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Abstract
This work introduces a volume rendering technique that is conceptually based on the shear-warp factorization.
We propose to perform the shear transformation in the frequency domain. Unlike the standard shear-warp algo-
rithm, we allow for arbitrary sampling distances along the viewing rays, independent from the view direction. The
accurate scaling of the volume slices is achieved by using the zero padding interpolation property. Finally, a high
quality gradient estimation scheme is presented which uses the derivative theorem of the Fourier transform. Exper-
imental results show that the presented method outperforms established algorithms in the quality of the produced
images. If the data is sampled above the Nyquist rate the presented method is capable of a perfect reconstruction
of the original function.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction and Related Work

The resampling of discrete signals is an important part of any
volume rendering algorithm. The numerically best imple-
mentation of volume rendering is the ray casting approach
introduced by Levoy [Lev88]. For every pixel in the final
image a viewing ray is cast into the scene. Numeric integra-
tion of the volume along the viewing rays is performed. This
requires the computation of equidistant sample points along
each viewing ray. The quality of the resulting image depends
directly on the resampling filter used in this stage of the ren-
dering process. Research has been done to improve the de-
sign of these spatial domain filters [MMK∗98], and to eval-
uate and compare the quality of the reconstruction [ML94].

As a basic principle all of these filtering methods are ap-
proximations of the sinc filter, which provides the ideal sig-
nal reconstruction. Unfortunately the sinc filter has infinite
extend in the spatial domain, therefore it is usually dismissed
as a theoretical solution. However, the frequency domain
representation of the sinc filter is a simple box filter. This
leads to the assumption that volume rendering with sinc filter
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quality is possible if the resampling is done in the frequency
domain. The Fourier transform was introduced to volume
rendering by Dunne et al. [DNR90]. The proposed algo-
rithm, later referred to as frequency domain volume render-
ing (FDVR), or Fourier volume rendering (FVR), was fur-
ther established by Malzbender [Mal93], Levoy [Lev92] and
Totsuka and Levoy [TL93]. The FVR method is based on
the projection slice theorem of the Fourier transform, which
states that projection in the spatial domain is equivalent to
slicing in the frequency domain. If the size of the volume is
N3, the computational expense of FVR is O(N2log2N) as
compared to O(N3) of other rendering methods. Therefore
the computational complexity of frequency domain volume
rendering is lower than that of other traditional volume ren-
dering approaches.

Unfortunately even with the most recent improvements by
Lee et al. [LDB96], Westenberger and Roederik [WR00] and
Entezari et al. [ESMM02], which have added lighting ef-
fects, this method generates only “x-ray” like images. The
lack of occlusion and support of transfer functions are the
major drawbacks of this method.

In this paper we utilize the shifting theorem, the pack-
ing theorem (also known as zero-padding), and the derivative
theorem [OS89]. With these theorems we are able to perform
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volume rendering using the ideal sinc filter. Our method
is conceptually based on the shear-warp factorization intro-
duced by Lacroute and Levoy [LL94]. The essence of shear-
warp is a factorization of the viewing transformation into
a permutation, a shear, and a warp transformation. In this
work we propose a new method performing the shear trans-
formation in the frequency domain. To further improve the
quality of the resulting images, two additional modifications
of the standard shear-warp approach are introduced. First, a
method is proposed for resampling intermediate slices be-
fore the shear operation is applied. This ensures that we
obtain a steerable and view-independent sampling distance
along the viewing rays. Second, we introduce a technique to
perform zooming in the standard object coordinate system as
compared to zooming in the warping stage, which improves
image quality significantly. Additionally a high quality gra-
dient estimation scheme based on the derivative theorem of
the Fourier transform is presented.

