EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)

K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Real-Time Advection and Volumetric Illumination for the
Visualization of 3D Unsteady Flow

Daniel Weiskopf, Tobias Schafhitzel, and Thomas Ertl

Institute of Visualization and Interactive Systems, University of Stuttgart

Abstract

This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking
into account issues of computational efficiency and visual perception. High efficiency is achieved by a novel 3D
GPU-based texture advection mechanism that implements logical 3D grid structures by physical memory in the
form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU
architecture. Slice-based direct volume rendering is used for the final display. A real-time computation of gradients
is employed to achieve volume illumination. Perception-guided volume shading methods are included, such as
halos, cool/warm shading, or color-based depth cueing. The problems of clutter and occlusion are addressed by
supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in

less interesting regions.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Vector field visualization is an important topic in scien-
tific visualization and has been the subject of active re-
search for many years. Typically, data originates from nu-
merical simulations—such as those of computational fluid
dynamics—or from measurements, and needs to be analyzed
by means of visualization to gain an understanding of the
flow. Particle-tracing methods are among the standard tech-
niques for flow visualization. A fundamental problem is to
choose appropriate seed points for particle tracing in order
to visualize all important features of a flow. One solution to
this issue is to employ a dense representation in the form
of a texture-based visualization. This approach is well in-
vestigated for 2D planar and curved surfaces, but less well
understood for 3D domains.

Dense representations of 3D flow are challenging because
of two fundamental problems. First, the computational com-
plexity increases significantly since computations have to be
performed for all cells of a 3D grid. Second, it is difficult to
find a good visual representation of a dense collection of par-
ticle traces because most particle traces will be occluded by
others and the display becomes cluttered. We think that inter-
activity plays a crucial role in improving the visual represen-

(© The Eurographics Association 2005.

tation because motion parallax is a good depth cue, the prob-
lem of occlusion can be eased by exploring the scene from
different viewpoints, and an animated visualization gives a
good impression of the direction and magnitude of the vector
field. Moreover, interesting flow regions can be investigated
in detail by selectively viewing those regions and locally in-
creasing the density of the visualization.

This paper addresses issues of computational efficiency
and visual perception alike. First, an efficient 3D GPU-based
texture advection mechanism is proposed, where 2D textures
are used for fast read and write access to the logical 3D mem-
ory. Second, we employ an on-the-fly computation of vol-
ume illumination to display the results of texture advection
by slice-based volume rendering, which is accelerated by
early ray termination via the early z test. Third, perception-
guided volume shading methods are included, such as halos,
cool/warm shading, or color-based depth cueing. Fourth, a
volumetric importance function is supported to enhance fea-
tures of the data set and reduce visual complexity in less
interesting regions. All these elements of the visualization
system are real-time capable and therefore support interac-
tive visualization.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

2. Previous Work

Texture-based representations are an important element
of the research in flow visualization. A comprehensive
overview is given in the survey article [LHD*04]. Early
texture-based techniques are Spot Noise [VW91] and Line
Integral Convolution (LIC) [CL93]. A related approach
makes use of texture advection [MB95], which can be
extended to 2D Lagrangian-Eulerian Advection (LEA)
[JEHO2] or 2D Image Based Flow Visualization (IBFV)
[vWO02]. One reason for recent advances in texture-based
flow visualization is the increasing performance and func-
tionality of GPUs, which can be used to improve the speed
of 2D flow visualization [JEHO0, WHEO1, vWO02].

Texture-based visualization can be extended to vector
fields on curved surfaces [LJHO03,vWO03] and in 3D [TvWO03,
WHEO1,WEO04]. In the context of 3D LIC, dye visualization
can be used to highlight features [SIM96]. 3D flow visu-
alization is subject to perceptual issues, which can be ad-
dressed by a combination of interactive clipping and user in-
tervention [RHTE99]. Alternatively, 3D LIC volumes can be
effectively represented by selectively emphasizing important
regions of the flow, enhancing depth perception, and improv-
ing orientation perception [IG97]. Perception of 3D flow can
also be enhanced by shading according to limb darkening
via transfer functions [HA(04], by interactively changing the
rendering style [LBS03], or by volume rendering of implicit
flow volumes [XZCO04]. All these systems for perception-
guided 3D flow visualization are either not interactive at all
or require some time-consuming pre-processing for particle
tracing.

