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Abstract
In this paper we present a new application of the principal component analysis (PCA) to generate multidimen-
sional transfer functions. These transfer functions are needed in the volumetric visualization of spectral data to
isolate regions that contain interesting peak-shaped features. Both large and small peaks can be equally important
and represent the presence of different chemical elements in a dataset. Principal component analysis separates
these peaks in different uncorrelated components and can simultaneously identify spatial patterns. This approach
is characterized by the direct linkage between the resulting spectral and spatial components. Our method enables
us to create an opacity map from these components. One or more mappings can be selected to highlight features
in three-dimensional volume visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.4.10
[Image Processing and Computer Vision]: Multidimensional I.5.3 [Pattern Recognition]: Algorithms

1. Introduction

The use of Direct Volume Rendering (DVR) is a well known
method for the visualization of three-dimensional (3D) volu-
metric datasets. In most volumetric datasets, each voxel con-
tains a scalar value that represents the density of a material
on that location. For visualization, a transfer function is a
mapping that assigns a color and opacity value to a scalar
value. A volume renderer can draw the voxel data using the
mappings specified in the transfer function. The challenge
in designing an appropriate transfer function is identifying
which structural properties are important for the user and
which relevant features in the data should be highlighted.

Imaging spectroscopy can be used to scan the structure
of chemical elements on material surfaces. In contrast to a
volume consisting of 3D points of scalar values, a spectral
dataset consists of two spatial dimensions and a wavelength
in the third dimension. Each scalar value in the volume is
interpreted as the intensity on a wavelength at a 2D position
on the surface of a material. A spectral volumetric dataset
is often referred to by material scientists as a multispectral
data-cube.

Since chemical elements have a unique and known spec-

tral profile, scientists can use spectroscopy to investigate
which elements are present on the surface of a material if
their spectral profile can be extracted. Unfortunately, extract-
ing a spectral profile from a data-cube is a difficult task.
First, the intensity at each point in the volume consists of
contributions of the wavelengths of neighboring chemical
elements at that position on the surface; i.e. the measured
intensity at a voxel is a linear combination of wavelengths.
A robust extraction method will be needed to factor the lin-
ear combination of wavelengths into the wavelengths of each
chemical element. Second, spectra characterize themselves
by different levels of scale in which peaks in the spectral pro-
file can vary in order of magnitude. For example, consider
the left plot of Figure 1. The sum of all spectral profiles in
the data-cube is plotted, with on the x-axis the wavelength
and on the y-axis the measured intensity. For visualization
purposes, the right part of the plot is magnified by a factor
of 467. Various large peaks can be seen in the left part of the
spectrum, while very small peaks are in the right part of the
spectrum. Both types of peaks are important in the analysis
of the data. The right side of Figure 1 shows the spatial dis-
tribution of spectral peaks. The value of a pixel represents
the sum of intensities at each wavelength at each position
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(a) (b)

Figure 1: (a) A plot of the summation of all spectra in the data-cube from the cerebral ganglia of the pond snail. The right part
of the plot is scaled by a factor of 447. (b) The spatial distribution of spectral profiles.

on the surface of the material. A color map is used to map
intensity to a color.

Figure 1 is an example of how scientists use two side-by-
side views to analyze the data in the data-cube. One view is
the spectral view; it shows the spectral profile at all wave-
lengths. The second view is a spatial view; it shows the sum-
mation of the spectral profile at each position on the surface
of the scanned material. It is our goal to create a data analysis
environment with one integrated 3D-view to gain insight to
the spatial distribution of features in the volume. This is very
difficult using only the two dimensional views. This paper is
the first step towards this goal; we report on how a transfer
function can automatically be generated for a 3D-rendering
of the data-cube.

1.1. Approach

Our approach uses Principal Component Analysis (PCA),
for the generation of transfer functions of spectral data. PCA
is a popular multivariate statistical method that is used to
find patterns in data of high dimension. It is designed to cap-
ture the variance in a dataset in terms of principle compo-
nents. Principle components are computed that define a pro-
jection that encapsulates the maximum amount of variation
in a dataset and is orthogonal (and therefore uncorrelated)
to the previous principle component of the same dataset. In
effect, PCA is trying to reduce the dimensionality of the data
to summarize the most important parts while simultaneously
filtering out noise.