During the development of this algorithm a work by Li et
al. [LME04] has been published. Their approach uses prin-
ciples similar to our method, i.e., they perform the resam-
pling of the volume in the frequency domain. As this is the
mostly related work to our technique, we include a com-
parison in terms of complexity between these two methods.
We assume that both algorithms are applied on a cubiform
dataset with edge length of N. We also assume N to be a
power of two, allowing a complexity of Nlog2N for a 1D
Fourier transform. The approach of Li et al. decomposes the
transformation matrix into four shear operations, which are
performed subsequently in the frequency domain. This re-
quires four sets of 1D forward and backward Fourier trans-
forms with a complexity of 2N3log2N each, leading to an
overall result of 8N3log2N In our approach the transforma-
tion matrix is factored according to the shear-warp factor-
ization which requires only one shear operation to be exe-
cuted in the frequency domain. To achieve this we need one
3D Fourier transform (complexity 3N3log2N) to get the fre-
quency domain representation of the volume. After the re-
sampling along the principal viewing direction (k direction),
N2 1D inverse Fourier transforms (complexity N3log2N) are
applied to get slices in the frequency domain. Finally to get
the slices for compositing N 2D inverse Fourier transforms
(complexity N3log2N) are used. This all adds up to a com-
plexity of 6N3log2N, which is about 3

4 of the approach of
Li. et al. This is not a very significant difference, but if the
volume is resampled by the application of shear operations
it is necessary to add sufficient spatial domain zero-padding
to fully accommodate the rotated volume. The problem, that
arises if the spatial domain zero-padding is too small, is that
parts of the data volume pass over the border of the vol-
ume and through the periodicity of the dataset enter from the
other side. This error is amplified by the consecutive shears.
To allow arbitrary positions of the viewpoint, a symmetric
spatial domain zero-pad of at least

√
3

2 times the volume res-
olution (if the dataset is cubiform) has to be applied in each

direction. This creates a more than five times higher memory
consumption as compared to our method that does not re-
quire spatial domain zero-padding of that amount. It should
be mentioned that our method was especially designed for
volume rendering whereas the method of Li et al. was pri-
marily developed for the resampling of a regular 3D volume
into another regular 3D volume. In this work we further in-
troduce a gradient estimation scheme that takes advantage of
the derivative theorem of the Fourier transform, which could
be also applied to their work.

We introduce a new rendering pipeline in the following
section. Our results are presented in Section 3 which are fol-
lowed with conclusions in Section 4.

2. The Rendering Pipeline

The proposed algorithm is based on the shear-warp fac-
torization introduced by Lacroute and Levoy [LL94]. The
shear-warp technique is one of the fastest software based
volume rendering algorithms. It gains its performance by
factoring the projection matrix that transforms the volume
from object space into image space. The transformation de-
scribed by each of these matrices can be computed very ef-
fectively.

In our work we use the same matrix decomposition as in
the original paper. However, our focus is on high reconstruc-
tion quality. The shear-warp factorization has four stages:
permutation, shearing, compositing and warping. The per-
mutation stage changes the storage order of voxels in mem-
ory in order to maximize cache coherency. During the shear-
ing stage the volume is treated as a set of slices which
are resampled on a sheared grid. The quality of this re-
sampling process depends very much on the filter used for
the reconstruction of the signal. Here we propose to per-
form the shear by applying the shifting theorem [OS89] in
the frequency domain. The next stage, i.e., the composit-
ing, is equal to a numeric integration along the viewing
rays. A major drawback of the standard shear-warp tech-
nique is that the sampling distance for the numeric inte-
gration cannot be changed. This sampling distance is very
coarse (≥ 1.0) and view dependent. In our rendering pipeline
we propose a resampling step that allows to perform the nu-
merical integration along the rays with an arbitrary sampling
distance, which is independent of the viewing direction. The
last stage, i.e., the warping, transforms the intermediate im-
age of the compositing stage into the final image. The warp-
ing in our method remains similar to the standard shear-warp
warping. In order to maintain high quality a higher-order
spatial domain filter is used. The quality loss through the
resampling of the intermediate image in this stage does not
create visible artifacts in the final image.