Finally, the extraction and selective display of flow fea-
tures effectively reduces visual complexity. Background in-
formation on feature-based flow visualization can be found
in the survey article [PVH*03]. In the context of this paper,
interactive feature definition for focus-and-context 3D flow
visualization [DGHO3] is an interesting approach.

3. Semi-Lagrangian 3D Texture Advection

The in-depth discussion of our 3D visualization approach
begins with the underlying semi-Lagrangian transport mech-
anism. Here, particles or marker “objects” (such as dye)
are modeled as massless material that is perfectly advected
along the input vector field. From an Eulerian point of view,
particles lose their individuality and are represented by their
property values (such as color or gray-scale values), which
are stored in a property field p(x,), where x denotes position
and ¢ denotes time. This property field is typically given on a
uniform grid. The evolution of the property field is governed
by the convection equation,
ap(x,t)

T +V(X7t) VP(X,[) =0 3

where v is the input vector field. We solve this equation by
a semi-Lagrangian approach [Sta99, JEHOO] that leads to a

stable evolution even for large steps. Advection is performed
along pathlines (for unsteady flow) or streamlines (for steady
flow). Therefore, the ordinary differential equation,

ax(t) _
=)

for Lagrangian particle tracing needs to be solved. Backward
explicit integration is employed to compute particle posi-
tions at a previous time step, x(# — Az). For example, first-
order Euler integration yields

x(r — Ar) = x(t) — Arv(x(t),1)

Starting from the current time step ¢, an integration back-
wards in time provides the position along the pathline at the
previous time step. The property field is evaluated at this pre-
vious position to access the value that is transported to the
current position, leading to a backward advection scheme,

p(x(),1) = p(x(r — A1)t —Ar) (D
in the general case, or to
p(x1) = p(x—Arv(x,1),t —Ar) 2

in the case of Euler integration. This 3D advection is suitable
for unsteady flow because the time dependency of the vector
field is taken into account.

Equations (1) and (2) lead to a GPU implementation
that represents the property and vector fields by 3D tex-
tures [WEO04]. The physical position x and the corresponding
texture coordinates are related by an affine transformation
that takes into account that the physical and computational
spaces may have different units and origins. Accordingly,
the step size in computational (texture) space directly cor-
responds to the physical time step Az. While the property
texture is only updated at grid points, the lookup in the prop-
erty field at the previous time step is performed at locations
that may differ from exact grid positions. Therefore, trilin-
ear interpolation is employed to reconstruct the value of the
property field at the previous time step. Since any render-
ing operation is restricted to a 2D domain, the property field
for a subsequent time step is constructed in a slice-by-slice
manner. Each slice of the property field is updated by ren-
dering a quadrilateral that represents this 2D subset of the
full 3D domain. The dependent lookup in the “old” property
texture can be realized by a fragment program that computes
the modified texture coordinates according to the Euler inte-
gration along the flow field.

The main problem with this implementation is the slice-
by-slice update of the 3D texture for the property field. In
many cases, an update of a 3D texture is only possible via
transfer of data to and from main memory. For example, Di-
rect3D does not provide a mechanism to directly modify 3D
textures from other data on the GPU. Although OpenGL al-
lows us to update a slice of a 3D texture by glCopyTex—
SubImage3D, the speed of such an update can vary ex-
tremely between GPU architectures because of different in-

(© The Eurographics Association 2005.

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

lookup table @,

1|2 SR z
(CHN©) @ 0|0 (u,v)
—0-+0-+ s O+ e— fiex

=

logical memory

physical memory

Figure 1: Mapping between logical 3D memory and physical 2D memory by means of a lookup table.

ternal memory layouts of 3D textures (see a related discus-
sion on read access for 3D textures [WWEO04]). This funda-
mental issue will most probably remain, even with the pro-
jected superbuffer extension [Per03]. Therefore, we propose
an alternative approach that is based on 2D texture memory
instead of 3D texture memory. 2D textures are available on
any GPU, they provide good caching mechanisms and effi-
cient bilinear resampling, and they support an extremely fast
write access by the render-to-texture functionality.