To use PCA, the data must be expressed in one or more
variables, represented as a 2D data matrix. PCA transforms
correlations in the data into a list of uncorrelated compo-
nent vectors that is sorted by the amount of variability. In
the case of a data-cube, PCA would be applied to orthogonal

axes of the data-cube, to find correlated spatial features at
a particular wavelength, or correlated spectral features at a
at particular position of the surface. The resulting principal
components divide the data in uncorrelated spatial features;
i.e. uncorrelated chemical elements.

In our approach, however, we combine both spatial and
spectral dimensions to form a 2D data matrix and apply PCA
to this matrix. This results in finding correlated spatial and
spectral features. This way, features are used to discriminate
between boundaries of chemical elements on the material
surface. We use the resulting principal component vectors to
construct the transfer function. Features that have high vari-
ances can be made opaque to highlight features of interest,
while features with low variances are made transparent.

We apply our method to data from two imaging spec-
troscopy techniques. ’Fourier transform infra-red’ (FT-IR)
imaging spectroscopy is a technique that employs the trans-
mission of infra-red light through the surface of a material.
Using the IR spectrum, chemical bonds and the molecular
structure of organic compounds can be identified. Surface
areas as small as 10-15 microns can be detected. For ’Time
of flight secondary ions mass spectrometry’ (TOF SIMS),
a surface is bombarded with a primary beam of ions. This
results in the emission of secondary ions, which are sub-
sequently mass analyzed to generate surface mass spectra.
The technique therefore provides very detailed elemental
and chemical structure information. Using the latest TOF
SIMS instruments, surface areas as small as 3-5 microns can
be detected. While the resulting data from both techniques
have different noise and scale properties, both can be ana-
lyzed similarly.
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2. Related work

Early implementations of volume rendering [Lev88] using
transfer functions [DCH88] are mostly applied to data re-
sulting from CT scans. Many other areas of application could
benefit from techniques developed to be used in these med-
ical applications. For instance, Djurcilov et al. [DKLP02]
uses techniques for visualizing 3D scalar datasets by com-
bining uncertain information on top of environmental data.
Uncertainty information is added to the classic volume ren-
dering equation to highlight important features by adjusting
opacity and color. One thing these datasets have in com-
mon: each data-point has a 3D spatial location in contrast
with spectral data which has a 2D spatial location and a cer-
tain spectral location or wavelength. For this reason there are
not many implementations of 3D visualizations for spectral
data. One of the few examples of a DVR of a spectral data-
cube is shown in “Visualization of Spectral Images” from
[PvdH01] together with a representation with the use of iso-
surfaces, which gave some unexpectedly good results using
those datasets. Torson presents in [Tor89] a system for in-
teractive analysis of 3D data-arrays, which he uses on data
from spectrometer instruments for which conventional vol-
ume rendering and surface display techniques were not ap-
propriate. He presents three reasons for not applying DVR
techniques on data from imaging spectroscopy. First, the
data values are not smoothly varying throughout the data-
cube. Second, volume rendering cannot easily show small
local data variations superimposed on broad overall varia-
tions and third, volume rendering provides only a qualitative
view of the data. The system did not provide any interactive
navigation tools for using volume rendering in a PC-based
virtual reality like Fuhrmann et al. [FÖMH02] implemented
using CT-data, but this would be the eventual goal for this
presented procedure.

We try to solve the problems using DVR for spectroscopy
data using PCA (see [WRR03]) to detect patterns in the data.
Lasch et al. [LWMN98] already used PCA to detect patterns
in FT-IR data images. Another application of PCA for pat-
tern recognition in 3D datasets is, for example, the recog-
nition of spatial-temporal patterns in Arctic sea ice concen-
tration by Piwowar et al. [PDL01]. A closely related multi-
variate image analysis algorithm is Independent Component
Analysis (ICA). Muraki et al. [MNK00] apply ICA on mul-
tichannel volume data from MRI scans to separate specific
tissue characteristics e.g. water and fat. They train a radial
basis function network with sample data from the visible fe-
male dataset to generate color transfer functions.

He et al. [HHKP96] also uses stochastic search tech-
niques to generate transfer functions for data from MRI and
CT scans, with better results than the approaches relying
purely on the ’trial and error’ of the human factor. This
approach requires a minimum of computer aid compared
to data-centric or image-centric approaches as described in
[PLB∗01]. Due to the complexity of the task and the intro-

duction of multi-dimensional transfer functions (for e.g. in
[KD98], [KKH01b]) most research tends towards a semi-
automatic approach in transfer function design for direct vol-
ume rendering of medical datasets. A minimum of user in-
volvement is accomplished using direct manipulation wid-
gets (see [KKH01a]) to create multi-dimensional transfer
functions for specific datasets as in [VST∗04].