The adapted rendering pipeline for our new frequency do-
main based method is presented in Figure 1. The first stage
of the rendering pipeline starts from the standard object co-
ordinate system, that means the volume is already permuted
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Figure 1: Rendering pipeline of the shear-warp factorization in the frequency domain.

such that the (i, j) plane is most perpendicular to the viewing
direction. Through a 3D Fourier transform the next pipeline
stage is reached (see Figure 1(b)).

Resampling in the Principal Viewing Axis (k): In the
standard shear-warp factorization the number of volume
slices along the principal viewing axis k is kept constant for
performance reasons. Therefore the distance of the sampling
points along the rays vary with the viewing direction. Fig-
ure 2 shows how the sampling distance (s1 vs. s2) varies
according to the viewpoint settings. Viewing rays are cast
from the left, through the samples of the first slice, to the
right. The second sample on each ray is interpolated within
the second plane (black circles). Only a two dimensional in-
terpolation scheme is required, but an angle dependency of
the sampling distance along the rays (s1, s2) and the distance
between the rays (d1, d2) is introduced. dk indicates the dis-
tance between two slices in k direction. The sample distance

s1

d1

Slice 2Slice 1

kdk

s 2
d2

Slice 2Slice 1

k

dk

Figure 2: The shear transform of the shear-warp factoriza-
tion for two different viewing directions.

variation can create artifacts that are especially visible in an-
imations. Resampling of the volume in k direction allows to
select an arbitrary sampling distance along the rays indepen-
dent of the viewing direction. Resampling creates additional
volume slices and is done by exploiting the packing theo-
rem, which is also known as zero-padding in the frequency
domain. The packing theorem states that interpolation in

one domain corresponds to appending zeros in the other do-
main. To compute the necessary size of the zero-pad area,
the sampling distance s along the viewing rays before re-
sampling is calculated. The setup for this calculation is illus-
trated in Figure 3. The viewing vector~vso = (vso,i,vso, j,vso,k)
and the distance dk between the volume slices along the k
axis are needed. ~vso is normalized in k direction by divid-
ing each component by vso,k yielding~v′so = (v′so,i,v

′
so, j,v

′
so,k)

with v′so,k = 1.0. The absolute length |~v′so| of the vector ~v′so
is the sampling distance if the volume slices are 1.0 apart. A
multiplication with dk, the real distance between the volume
slices, gives the sampling distance before resampling.

Slice 2

Slice 1

s

1.0
dk

vso

vso,k

k

Figure 3: Calculation of the sampling distance s for a given
viewing vector~vso and slice distance dk.

The sampling distance before resampling s (Eq. 1) and the
desired sampling distance s′ are inversely proportional to K
the number of slices in the k direction before resampling,
and K′ the number of slices in k direction after resampling
(Eq. 2). Using Eq. 3 we calculate K′, the number of samples
after zero-padding. The difference between K ′ and K is the
amount of zero-padding necessary for the selected sampling
distance s′.

s = dk

√

(v′so,i)
2 +(v′so, j)

2 +(v′so,k)
2 (1)
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s′

s
=

K
K′ (2)

K′ =
sK
s′

(3)

As zero-padding can only be applied in discrete steps, K ′

has to be rounded to the closest integer number K ′
pad ∈ N.

This is typically not an issue, since for values of K ′
pad > 50

the deviation from the desired sampling distance s′ is be-
low ±1.0%.

After the application of the zero-pad in k direction the
pipeline stage Figure 1(c) is reached. The next stage is an
inverse Fourier transform in k direction, while the i and j di-
rection of the volume remain in the frequency domain (Fig-
ure 1(d)).

Resampling of Volume Slices in i and j Direction:
In the standard shear-warp factorization zooming is per-
formed by scaling of the intermediate image. This approach
leads to considerable blurring artifacts, especially for zoom
factors greater than 2.0, as pointed out by Sweeney and
Mueller [SM02]. In our method zooming is performed ear-
lier, in the standard object space where the rescaling is ap-
plied to the volume slices. A desired slice resolution (I′, J′)
is achieved by increasing the signal period of each slice by
zero-padding in the frequency domain. As adding samples is
only possible in discrete steps a particular zoom factor can
only be achieved with limited precision. The maximum devi-
ation from the desired amount of samples is ±0.5 samples,
i.e., the difference to the closest full sample count. There-
fore, if I′pad > 50 and J′pad > 50 the deviation of the zoom
factor is below ±1.0% of I′ and J′. This problem is also
present for any computer screen, which only has pixel ac-
curacy. Hence, this is a general drawback of any discrete
storage-based pipeline. After the application of the zero-pad
the render process reaches the stage in Figure 1(e).

