental measurements.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.3 [Computer Graphics]: Picture/Image Generation I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism

1. Introduction

Flow fields play a vital role in many research areas. Exam-
ples are burning chambers, turbomachinery and aircraft de-
sign in industry as well as visualization and control of blood
flow in medicine. As the resolution of numerical simulations
as well as experimental measurements like PIV have evolved
significantly in the last years, the challenge of understanding
the intricate flow structures within their massive result data
sets has made automatic feature extraction schemes popular.

Among the features of interest are topological and vorti-
cal structures. Topological visualization methods have been
introduced to the visualization community in [HH89] and
have been extended since then [GLL91, SKMR98, dLvL99,
WS01, TWHS03, WTHS04]. While they aim at the segmen-
tation of a vector field into areas of different flow behavior,
vortex oriented methods highlight turbulent regions of the
flow. Recently some work has been done to link these differ-
ent areas: [GTS04, TGK∗04] employ topological methods
to analyze the phenomenon of vortex breakdown. Vortices
play a major role due to their wanted or unwanted effects
on the flow. In turbomachinery design, vortices reduce ef-
ficiency, whereas in burning chambers, vortices have to be
controlled to achieve optimal mixing of oxygen and fuel. In
aircraft design, vortices can both increase and decrease lift.
While [PVH∗02] and [PR99] give a thorough overview of

algorithms for the treatment of vortical structures, we give a
short introduction here. They can be classified in two major
categories:

• Vortex region detection is based on scalar quantities that
are used to define a vortex as a spatial region where
the quantity exhibits a certain value range. We refer to
them as vortex region quantities. Examples of this are
regions of high magnitude of vorticity or negative λ2-
criterion [JH95] (cf. Figure 1). In general, these measures
are Galilean invariant, i.e., they are invariant under adding
constant vector fields. This is due to the fact that their
computation involves derivatives of the vector field only.
Isosurfaces or volume rendering are common approaches
for visualizing these quantities, which requires the choice
of thresholds and appropriate isovalues or transfer func-
tions. As shown in [RP96], this can become a difficult task
for some settings.

• Vortex core line extraction aims at extracting line type
features that are regarded as centers of vortices. Different
approaches exist. [SH95, PR99] consider lines where the
flow exhibits a swirling motion around it. [BS95] extracts
vorticity lines seeded at critical points and corrected to-
wards pressure minima. [RP98] considers stream lines of
zero torsion. All of these approaches include a Galilean
variant part, i.e., they depend on a certain frame of refer-
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(a) Original frame of reference. Vortex core lines following the
approach of [SH95, PR99].

(b) Alternative frame of reference. Vortex core lines following the
approach of [SH95, PR99].

(c) Our Galilean invariant approach. Vortex core lines extracted as
valley lines of λ2.

Figure 1: Flow behind a circular cylinder. Vortex regions
visualized as transparent isosurfaces of λ2. Vortex core lines
displayed as cylindrical lines.

ence (Figures 1a-b). In contrast to vortex region detection
described above, the extraction of those lines is parame-
ter free in the sense that their definition does not refer to
a range of values. This eliminates the need of choosing
certain thresholds.

In this paper we present an approach to extracting vortex
core lines that is invariant under Galilean changes of the ref-
erence frame. I.e., the extracted features remain unchanged
when a constant vector is added to the flow field. Instead of
using swirling stream line behavior as indication of a vor-
tex core line, we consider ridge or valley lines of Galilean
invariant vortex region quantities (Figure 1c). Furthermore,
we show that those line type features have a higher dimen-
sional generalization, e.g., surfaces.

The article is organized as follows: sections 2.1 and 2.2
review the most important approaches to vortex region de-
tection and vortex core line extraction. While section 2.3
treats the theory of ridge and valley lines, section 3 deals
with implementation issue for their extraction. In Section 4
we present an iconic representation for vortex core lines that
encodes the most relevant information like strength of the
coherent structure as well as rotation direction. We apply our
technique to several data sets in section 5.