Different approaches in creating appropriate transfer
functions have to be considered in the relatively open area of
using DVR to visualize the data-cubes from imaging spec-
troscopy. Existing multi-dimensional transfer functions do
not handle the equally important high and low peaks in the
spectral dimension very well. PCA is in use in identifying
these different peaks in the resulting spectra and has already
proven itself in the area of statistical pattern recognition.

3. Method

3.1. Data representation

PCA is traditionally performed on a 2D matrix with the sam-
ples of the dataset in one dimension and the different vari-
ables in the other dimension. The spectral data-cube has to
be converted to such a matrix with preservation of the spec-
tra and images as represented in Figure 2.

Figure 2: (a) A single spectrum and (b) a single image in
the spectral data-cube.

A 2D matrix is constructed by unfolding each x by y im-
age in the spatial dimension into an x× y-dimensional vec-
tor. This vector represents the spatial dimension at a particu-
lar wavelength. The 2D matrix, X , consists of each unfolded
spatial vector, see Equation 1. Each row represents an image
at a particular wavelength in the spectral dimension (denoted
in Equation 1 as wavelengths 1,2, . . . ,λ).

X =











d1,1 d1,2 · · · d1,x×y
d2,1 d2,2 · · · d2,x×y

...
...

. . .
...

dλ,1 dλ,2 · · · dλ,x×y











(1)

The spectrum on a certain spatial location represents one
column in matrix X . A slice of the data-cube at a particular
wavelength represents one row.
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The images in matrix X are treated as samples in the
data which will result in several ’eigenimages’ after apply-
ing PCA. The positive and negative peaks in the resulting
eigenimages represent similarities and differences between
the different spatial samples.

The spectra could also be regarded as samples to the PCA
when matrix X is transposed, resulting in ’eigenspectra’.
The positive and negative peaks in the resulting eigenvectors
represent similarities and differences between the different
spectral samples.

Next, some pre-processing steps are taken to normalize
the data in matrix X . First, we subtract each data value with
the mean. This reduces the influence of extreme scalar data
values. Second, scaling data values according to the vari-
ance. This removes big variations between values. Both rows
and columns of the data matrix X are pre-processed in this
way (using the formulas in 2). Consequently we can treat
both rows and columns in the matrix as measurements when
applying the PCA.

X̃rows = (X −µxy)/σxy (2)

Xpreprocessed =
(

X̃rows −µλ
)

/σλ

3.2. Feature detection using PCA

The standard PCA algorithm is used to find orthogonal
and normalized matrices for the spectral and spatial dimen-
sions. These matrices are respectively denoted as Pimages
and Pspectra. The rows in Pimages are the eigenvectors of the
spatial dimension in the matrix Xpreprocessed · XT

preprocessed .
Pimagesis a rank sorted λ×λ sized matrix and Pspectra is rank
sorted xy× xy sized matrix.

Equation 3, shows how Pimages is used to find Yimages, the
by Pimages projected data as a linear combination of the new
bases of Xpreprocessed . SY is the diagonalized covariance ma-
trix, with the ith diagonal value of SY being the variance of
Xpreprocessed along the ithprinciple component.

Yimages = Pimages ·Xpreprocessed (3)

such that SY ≡
1

xy−1
Yimages ·Y

T
images is diagonalized

Yimages is a λ×xy sized matrix. Since the principle compo-
nents in Pimages are sorted in decreasing variance, the high-
est contribution to the spatial dimension are the first rows in
Yimages. The last rows with the lower associated variances are
more likely to represent noise. The rows of Yimages are called
spatial score vectors.

A similar approach is used to find the much larger xy×xy
sized matrix, Yspectra, the by Pspectra projected data as a lin-
ear combination of the new basis of X T

preprocessed . SY is the

diagonalized covariance matrix, with the ith diagonal value
of SY being the variance of X along the ith principle compo-
nent of Pspectra.

Yspectra = Pspectra ·XT
preprocessed (4)

such that SY ≡
1

λ−1
Yspectra ·Y T

spectra is diagonalized

The principle components with the highest contribution to
the spectral dimension are the first rows in the matrix. The
last rows with the lower associated variances are more likely
to represent noise instead of interesting spectral features.