For our 2D texture-based implementation, we have to
distinguish between logical memory and physical memory.
Logical memory is identical as for 3D texture advection—
it is organized in the form of a uniform 3D grid. Physical
memory is a 2D uniform grid represented by a 2D texture.
We denote the coordinates for addressing the logical mem-
ory by x = (x,y,z) and the coordinates for physical memory
by u = (u,v). A slice of constant value z in logical mem-
ory corresponds to a tile in physical memory, as illustrated
in Figure 1. Different tiles are positioned in physical mem-
ory with a row-first order. Since the maximum size of a 2D
texture may be limited, several “large” 2D textures may be
used to provide the necessary memory. These 2D textures
are labeled by the integer-valued index itex.

Since all numerical operations of 3D advection are con-
ceptually computed in logical 3D space, we need an effi-
cient mapping from logical to physical memory, which is
described by the function

D: (x,y,2) — ((u,v); itex)

The 2D coordinates can be separated into the coordinates for
the origin of a tile, ug, and the local coordinates within the
tile, Wjgear:

o (x7y7 Z) [— (ll() + Wocal; itex) 5 3)
with
g = Pou(z), itex = Do, (2), Wocal = (5xx,5yy) . (4)

The function ®(y maps the logical z value to the origin of a

(© The Eurographics Association 2005.

tile in physical memory and is independent of the x and y
coordinates. The map ®(can be represented by a lookup-
table (see Figure 1), which can be efficiently implemented
by a dependent texture lookup. Conversely, the local tile co-
ordinates are essentially identical to (x,y)—up to scalings
(sx,sy) that take into account the different relative sizes of
texels in logical and physical memory. If more than one
“large” 2D texture is used, multiple texture lookups in these
physical textures may be necessary. However, multiple 2D
textures are only required in tiles that are close to the bound-
ary between two physical textures because the maximum dif-
ference vector for the backward lookup in Eq. (2) is bounded
by AtVmax, where vmax is the maximum velocity of the data
set. We use different fragment programs for boundary tiles
and internal tiles to reduce the number of texture samplers
for the advection in internal regions.

Trilinear interpolation in logical space is implemented by
two bilinear interpolations and a subsequent linear interpo-
lation in physical space. Bilinear interpolation within a tile
is directly supported by built-in 2D texture interpolation. A
one-texel-wide border is added around each tile to avoid any
erroneous influence by a neighboring tile during bilinear in-
terpolation. The subsequent linear interpolation takes the bi-
linearly interpolated values from the two closest tiles along
the z axis as input. This linear interpolation is implemented
within a fragment program.

While trilinear interpolation by the above mapping
scheme is necessary for the read access in Egs. (1) or (2),
write access is more regularly structured. First, write access
does not need any interpolation because it is restricted to grid
points (i.e., single texels). Second, the backward lookup for
Egs. (1) or (2) allows us to fill logical memory in a slice-
by-slice manner and, thus, physical memory in a tile-by-tile
fashion. A single tile can be filled by rendering a quadrilat-
eral into the physical 2D texture if the viewport is restricted
to the corresponding subregion of physical memory.

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

4. Visual Mapping and Volume Rendering

So far, only the basic advection mechanism has been dis-
cussed. However, a useful visualization needs—besides the
computation of particle traces—a mapping of the particle
traces to a graphical representation. In this paper, the map-
ping is restricted to an appropriate injection of property val-
ues, adopting the basic idea of 2D IBFV (Image-Based Flow
Visualization) [vW02]. IBFV introduces new property val-
ues at each time step, described by an injection texture /.
The structure of the injection mechanism of 2D IBFV is il-
lustrated in Figure 2.

advected
texture

injection
texture

advection
for the next
time step

blending

Figure 2: Basic structure of the injection mechanism of
IBFV.

The original compositing schemes for 2D IBFV and 3D
IBFV [TvWO03] can be generalized to allow for a unified de-
scription of both noise and dye advection [WE04]: First, the
restriction to an affine combination of the advected value and
of the newly injected value is replaced by a generic linear
combination of both and, second, several materials can be
advected and blended independently. The extended blending
equation is given by

p(x,t) =W(x,t)op(x(t — Ar),t — At) + V(x,t) o I(x,f) ,

with two, possibly space-variant and time-dependent,
weights W and V. The symbol “o” denotes a component-
wise multiplication of two vector quantities. The different
components of each texel in the property field describe the
density of different materials. Continuous blending of in-
jected “particles” leads to streakline-like visual structures.
The advantages of the extended blending scheme are: First,
different materials are blended independently from each
other and may therefore have different lengths of exponen-
tial decay; second, material can be added on top of existing
material, which is the prerequisite for dye advection (see the
discussion in [WE04]).