Shearing: During shearing the volume is transformed
from standard object space to sheared object space. This
causes the viewing direction to be perpendicular to the slices
of the volume. Performing the calculations explained in de-
tail in Lacroute’s thesis [Lac95] we acquire the shear coef-
ficients (si,s j) and the translation values (ti, t j). The values
aik and a jk describe the displacement of the kth slice in i and
j direction. For both directions the shifts by axk (x ∈ {i, j})
are split into a multiple of the voxel lengths axkSD and the
remainder, a fraction of a voxel length axkFD (see Figure 4).

The shift by axkFD is performed in the frequency domain,
and the shift by axkSD is done in spatial domain. The shift in
the spatial domain is actually only a movement of the slice
in full voxel steps. The interpolation part is performed in the
frequency domain. The reason for this split is to keep the
shift in the frequency domain as small as possible to limit
wrapping effects. These effects appear because in the Fourier
transform the volume slices are assumed to be periodic in i
and j directions. To limit the wrapping effects a symmetric

axk

axkFDaxkSD

Figure 4: The shift of the signal by axk is split into a spatial
domain (axkSD) and a frequency domain (axkFD) fragment.

spatial domain zero-pad of one voxel has to be added to sep-
arate the periodic replicas in the spatial domain.

The shifting theorem of the Fourier transform states that
a signal can be shifted in the spatial domain by the applica-
tion of phase shifts in the frequency domain. This theorem
is used to perform the axkFD shift, and the rendering stage
Figure 1(f) is reached. An inverse Fourier transform in i and
j direction moves the rendering process to stage Figure 1(g).
The axkSD part of the slice displacement is applied in the
spatial domain, which completes the transformation of the
volume to the sheared object space (see Figure 1(h)).

Compositing: During the compositing stage the resam-
pled slices are blended into a 2D intermediate image along
the k axis. Transfer functions can be applied to the volume,
as well as other visualization techniques (e.g., shading, non-
photorealistic effects, texturing, etc.).

During compositing the density information of each slice
is transformed into an image. Each pixel in these images has
a color and a transparency coefficient. These images are then
composited using the “over” operator [PD84], which results
in the non-warped intermediate image (see Figure 1(i)).

Warping: The 2D warping transformation applied to the
intermediate image leads to the final image. The warping
matrix transforms data points from the sheared object space
into the final image space. This transformation compensates
the view dependent scaling of the distances between the
viewing rays (compare d1 and d2 in Figure 2), and performs
the rotation component around the k axis.

If M is the maximal volume extension (maximum of i, j
and k resolution in standard object space), and z is the scale
factor applied to the scene, then an N ×N image buffer with
N =

√
3 · z ·M can accommodate the resulting image. This

calculation is based on the assumption that each side of the
volume has length M and the main diagonal of the volume is
visible in its full length. The coordinates of every pixel of the
image buffer in the image-coordinate space are transformed
to the sheared-object space with the inverse of the warping
matrix. The pixel values at the obtained coordinates are in-
terpolated from the pixel values of the intermediate image. In
order to maintain high quality, a higher-order spatial domain
filter (D0 C3 4EF [MMK∗98] comparable to a Catmull-Rom
spline [BBB88]) is used for the resampling.

c© The Eurographics Association 2005.