2. Theoretical Background

We now give a short introduction to the two vortex detection
approaches mentioned above and suggest a combination of
both in subsection 2.3.

2.1. Vortex Region Detection

There are several derived scalar quantities that indicate vor-
tex activities. Ranging from simple to involved, vortices
might be defined as regions of high magnitude of vorticity
ω = (ω1,ω2,ω3)t =∇×v, low pressure p, rotation strength
∆, positive Q-criterion and negative λ2-criterion. In the fol-
lowing, we give some details on the three latter quantities.

Rotation strength ∆ as used in [SP03], see also [CPC90]
is linked to the intuitive understanding that a vortex exhibits
spiraling stream lines with respect to some specific reference
frame. Within this reference frame, the stream line pattern of
a flow field is dominated by its Jacobian Jv. If J has a conju-
gate pair of complex eigenvalues, the flow locally spirals in a
plane corresponding to those eigenvectors. ∆ is then defined
as the magnitude of the imaginary part of those complex
conjugate eigenvalues. So large values of ∆ indicate strong
spiraling patterns within the right reference frame. Where
∆ = 0, no such reference frame can be found. By considering
the orientation of the corresponding eigenbasis, a rotation
angle ϕ ∈ (−π,π) can also be extracted. When ϕ > 0, the
flow spirals counter clockwise around the eigenvector corre-
sponding to the real eigenvalue, clockwise, if ϕ < 0.

The closely linked quantities Q and λ2 are related to the
Navier Stokes equations and reflect the amount of strain and
vortical motions in the vector field. Due to this fact those
quantities are the most popular among fluid mechanicists.
Let∇v denote the gradient of the vector field. Then the strain
tensor S is defined as its symmetric part S = 1

2 (∇v +∇vt).
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The antisymmetric part Ω = 1
2 (∇v−∇vt) is closely related

to vorticity obeying

Ω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 .

Then the Q-criterion defined by [Hun87], also known as the
Okubo-Weiss criterion, is defined by

Q :=
1
2
(‖Ω‖2−‖S‖2) = ‖ω‖2− 1

2
‖S‖2.

Q has a direct physical interpretation. Where Q > 0, vorticity
dominates strain, so Hunt identified vortex regions with Q >
0. Note that Q < 0 indicates that the vector field is dominated
by strain, making this criterion valuable in vector fields with
distinct areas of strong vortical motions and areas of high
strain.

λ2, derived by [JH95], is closely related to Q. Consider
the three real eigenvalues λ1 ≤ λ2 ≤ λ3 of the symmetric
matrix S2 + Ω

2. In [JH95] it is deduced from the Navier
Stokes equations that for a local pressure minimum two neg-
ative eigenvalues of this matrix are necessary. They define
a vortex region where λ2 < 0. In their work they show that
Q =− 1

2 (λ1 +λ2 +λ3). Despite of this strong link they show
that the λ2-criterion detects vortex regions more reliably es-
pecially under a strong external strain. Nevertheless, the λ2-
criterion, unlike the Q-criterion, lacks a direct interpretation
for regions where λ2 > 0.

The Q-criterion is very fast to compute. Where the λ2 cri-
terion involves computation of eigenvalues of a (symmet-
ric) matrix, Q can be computed quickly using the identity
Q =−∑i, j(∇v)i j(∇v) ji.

Despite the convincing physical interpretation, those
quantities are of limited applicability in some settings. In
[RP96] it is shown that for turbomachinery flow fields λ2 is
negative almost everywhere. So for highlighting regions of
strong vortical activity thresholding is necessary, leaving the
scientist with the question of choosing an appropriate iso-
value. So vortex region detection has the drawback of being
parameter dependent.

2.2. Vortex Core Line Extraction

Several algorithms aim at extracting a line feature called the
vortex core line. The motivation arises from the intuitive ob-
servation that a vortex might be regarded as circular particle
movement around a common line.