The property field p is visualized by volume rendering
with texture slicing—similarly to 2D texture-based render-
ing with axis-aligned slices. Traditional 2D texture slicing
holds three copies of a volume data set, one for each of the
main axes. In our approach, however, only a single copy of
the property field is stored on GPU. The stacking direction
is changed on-the-fly during advection if the viewing angle
becomes larger than 45 degrees with respect to the stacking
axis to avoid holes in the final display. (For example, these
holes are present in 3D IBFV [TvWO03]. Compared to 3D
IBFV, our approach has further advantages: It avoids mul-
tiple render passes per slice, it facilitates the visualization

y ordering x ordering

physical
memory

y
/ logical

memory

Figure 3: Reordering of stack direction.

of arbitrary vector fields without the restriction to veloci-
ties with small z components, it supports the independent
transport of several materials, and it provides a more flexible
blending scheme—see the related discussion in [WE04].)
Figure 3 illustrates a reordering of the stacking direction
from y to x axis. A tile in the new stacking order is rendered
in a stripe-by-stripe fashion, according to portions of tiles
from the old stacking order. The reordering process takes
into account that the number of tiles, their sizes, and their
positions may change.

Actual volume rendering accesses tile after tile in front-to-
back order by rendering object-aligned quadrilaterals. Tex-
ture coordinates are issued to address a tile in physical mem-
ory of the “large” 2D texture. We employ a dependent-
texture lookup in a fragment program to implement post-
classification. For each material in the property field, den-
sity is mapped to optical properties (color and opacity) by
its corresponding transfer function. The results of different
transfer functions for different materials are added to obtain
the final color and opacity.

For dense 3D flow representations, transfer functions are
typically specified to render interesting flow regions with
high opacities. Therefore, early ray termination is an ef-
fective way of accelerating volume rendering. Similarly to
[RGW™*03], the early z test is used to efficiently skip the ex-
ecution of a fragment program when a user-specified maxi-
mum opacity has been accumulated. To this end, terminated
rays are masked in a separate rendering pass by setting the
z buffer to zero (near clipping plane); the z value is set to
the far clipping plane for all other pixels. Then, the depth
test skips terminated rays while a slice of the volume is ren-
dered. As the initialization of the z buffer in the separate
pass consumes additional rendering time, we choose to per-
form this initialization only for every n-th volume slice to
achieve a compromise between perfect early ray termination
and the additional costs for the separate pass. A typical value
isn=10.

(© The Eurographics Association 2005.

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

(@

®

Figure 4: 3D advection for a tornado data set with volume rendering based on the emission-absorption model (a), Phong
illumination (b), cool/warm shading (c), depth cueing (d), halos (e), and velocity masking (f).

5. Illumination and Visual Perception

The previous section has described volume rendering ac-
cording to the emission-absorption model, which leads to a
display similar to a self-emitting gas cloud. Although this
model allows us to view different semi-transparent depth
layers of a 3D flow field, it fails to explicitly visualize the
orientation and relative depth of streakline structures. Fig-
ure 4 (a) shows a visualization according to the emission-
absorption model with high opacities. The underlying data
set represents the wind flow in a tornado. To improve the
final display, we additionally apply volume shading to the
property field. In general, volumetric illumination needs gra-
dients, which serve as normal vectors for local illumination.

Our goal is to incorporate volume shading into the above
real-time advection system and, therefore, gradients have to
be computed in real time as well. We employ a numerical
computation by central differences, which delivers gradients
of acceptable quality at a high speed. Gradients are stored in
a grid that has the same logical and physical memory layout
as the property field. Central differences exhibit a uniform

(© The Eurographics Association 2005.

access to 3D logical memory because data is fetched from
neighboring grid points along the three main axes. Accord-
ingly, a well-structured accessing scheme is also applied in
2D physical texture memory: Neighboring texels in the cur-
rent tile yield the x and y partial derivatives whereas the par-
tial derivative along the z axis is based on the two closest
tiles in z direction.