Artner et al. / High-Quality Volume Rendering with Resampling in the Frequency Domain

Image Length
0 50 100 150 200 250 300 350 400 450

R
M

S
 e

rr
or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DN_C2_2EF
DN_C3_4EF
D0_C0_1EF
D0_C2_2EF
D0_C1_3EF
D0_C3_4EF
FD Method

(B-Spline)

(Linear)

(CR-Spline)

Figure 5: Error when zooming a slice of ρml with several
spatial domain filters and by zero padding in the frequency
domain.
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Figure 6: Error when shifting a slice of ρml for sub-pixels
with several spatial domain filters and phase shifts in the
frequency domain.

Gradient Estimation: In order to obtain surface normals
for lighting calculations we introduce a high quality gradient
estimation scheme. Since the gradient consists of the partial
derivatives of the original function and ideal interpolation
with the sinc filter will reconstruct that function, the gradient
can be reconstructed exactly by using the derivate of the sinc
as a reconstruction kernel [BLM96].

For the computation of the gradient vectors three copies
of the original dataset are created and Fourier transformed
in all three space dimensions. Each one of these volumes is
used to calculate one component of the gradient vector. The
derivative theorem of the Fourier transform states that the
derivative of a signal in spatial domain can be computed by
a multiplication in frequency domain. This theorem is used
to derive each volume in one of the three space dimensions.
Subsequently these gradient volumes are processed through
the same rendering pipeline as the density volume. The gra-
dient volumes are combined to a volume of gradient vectors
at the compositing stage. These gradient vectors are used
with the processed original data to compute the intermedi-
ate image.

3. Results

This section presents several experiments to show the ad-
vantages and disadvantages of the frequency domain based

techniques as compared to standard spatial domain filtering.
3D datasets of two categories are used for this purpose, syn-
thetic datasets and CT-scans. The naming of the used spatial
domain filters was introduced by Möller et al. [MMK∗98].
The convention is that DN identifies an approximation and
D0 an interpolation filter. The C value indicates the smooth-
ness of the filter, i.e., C0 would be a linear interpolation.
Finally the EF value describes the error degree, i.e., 1EF is a
linear and 2EF is a quadratic error filter.

To test the quality of the new interpolation method, the
test function introduced by Marschner and Lobb [ML94] is
used. In this work we refer to it as ρml . This dataset is sam-
pled almost according to the Nyquist criteria, i.e., 99.8%
of the signal energy is captured. When using the discrete
Fourier transform (DFT) the assumption is that the signal
is periodic and discrete in the spatial and the frequency do-
main. Through the sampling of ρml we get one period of this
signal, which is half the period of a sine wave in z direction.
In z direction, in the zone between two of these periods, a
jump in the signal is present, which is a source of artifacts. In
order to demonstrate the impact of this discontinuity, but to
maintain compatibility with the original signal ρml a second
synthetic dataset was created. The sample points of ρml are
mirrored along the z = −1 plane. This creates an extended
version of the test dataset with a resolution of 41× 41× 80
samples. The extended test dataset is referred to as ρmlext .

The original resolution the Stanford Bunny dataset, used
in Figure 8, of 512×512×360 was downsampled to 128×
128× 133 by removing high frequency components in the
frequency domain representation of the datasets. Further, a
Hamming window was applied in all three space directions
to reduce ringing artifacts. This rough downsampling helps
to amplify the resampling artifacts for the different filter
methods and therefore makes the quality differences more
visible. A second issue is the high memory requirement of
the Fourier domain based method, which can be handled eas-
ier with a smaller dataset.