It was suggested in [MK97] to consider minimal lines
of pressure. This approach was applied locally only and re-
sulted in disconnected line segments. In contrast to this, our
method results in continuous lines. Furthermore, we con-
sider arbitrary vortex region quantities. In [SH95] a tech-
nique was developped where vortex core lines are identified
with locations where the velocity points into the direction of

the eigenvector of the real eigenvalue of ∇v in places where
it has two complex eigenvalues indicating a vortical move-
ment around the real eigenvector (and thus around the vec-
tor field). This technique was improved in [PR99], where the
parallel vectors approach ensured connected lines. The same
authors suggested in [RP98] a higher order method for vor-
tex core line extraction of lines with zero torsion, which also
involves the vector field v directly by finding line structures
where v points into the direction of (∇a)v where a = (∇v)v
is the acceleration of the vector field. Another prominent ap-
proach is due to [BS95]. Here vorticity is integrated starting
from critical points in the vector field and corrected towards
pressure minimum.

The last three approaches have the drawback of being de-
pendent on the reference frame. Choosing the right reference
frame for the approaches of [SH95, RP98] may result in a
vortex core line, but when the spectator changes the refer-
ence frame significantly (for instance by moving faster than
the mean velocity of the field), the feature vanishes. Figure
1 shows this dependence on the reference frame. In [BS95]
the extraction of critical points is Galilean variant.

The advantage of those schemes over the vortex region
approach is that they can be applied without user interaction,
for instance as a batch job prior to visualization or during the
simulation.

2.3. Ridge and Valley Lines for vortex core line
extraction

We suggest a combination of both approaches by extract-
ing vortex core lines of vortex region quantities like Q and
λ2 and identify those lines by certain maximal lines of Q
called ridge lines where Q > 0 and certain minimal lines of
λ2 where λ2 < 0 called valley lines. In [PR99] it is pointed
out how to extract such extremum lines using the parallel
vectors operator. We use the Feature Flow Field approach
due to [TS03] detailed in section 3.

By extracting vortex core lines in this way, we combine
the Galilean invariance of the vortex region detection with
the parameter independence of the vortex core line extrac-
tion.

Several notions of extremum lines, ridge and valley lines
of a function f : R3 → R have been developed in the litera-
ture. We use the height ridge definition detailed in [Ebe96],
which is a one dimensional generalization of the well known
zero dimensional notion of an extremum point. We choose
this definition as it requires just second derivatives of the
vector field rather than fourth order derivatives like ridge de-
finitions that are based on curvature extrema, see [EGM∗94]
for a thorough introduction and comparison of several ridge
line extraction schemes and [KvD93] for a historical survey
of the development of extremum lines.

A sufficient condition for a local maximum point x of a
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function f : R3 → R ∈ C2(R3;R) is a vanishing gradient
∇ f (x) = 0 coupled with a negative definite Hessian H f (x)
implying a set of three negative eigenvalues γ1 ≤ γ2 ≤ γ3
corresponding to orthogonal eigenvectors c1, c2, c3 ∈ R3

satisfying Hci = γici. As H is symmetric, such an orthog-
onal eigensystem corresponding to real eigenvalues always
exists.

Aiming at a one dimensional generalization of a local
maximum, we note that negative eigenvalues γi imply that
the graph of f is convex in a small neighbourhood of the
maximum. In direction of c3, the eigenvector correspond-
ing to the largest eigenvalue γ3, the maximum is least sta-
ble, as this is the direction of smallest convexity. The soft-
est relaxation hence is to relax convexity just in direction
of c3. As a ridge line (when looking at a terrain) should
intuitively follow the steepest ascend, it is natural to re-
quire c3 = const ·∇ f whenever∇ f 6= 0, resulting in the re-
quirement H(∇ f ) = γ3(∇ f ). This makes ridge line extrac-
tion applicable to the parallel vectors operator as stated in
[PR99]. From the orthogonality of ci, it directly follows that
(∇ f )c1 = 0, (∇ f )c2 = 0. Vice versa, (∇ f )c1 = (∇ f )c2 =
0,∇ f 6= 0 implies that c3 = const ·∇ f , also from orthogo-
nality.