The mapping from logical to physical memory according
to Eq. (3) needs only to be computed at the four vertices that
describe a single tile in physical memory. Six pairs of texture
coordinates are attached to the vertices and interpolated by
scanline conversion. Linear interpolation and the mapping
from Eq. (3) are commutative: The respective tile origins ug
and texture indices itex are constant and the local coordinates
Ujocq Vary linearly because the relative distance between a
central grid point and its neighbors is constant for a complete
tile.

Gradients are computed after each advection and blend-
ing iteration and before volume rendering. Therefore, any
gradient-based volume shading method may be applied. Fig-

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

ure 4 (b) shows an example of volume illumination by the
Phong model with diffuse and specular components, which
are added on top of the emissive part that is determined by
the transfer function from the previous section. We use the
same transfer function value as material color for diffuse and
specular illumination, but other definitions of material colors
could be easily incorporated, if required. Phong illumination
greatly improves the perception of streakline orientation by
shading—highlights in combination with camera motion are
particularly effective in revealing streakline orientation.

Another illumination model implements cool/warm shad-
ing [GGSCI98, ERO0]. Here, orientation with respect to light
direction is encoded by warm or cool colors, respectively.
Figure 4 (c) shows an example image. The advantage of
cool/warm shading is that orientation is represented by (al-
most) isoluminant colors. Therefore, brightness can still be
used to visualize another attribute or property.

A prominent additional attribute is depth with respect to
the camera. We apply color-based depth cueing to imitate
aerial perspective. Figure 4 (d) shows an example in which
increasingly black background color is added with increas-
ing depth (fogging with black color). Variations are also fea-
sible, e.g., a subtle blue shift [ER0O] can be included by
adding a blue component to the fog color.

Halos are effective in visualizing relative depth between
line-like structures [IG97]: Objects behind a closer streak-
line are partly hidden by dark halos. We implement halos as
thick silhouette lines. Silhouette lines are detected by exam-
ining the dot product of gradient and viewing directions be-
cause an ideal silhouette has a gradient perpendicular to the
viewing vector. An additional transfer function is included
to specify halos. This transfer function maps the above dot
product to color and opacity. Thick silhouette lines are im-
plemented by mapping a finite range of input values (around
zero) to high opacities. Figure 4 (e) shows an example with
halos and Phong illumination. For purely geometric reasons,
limb darkening through high opacities in the transfer func-
tion [HA04] also contributes to the halo effect. In addition,
the gradient criterion further enhances halos.

Here, we would like to point out that we always advect
several materials because different streakline colors are an
effective means of visualizing continuity along lines [IG97].

6. Feature-Based Visualization

Another issue of dense 3D representations is clutter and oc-
clusion. This problem can be addressed by selectively fad-
ing out uninteresting flow regions. The important parts can
be regarded flow features in a general sense. The derivation
of new feature definitions is beyond the scope of this paper.
In fact, we assume that any useful feature description can
be condensed into a scalar-valued importance function. Our
visualization method directly supports such an importance

Figure 5: Benard flow with Ay vortex visualization.

function—the importance value can be used to modify the
transfer functions by a nonlinear mapping.

Velocity magnitude can be an interesting feature measure
(see the discussion for 2D flow in [JEH02]). Figure 4 (f)
shows the visualization of the tornado data set with veloc-
ity masking—only regions with large velocity magnitude are
visible. A more sophisticated feature is used in Figure 5,
where A, vortex detection [JH95] is applied. This vortex
definition is widely used in fluid dynamics and, e.g., has
the advantage of being Galilei invariant. Vortex regions are
displayed by materials with red or yellow colors while the
surrounding flow is still visible as semi-transparent material
with blue or green color. These two examples demonstrate
that different features can be used to emphasize flow regions
within our system.

7. Implementation

Our implementation is based on C++ and DirectX 9.0, and
was tested on Windows XP machines with ATI Radeon
X800 Platinum Edition (256 MB) and NVIDIA GeForce
6800 Ultra (256 MB), respectively. GPU states and shader
programs are configured within clear-text effect files. All
shader programs are formulated with high-level shading lan-
guage (HLSL) to achieve a code that is easy to read and
maintain. A comparable implementation should be feasible
with OpenGL and its vertex and fragment program support.

Semi-Lagrangian advection can be implemented by frag-
ment programs because the backward advection from
Egs. (1) or (2) and the mapping between logical and phys-
ical memory from Egs. (3) and (4) can be directly mapped
to GPU instructions. Since only short streaklets are used in
our visualizations, the accuracy of first-order Euler integra-
tion is sufficient. Higher-order methods, however, could be
readily included at the cost of decreased advection speed.
All computations take place on a texel-by-texel level, which
essentially reduces the role of the surrounding C++ program

(© The Eurographics Association 2005.