Zooming of 2D slices: The purpose of this experiment is
to compare the quality of zooming by zero-padding in the
frequency domain to interpolation with spatial domain fil-
ters. As the newly introduced rendering algorithm is based
on the shear-warp factorization, most of the rendering steps
that are quality critical are performed on volume slices. Ini-
tially a 41× 41 slice of the ρml function at the position of
z = 0 was taken. This slice was then zoomed by a factor f
with f ∈ {2,3,4,5,6,7,8,9,10}, in x and y direction. The
zooming of the volume slices by the factor f was done by
zero-padding in the frequency domain and by resampling
with standard spatial domain filters. The synthetic function
ρml with z = 0, was evaluated on an f times denser grid, to
create a reference solution for this zooming operation. The
reference solution was subtracted from the resampled slices.
To mask out artifacts at the border, after scaling and subtrac-
tion of the reference image, a frame of 15 samples width was
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Figure 7: Quality comparison of the analytic dataset ρml with different reconstruction schemes. The first column shows refer-
ence images rendered by analytically evaluating the ρml function. The images of the subsequent columns were rendered (from
left to right) based on DN C2 2EF (B-spline) and D0 C0 1EF (Catmull-Rom spline) interpolation, and the new frequency
domain based method applied to the ρml and the ρmlext dataset. The first row displays an iso-surface extraction. The second
row shows divergence images of the estimated gradient direction to the analytic reference gradient. The third row presents
resampled center slices (x = 0) of the ρml and ρmlext datasets.

set to 0 in the resulting slices. Finally the root-mean-square
(RMS) of these slices was used to draw Figure 5. We can ob-
serve that the frequency domain based method (FD method)
has the lowest error. If the ρml dataset would have been sam-
pled exactly according to the Nyquist criteria, a perfect scal-
ing with the frequency domain based method would be pos-
sible (RMS error of zero).

To visually demonstrate the quality of zooming with these
methods, a slice (x = 0) of the ρml and the ρmlext dataset
was zoomed by a factor of 10.0 in y and z direction. To
emulate the iso-surface extraction used by Marschner and
Lobb [ML94], the range of voxel values f (x,y,z) from 0.0
to 1.0 was mapped to the gray scale color range 0 to 255.
Afterwards the color of the data points with a value of
f (x,y,z) < 0.5 was set to black.

The ρml dataset has a resolution of 41× 41× 41, and the
ρmlext dataset has a resolution of 41× 41× 80. Therefore a
slice taken at x = 0 from ρml has a resolution of 41× 41, a
slice taken at x = 0 from ρmlext has a resolution of 41× 80.
The lower half of the ρmlext slice is just a mirror of the upper
one. To create slices of the same size, for easier comparison,

the lower half of the slices created from ρmlext was removed
after the zooming process (see third row of Figure 7).

Displacement of 2D slices: Initially a 41 × 41 slice of
the ρml function, with z = 0 was extracted. Sub-pixel shifts
where applied in both x and y direction. As a reference the
function ρml was evaluated shifted by the same amount. To
avoid disturbing influences of the border regions, a 7 sam-
ples wide border area was set to 0. This size was chosen
because it is the biggest filter kernel size (6) used in the spa-
tial domain plus one additional sample. Therefore no sample
that was influenced by information outside the 41×41 sam-
ples affects the result. The RMS of these final error images
was then used to draw Figure 6. It is easy to see that the fre-
quency domain based method has the smallest deviation of
the synthetic reference result.

Rendering of 3D datasets: The resampling and deriva-
tive computations are performed with sinc filter quality. This
filter allows perfect reconstruction of the original signal if
the sampling was done according to the Nyquist criteria.

Figure 7 shows images of the synthetic datasets ρml and
ρmlext . The first row displays an iso-surface extraction with
an iso value of 0.5, a sampling distance of 0.05 and a zoom
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Figure 8: The Stanford Bunny rendered (from left to right) with D0 C0 1EF (linear), DN C2 2EF (B-spline),
D0 C1 3EF (Catmull-Rom spline) interpolation, and the new frequency domain based method. The zoom factor in i and j
direction for the images of the first row was 10.0 and for the second row 20.0.