This intuition leads to the following definition cited from
[Ebe96].

Definition 1 Let f ∈ C2(R3;R), ∇ f its gradient and H f
its Hessian with eigenvectors c1, c2, c3 and corresponding
eigenvalues γ1 ≤ γ2 ≤ γ3.

1. Then a ridge line consists of all points x where

• A := (∇ f (x))c1 = 0 and B := (∇ f (x))c2 = 0 and
• γ2 < 0.

2. This has a d-dimensional generalization. A d-
dimensional ridge consists of all points x where

• ∇ f (x)ci = 0 for all i = 1, . . . ,3−d and
• γ3−d < 0.

3. d-dimensional valleys of f are defined as d-dimensional
ridges of − f .

Note that the structures defined here are d-dimensional man-
ifolds in most cases due to the regular value theorem justify-
ing the terminology of d-dimensional ridges.

As an example let γ1 ≤ γ2 < 0,γ3 > γ2 and consider the
function f (x,y,z) = γ1x2 + γ2y2 + γ3z2. Then ∇ f (x,y,z) =
(γ1x,γ2y,γ3z)t , Hx(x,y,z) = diag (γ1,γ2,γ3) with eigenbasis
ci = ei, ei denoting the euclidean standard basis. At x = y = 0
we have∇ f (x)a =∇ f (x)b = 0 and γ2 < 0. Hence, the z-axis
is a ridge line. Figure 2 illustrates this for γ1 = −100,γ2 =
−99,γ3 = 1.

With the notion of d-dimensional ridges at hand we can
define d-dimensional Galilean invariant vortex cores.

Definition 2 Let s be a Galilean invariant vortex region quan-
tity. In regions where s identifies a vortex, a d-dimensional

(a) Ridge line is in the center of
the isosurface (transparent).

(b) Ridge line scaled and
colored according to the
scalar value.

Figure 2: Ridge line of a simple scalar field.

vortex region quantity vortex range vortex core type

p [0,∞) valley

‖ω‖ (0,∞) ridge

∆ (0,∞) ridge

Q (0,∞) ridge

λ2 (−∞,0) valley

Table 1: Vortex region quantities pressure p, vorticity ω, ro-
tation strength ∆ from [SP03], Q-criterion and λ2 criterion
with the value range in which they indicate vortices. Vortex
cores according to definition 2 are either ridges or valleys as
shown in column 3.

Galilean invariant vortex core with respect to s is defined as
d-dimensional

ridge
valley

}
of s if

{
large
small

values of s indicate a vortex.

This paper is devoted to extracting 1-dimensional vortex
cores that we suggest as an alternative definition of vortex
core lines. Nevertheless, 2-dimensional vortex cores are in-
teresting features for future research.

Several vortex region quantities s and their vortex indi-
cating value ranges are displayed in Table 1. This table also
shows, whether vortex cores with respect to s are ridges or
valleys of s.

3. Extraction of Vortex Core Lines

Let s be a vortex region quantity as used in Definition 2. We
use the Feature Flow Field extraction scheme from [TS03]
to extract the vortex core lines with respect to s as defined in
the previous subsection.

The Feature Flow Field scheme involves two steps: In the
first step certain points are extracted that lie on the extremum
lines of interest. Those points are used as seed points in the
second step by extracing the extremum lines as field lines
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of a derived flow field, the so called feature flow field. The
following subsection is devoted to these two issues.

Afterwards we address interpolation issues in Subsection
3.2. The applications we show in Section 5 are based on flow
fields that are interpolated from uniform grid data. We found
that the widely used trilinear interpolation is not well suited
for ridge extraction.