3.3. Transfer function generation

In the previous section we described how the principal com-
ponents and score vectors are computed. These are used to
find spectral or spatial features in a 3D spectral volume. For
the visualization of these features, opacity of the transfer
function is used. Multiple opacity functions are used for dif-
ferent features to isolate them from other areas.

The eigenimages and eigenspectra matrices, Pimages and
Pspectra, are used to compute two new matrices, Yimages and
Yspectra, which project the original data into a new bases.
To generate the opacity function of areas with the highest
variances in the data, an addition of the first score vector
with the highest spatial variance and the first score vector
with the highest spectral variance is used. The motivation
is that features with the highest variance in the spatial and
spectral dimensions are captured in one single opacity map.

Equations 5 and 6 describe this more formally. The score
vector matrices, Yimages and Yspectra, are rewritten as a set of
vectors. Yimages is the projected spatial matrix and is writ-
ten as a sorted list of vectors. Y T

spectra is the transpose of
projected spectra matrix, and is written as a sorted list of
vectors. The resulting vectors are combined into one opacity
transfer function. For example, Equation 6 shows how the
opacity map of the first score vectors is derived.

Here, Yimages is a λ×xy size matrix and Yspectra is a xy×λ
matrix, which is converted to a λ× xy matrix by taking the
transpose. Hence, O1 is a λ× xy sized matrix.

Yimages =











i1
i2
...

iλ











and Yspectra =











s1
s2
...

sxy











(5)

O1 =











i1
i1
...
i1











+











s1
s1
...

s1











T

(6)
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The 3D points with the highest positive and negative val-
ues in O1 are assigned to high alpha values. All regions in
the volumetric data that contribute to this first principal com-
ponent are made opaque using this 3D transparency map.

Similarly, the opacity maps of the second, third, etc. score
vectors can be generated. Different mappings could be com-
bined to display similarities or differences of multiple fea-
tures in original data.

4. Applications

Our method is applied on two examples of spectral record-
ings. First, we describe the results of our method when ap-
plied on a dataset created with the TOF SIMS technique. It
is a data set of a small section of the anterior lobe of the
cerebral ganglia of the pond snail, Lymnaea Stagnalis. Our
second example is a visualization of the brain ventricle of a
mouse resulting data from FT-IR spectroscopy.

4.1. The small brains of a snail

A high spectral and spatial resolution can be obtained us-
ing the TOF SIMS. In this example atomic and molecular
structures in a data set can be identified. The boundaries of
different cells can be visualized when TOF SIMS is applied
on a slice of the brain of the pond snail. Figure 1 already
showed the resulting spectra and images from this spec-
tral scan. Some obvious features are highlighted when our
method is applied on this dataset. The first two spectral score
vectors are shown in diagram a and c of Figure 3.

(a) (b)

(c) (d)

Figure 3: (a-c) The first two score vectors with (b-d) the
accompanying eigenimages as a result from the PCA.

The three highest peaks in (a) represent the positive con-
tributions in the spectral dimension of the component that
isolates the largest amount of data. Figure 3b gives the cor-
responding spatial distribution of the material in which the
cells in the data set are embedded. The second score vector

in diagram (c) has isolated a large negative peak. This peak
corresponds with the red areas in the image of Figure 3d that
can be identified as some larger cavities between the differ-
ent cells. Other components that result from the PCA also
highlight certain areas within or between cells that contain
different organic compounds.

4.2. The bigger brains of a mouse

The second example is a slice of the central brain ventricle of
a mouse. FT-IR spectroscopy is applied to identify different
chemical functional groups. The resulting spectral and spa-
tial components are combined in different 3D maps of which
the second, third and fourth are displayed in Figure 4.

The long axes represents the spectral dimension that ends
in the front on wavelength of 4000cm−1. The first com-
ponent mainly highlights the differences between the unin-
teresting regions completely filled. The red and orange re-
gions of the components represent positive correlations in
the data in contrast with the blue regions. Both regions could
be of interest for the analysis of the identification the func-
tional groups. The isolated blue region at the back in dia-
gram (a) on wavelength 1550cm−1, represents the location
of amide groups, whereas the two blue regions in the front
on wavelength 3300cm−1 and 3400cm−1 represent hydroxy
groups and amino groups. Different regions are clearly dis-
tinguished in the resulting 3D maps. These maps can be used
as an opacity map on top of the original data as shown in di-
agram (a) and (b) of Figure 5.