factor of 10.0. The second row shows error images of the es-
timated gradient direction to the analytic reference gradient.
The gray value of 255 represents an angular error of at least
20◦. The third row presents resampled center slices (x = 0)
of the ρml and ρmlext datasets. The first column shows ref-
erence images rendered by analytically evaluating the ρml
function. The images of the subsequent columns were ren-
dered (from left to right) with DN C2 2EF (B-spline) in-
terpolation, D0 C0 1EF (Catmull-Rom spline) interpolation,
and the new frequency domain based method. For the cal-
culation of the gradients analytic derivatives of interpola-
tion filters in the spatial domain were used. As the ρml
dataset is not sampled alias-free, strong ringing artifacts are
present in the images rendered with the new frequency do-
main based method. The ρmlext dataset is sampled closer to
the Nyquist criteria and therefore the reconstruction quality
is higher (compare the last two columns in Figure 7). The
spikes are reproduced by the frequency domain method with
much higher accuracy than with the spatial domain meth-
ods. We see that data, which is not alias-free (e.g. ρml) will
show typical artifacts. Traditional frequency methods (such
as windowing) or non-sinc filters, that include a smoothing
step, should be applied in such cases.

The images in Figure 8 show rendering results of the Stan-
ford Bunny dataset. The dataset is displayed with a 10.0
and 20.0 times zoom, with the sampling distance in k di-
rection set to 0.05. The images were rendered (from left
to right) with D0 C0 1EF (linear), DN C2 2EF (B-spline),

D0 C1 3EF (Catmull-Rom spline) interpolation, and the new
frequency domain based method. This figure demonstrates
that the rendering quality of the frequency domain based
method is superior to standard spatial domain filtering.

We show further volume rendering results using our new
frequency domain based method in Figure 9 (see color
plates). These pictures demonstrate the practical results that
can be achieved with real-world datasets. The result images
except the Stanford Bunny image have been created through
the application of standard density based transfer functions.
An arbitrary volumetric procedural texture has been used
to color the iso-surface rendered from the Stanford Bunny
dataset.

Performance: In the current implementation the fre-
quency domain resampling does not create images at an
interactive rate. The main impact on the rendering perfor-
mance is caused by the global gradient estimation scheme.
Gradients are calculated for the whole volume, even if they
are just used on a small subset of the voxels, like an iso sur-
face. This leads to a considerable computational overhead
that is not contributing to the final image.

In our approach, to perform a zoom of the final image
every volume slice is resampled before the projection onto
the intermediate image. This creates a noticeable impact on
rendering speed, but leads to significant quality improve-
ments in the resulting images. This superior image quality
is bought with a computational effort that is proportional to
the number of volume slices and is higher than zooming in
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the warping stage. Currently, if images are zoomed, and only
a small section of interest is to be displayed, the whole image
has to be calculated.

4. Conclusions and Future Work

We have developed a volume rendering algorithm that per-
forms resampling using the ideal interpolation filter (sinc)
and hence achieves the best theoretical quality. This has been
achieved by exploiting signal processing ideas, such as the
shifting theorem, the packing theorem and the derivative the-
orem. Using synthetic and real data sets, we have demon-
strated that this method can render properly sampled vol-
ume data with higher quality than standard spatial domain
resampling. We noted that special care is required for data
whose periodic extension in the spatial domain would intro-
duce discontinuities. This can always be fixed by a mirrored
extension. Further, a high quality gradient estimation scheme
that provides very accurate surface normals for lighting cal-
culations has been introduced. Our current implementation
has not been performance optimized. There are aspects that
have to be addressed in order to improve the practicality of
the frequency domain resampling. Li et al. [LME04] have
demonstrated that an efficient implementation can outper-
form traditional spatial domain filtering. The first challenge
is to reduce the memory consumption. This could be done
by exploiting the fact that the data is given as a real function
with a Hermitian Fourier transform. A Hermitian function
has symmetries which allow half of the memory to be con-
served. The impact on the separability of the Fourier trans-
form on such a data structure has to be investigated. Zoom-
ing operations (for the visualization of detailed structures)
could be accelerated by using partial inverse Fourier trans-
forms. In order to achieve perspective projection, scaling of
volume slices with arbitrary factors has to be developed.
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Figure 9: These images show results of rendering CT datasets. They have been created with the new frequency domain based
method. These pictures demonstrate the practical results that can be achieved with real-world datasets. The result images except
the Stanford Bunny image are created with the application of standard density based transfer functions. An arbitrary volumetric
procedural texture was used to color the iso-surface rendered from the Stanford Bunny dataset.
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