3.1. Feature Flow Field setup

Again, we concentrate on the extraction of ridge lines. From
Definition 1 in the previous subsection, we know that we
have to extract regions where A = B = 0,γ2 < 0.

Assuming a point x ∈ R3 fulfills this requirement, the
tangent direction of the ridge x lies on can be computed
as follows. As ∇A is orthogonal to the isolines of A and
∇B is orthogonal to the isolines of B, the ridge tangent is
T := ∇A×∇B. The ridge line passing through x is then
exactly the field line of T passing through x. So T is the
feature flow field we are looking for. We extracted the ridge
lines by Runga-Kutta-integration of T . Although T involves
derivatives of high degree, we still found that integrating the
features was stable.

Now we are left with computing T and finding seed points
x.

3.1.1. Finding seed points

We are searching for zeros of the mapping x 7→ (A,B) from
R3 → R2. As we expect the zeros to be one dimensional,
we can restrict the search to two dimensional subsets of the
domain, e.g., the faces of some underlying structured or un-
structured grid. This reduces the problem to finding roots
of a function R2 → R2. For this setting, several Newton
solvers can be applied, involving further differentiation. As
A = (∇ f )c1 and B = (∇ f )c2 already involve second deriv-
atives of f , we favoured a gradient free minimization of
the positive function x 7→ A2 + B2 which turned out to be
more stable. We used the method described in [Ebe96] based
on Powell’s search [Pow64] and inverse parabolic interpola-
tion [PFTV91].

3.1.2. Computing the feature flow field

The computation of the feature flow field T := (∇A)×(∇B)
is quite envolved. First of all, it is not trivial to state ∇A and
∇B explicitly in terms of the derivatives of f . Furthermore,
A and B might be discontinuous at places where γ1 = γ2,
so called partial umbilics. At such places the Eigensystem
γi is not unique, because the 2-dimensional eigenspace cor-
responding to γ1 = γ2 allows a range of orthonormal bases.
[Ebe96] provides a remedy for this issue. As those findings
are central to our algorithm, we state the ridge direction com-
puted therein. The ridge tangent T is given by

T = Ã× B̃. (1)

Here, Ã, B̃ ∈ R3 are given by

Ãi
B̃i

}
=

{
γ1c1i +

(∇ f )c3
γ1−γ3

∑ j,k c1 jγ3k∂xi ∂x j ∂xk f

γ2c2i +
(∇ f )c3
γ2−γ3

∑ j,k c2 jc3k∂xi ∂x j ∂xk f
. (2)

In [Ebe96] it is shown that T is only defined up to sign,
whenever the ridge passes a partial umbilic γ1 = γ2. So in
practice, when following a ridge by integrating T , the cur-
rent ridge direction t1 is compared to the previous ridge di-
rection t0 and replaced by−t1 if the euclidean scalar product
t1 · t0 < 0, i.e., if two subsequent ridge directions differ by an
angle greater than π

2 .

3.2. Interpolation issues

For ridge and valley line extraction, gradient and hessian of
vortex region quantities s have to be computed at arbitrary
locations. As s usually involve derivatives of the flow to be
Galilean invariant, the hessian Hs involves third derivatives
of the flow field. [PR99] states that extracting extremum
lines requires careful filtering of the input field. We suggest
here to use an appropriate interpolation scheme to remedy
this problem.