The same volumetric data can be loaded in VolView, a vi-
sualization package from Kitware. This package offers many
tools to interactively create an appropriate transfer function
based on the “trial and error” method with an initial esti-
mation of color and opacity transfer function based on the
histogram of the data. This initial guess for an appropriate
transfer function is shown in Figure 5c. This package cannot
distinguish between the spatial and spectral dimensions in
the spectral data because it uses the scalar values the same
way in all three dimensions. VolView cannot differentiate
between small but important differences between values in
the spectral dimension when they are dominated by large
peaks that are present in other regions in the data-cube.

5. Discussion

The current practice in the analysis of spectral data is illus-
trated in Figure 1. Two dimensional plots, one for the spec-
tral and one for the spatial information, are used to view
the data set. In this paper, we have introduced a method
to view spectral data in three dimensions. The three dimen-
sional view is used to gain insight into the spatial distribution
of features in the volume, which is very difficult to do using
only the two dimensional views. We have discussed how a
transfer function can be generated using PCA. The contri-
bution is that PCA is applied in both the dimensions of the
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(a) (b) (c)

Figure 4: The (a) second, (b) third and (c) fourth component mappings with the negative contributions in blue and positive
contributions in red.

(a) (b) (c)

Figure 5: (a-b) Two resulting component mappings applied on the original data compared with (c) the VolView representation
of the same dataset.

individual images, as well as in the dimensions of the spectra
of all images.

Using PCA in both dimensions of the data cube allows
us to address the two major problems that were mentioned
in the introduction. First, intensity at each point in the data
consists of contributions of many spectra. Using PCA in the
spectral dimension, results in the principle components of a
number of spectra. Second, spectra characterize themselves
by different levels of scale. PCA is a technique that computes
variances. Hence, the technique will find variances between
spectra with very large peaks and also between spectra with
low peaks.

We now discuss some pros/cons of the proposed method:

• Although the first principal component is used to highlight
the data regions that of which have the highest variances,
this does not necessarily mean the most interesting feature
is captured by the first component. For example, a princi-
ple component could contain high variances in the spec-
tral dimension and very low variances in the spatial di-
mension. As a consequence, each opacity function should
still be manually checked by the user.

• Component vectors can contain negative values, although
the original data does not. These negative peaks can be
just as important as the positive, but it is uncertain how
the composite opacity map is affected when they have a
positive spectral but negative spatial contribution.

• The method normalizes the data as much as possible and
reduce variances in both dimensions (see Equation 2).
This is difficult to realize in both dimensions without los-
ing the direct relation between spectral and spatial compo-

nents. There can be some outliers that cannot completely
be filtered out in the pre-processing steps when their val-
ues are too deviant to successfully auto-scale the data and
lose the extreme values. An alternative data-scaling tech-
nique may be used to remove these outliers automatically
using a threshold function to filter out extreme values.

• The solution of Yspectra can be used to compute the matrix
Pimages as

Pimages =
Yspectra

√

∑ Y 2
spectra

(7)

This optimization has a much lower computational cost
than was given in Equation 4 since λ � x× y .

• As mentioned above, PCA is used to analyze spectra
and highlight contrasting features in images. Even small
differences between spectra and images can be detected
when they are correctly pre-processed. Hence, the method
can also be used to detect noise in both spectral and spatial
dimensions. The ’least principal’ components will contain
most of the noise present in the data.

• The main advantage of using our method to detect spectral
and spatial features is the direct linkage between both di-
mensions by using the result in one dimension to calculate
the other (see Equation 6). It is not possible to automati-
cally link components using separate analyzes by treating
the spectra or images as dimension with measurements.

5.1. Future work

Our method is just the first step in creating a tool for the
analysis of spectral data using direct volume rendering. In

c© The Eurographics Association 2005.



A. Broersen & R. van Liere / Transfer Functions for Imaging Spectroscopy Data

the future, 3D separation and clustering algorithms will be
incorporated to improve the definition of the opacity func-
tion. Another improvement would be the automatic identi-
fication of features by adding additional information about
spectral peaks. Component vectors could be matched using
this database of score vectors to label the different volumet-
ric regions in the visualization. Storage of data sets, their
features and classifications could eventually evolve into an
integrated system for feature recognition and analysis. Fi-
nally, the method will be applied to other multidimensional
scientific datasets which lend themselves for finding high di-
mensional patterns.
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