Interpolating s trilinearly appeared to be both unstable
and ineffective. Although some features were roughly recog-
nized, most of them were missed completely. This is not sur-
prising due to the high degree of smoothness required by
the setting, and the fact that extremum lines are typically
quadratic features that can not be resolved well by trilinear
interpolation. Due to this, quadratic schemes seem a nat-
ural choice. Among those, approximation by quadratic su-
per splines (see [RZNS04]) provides a good trade-off be-
tween smoothness and speed. As the polynomials involved
are of total degree 2, (2) simplifies significantly, as here
∂xi ∂x j ∂xk f = 0 for all i, j, k and hence, (2) can be restated
as follows:

ÃQSS = γ1c1, B̃QSS = γ2c2, (3)

and, if ∇ f 6= 0, the ridge tangent T from (1) evaluates to

TQSS = γ1γ2c1× c2 = const ·∇ f , (4)

conforming to the intuitive understanding of a ridge direc-
tion as stated in subsection 2.3. This makes quadratic super
splines a somewhat natural choice.

4. Iconic Representation

To visualize vortex core lines, we use cylindrical meshes and
encode different scalar values into their representation. Fig-
ure 3 illustrates this. In figures 3a-b we color or scale the
cylinder according to the mapped values. Figures 3c-d en-
code sign and strength of a rotational behavior, either by us-
ing colored stripes on the cylinder itself or by placing a spi-
ral shape around it. Our implementation allows us to com-
bine these four variations as shown in figures 3e-f and 2b.
Note, that not all possible combinations produce expressive
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(a) Color. (b) Scale.

(c) Twist. (d) Orbit.

(e) Composed: Color & Twist. (f) Composed: Color & Scale &
Orbit.

Figure 3: Different approaches to encoding a scalar value
into the representation of a line.

results. Especially the usage of an orbit (figure 3d) tends to
yield cluttered visualizations in more involved settings.

While those kinds of representing a line are quite com-
mon, we are still left with finding appropriate measures to
be mapped onto our Galilean invariant vortex core lines.
[JMT02] depicts spiraling stream lines around a Galilean
variant vortex core line. As we treat Galilean invariant vor-
tex core lines in this paper, this approach is not directly ap-

Figure 4: Flow behind a circular cylinder. Iconic repre-
sentation of Galilean invariant vortex core lines. λ2 was
used for extraction and is encoded into color and scale of
the cylindrical meshes. Red / blue color is used to indicate
strong / weak vortex activity. ϕ is encoded into color and
spiral direction of the orbits.

plicable. [SP03] extracts and displays vortex hulls similar to
isosurfaces of ∆ (see section 2.1) around a vortex core line.

We propose the following measures to be used for an
iconic representation of Galilean invariant vortex core lines:

• Strength/Value of vortex region quantity s: Our vortex core
lines are linked directly to a vortex region quantity s and
their extremum property with respect to s ensures, that no
regions indicating stronger vortex activity exist away from
the extracted features. Furthermore, the value of s varies
along a line. To distinguish between (parts of) core lines
with different vortical activity, the value of s should be
encoded in the line representation. We found coloring and
scaling most suitable for this.

• Sign of rotation angle ϕ: As shown in section 2.1, the ro-
tation angle ϕ is derived from the Jacobian of the vector
field. Its sign gives the direction of rotation of a vortex.
As a visual encoding for this, the usage of color, twist or
an orbit seems to be most appropriate.

• Strength of rotation ∆: This measure indicates the strength
of spiraling patterns in the right reference frame. We
found the usage of color, twist or an orbit most suitable
for this.

We apply these visualization strategies in different com-
binations in the next section.

5. Applications

Figures 1 and 4 visualize a snapshot of a transitional wake
behind a circular cylinder [ZFN∗95]. This data set was de-
rived from a direct numerical simulation of the Navier-
Stokes equation by Bernd R. Noack (TU Berlin). It is given
on a 88× 106× 20 uniform grid. The data resolves the so-
called ‘mode A’ of the 3D transition at a Reynolds number
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(a) Visualized using illuminated field lines [ZSH96] and a
LIC-textured stream surface [BSH96]. Vortex core lines following
the approach of [SH95, PR99] displayed as gray lines.

(b) Isosurfaces of λ2.

(c) Galilean invariant vortex core lines. (d) Comparison between λ2-isosurfaces and our vortex core lines.
View from top.

Figure 5: Bubble chamber. Vortex core lines extracted, colored and scaled according to λ2. Same colormap as in figure 4.

of 200 and at a spanwise wavelength of 4 diameters. This
flow exhibits periodic vortex shedding leading to the well
known von Kármán vortex street. This phenomenon plays an
important role in many industrial applications, like mixing
in heat exchangers or mass flow measurements with vortex
counters. However, this vortex shedding can lead to undesir-
able periodic forces on obstacles, like chimneys, buildings,
bridges and submarine towers. The chain of vortices with
their alternating orientation of rotation is clearly depicted in
figure 4 due to the usage of spiraling orbits. This is a major
property of the von Kármán vortex street. Furthermore, it can
be seen that downstream the vortices loose their strength.

Figure 5 shows the geometry of a bubble chamber and its
interior flow. The flow has been measured experimentally on
a 11× 11× 10 uniform grid by a biplanar x-ray angiogra-
phy in a biofluidmechanics laboratory. The bubble chamber
is used as a biochemical reactor. Air injection into the liquid
through holes in the floor plate is used to improve the re-
action. The dataset was provided by Axel Seeger, Biofluid-
mechanics Lab, Charite Berlin. Figure 5a shows a Galilean
variant vortex core line according to [SH95, PR99] around
which the flow spirals. Figure 5b shows isosurfaces of λ2
corresponding to different isovalues. In Figure 5c, the vor-
tex core lines with respect to λ2 extracted by our method are
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shown, sized and coloured corresponding to λ2. Figure 5d
is a combination of Figures 5b and 5c looking into the bub-
ble chamber from above. This figure clearly shows that our
approach yields vortex core lines in the center of the consid-
ered vortex region quantity.

Figure 6 shows the transitional flow around a backward-
facing step. The flow field is obtained from a numerical
simulation of Kaltenbach and Janke (both TU Berlin) at a
Reynolds number of ReH=3000 based on oncoming veloc-
ity and on step height. The corresponding boundary con-
ditions are described in [KJ00]. The data set is given on a
266×64×128 rectilinear grid. Figure 6a shows stream lines
of the velocity field with respect to the original frame of ref-
erence. The vortex region quantity Q is visualized in figure
6b. This already gives an overview of the vortical structures
inherent to this flow, but the visualization strongly depends
on the choice of a transfer function. Figures 6c-d elucidate
the dominant vortical structures by scaling and coloring the
vortex core lines according to Q. This clearly shows that the
depiction of Galilean invariant vortex core lines yields ex-
pressive visualizations even for very complex settings.

6. Conclusions

In this paper we made the following contributions:

• We proposed using ridge or valley lines of vortex region
quantities to extract Galilean invariant vortex core lines.

• We proposed a generalization of this concept by giving
a definition of d-dimensional Galilean invariant vortex
cores.

• We discussed implementation issues for our method in-
cluding how to choose an appropriate approximation
scheme.

• We proposed an iconic representation of Galilean invari-
ant vortex core lines.

A drawback of our method is that it requires second or-
der derivatives. In order to investigate the dependence of
our method to the chosen interpolation or approximation
scheme, we plan to test further schemes and to compare the
results.

For the future we plan to extract higher dimensional vor-
tex cores as defined in subsection 2.3. For this it might be
necessary to consider other quantities than mentioned in this
paper.

The application to a number of data sets shows the feasi-
bility of our method even for complex settings. We conclude
that the visualization of Galilean invariant vortex core lines
supports the interpretation of both strength and extent of vor-
tical flow structures.
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(a) Visualized using illuminated field lines with curvature-based
seeding [WT02, WHN∗03].

(b) Volume rendering of Q.

(c) Galilean invariant vortex core lines.

(d) Close up.

Figure 6: Flow around a backward-facing step. Vortex core lines extracted, colored and scaled according to Q.
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