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

Table 1: Performance for steady flow visualization on a 600°
viewport (in fps).

Radeon X800 GeForce 6800
Domain size 128° 256> 128° 256°
Advection 114.2 13.0 96.4 16.7

+Volrend w/ early ray 719 11.6 53.8 12.7
+Volrend w/o early ray 51.2 9.9 533 10.0
Reorder stacking axis 24 0.5 2.7 0.4
Gradient computation 1674 12.1 1244 20.2
Advection & volrend:

Phong 34.5 54 29.1 6.7
Halo & Phong 335 53 23.0 6.0
Depth cue 66.0 113 127 534

Table 2: Performance for steady vs. unsteady flow visualiza-
tion on a 600° viewport (in fps).

Radeon X800 GeForce 6800
Domain size 128% 256° 128 256°
Advection only:
Steady 1142 13.0 964 16.7
Unsteady 51.2 99 390 6.7
Advection & Phong:
Steady 34.5 54 29.1 6.7
Unsteady 22.5 41 199 5.9

to allocating memory for the required textures and executing
the fragment programs by drawing domain-filling quadri-
laterals. Textures are updated by using ping-pong rendering
and the render-to-texture functionality of DirectX. An anal-
ogous GPU implementation is feasible for gradient compu-
tation and volume shading.

Property and gradient fields are represented by physical
2D textures with 8-bit fixed-point color channels. Vector
field and particle injection textures, however, are stored in
3D textures because they do not need to be modified on the
GPU. Particle injection textures have 8-bit color channels,
vector field textures have 8-bit fixed-point or 16-bit floating-
point resolution, depending on the required accuracy. The
example images and performance measurements in this pa-
per are based on 8-bit vector fields. Additional material can
be found on the accompanying web pageT, which contains
the source code of the effect file for the core advection rou-
tine and electronic videos with animated visualizations.

Table 1 shows performance measurements for our imple-
mentation on ATI Radeon X800 Platinum Edition (256 MB)
and NVIDIA GeForce 6800 Ultra (256 MB). Viewport size

T http://www.vis.uni-stuttgart.de/texflowvis

(© The Eurographics Association 2005.

Table 3: Comparison between 2D texture-based advection
of this paper and 3D texture-based advection from [WE04]
on Radeon X800 with 600° viewport (in fps).

2D Texture 3D Texture
Domain size 1283 256° 128 256°
Advection only 1142 13.0 444 9.7

Advection & volrend 71.9 11.6 16.8 4.4

for volume rendering is 600, the size of the property and
gradient fields are given in the table. Here, we use a steady
vector field of size 1283 (tornado from Figure 4). The mea-
surements indicate that advection speed is roughly propor-
tional to the number of texels. Sophisticated volume shad-
ing tends to be slower than pure emission-absorption volume
rendering. Interactive visualization is feasible with property
fields up to 256°. A slight problem is the slow reordering
of the stacking direction. Switching between stacks, how-
ever, does not occur very often in interactive applications
and, therefore, this rendering bottleneck typically does not
disturb the user.

Table 2 compares the visualization performance for un-
steady and steady flow under the same conditions as for Ta-
ble 1. For unsteady flow, a new 3D texture for the vector field
is transferred for each frame. Although the rendering speed
is reduced for unsteady flow, the overall performance still
facilitates interactive visualization for property fields up to
256°. Table 3 compares the advection method of this paper
(implemented in DirectX) and the previous 3D texture-based
method from [WEO04] (implemented in OpenGL). Here, only
ATI Radeon X800 is considered because the rendering speed
of the OpenGL version is much slower on NVIDIA GPUs
due to slow glCopyTexSubImage3D (e.g., 2.0 fps on
GeForce 6800 Ultra for 256 property field, advection only).
Even on X800, however, the new 2D texture-based method
outperforms the 3D texture-based method, i.e., the benefit of
fast read and write access to 2D texture outweighs the ad-
ditional operations for the mapping of texture coordinates
from logical 3D space to physical 2D space.

8. Conclusions and Future Work

We have presented an interactive technique for the dense
texture-based visualization of unsteady 3D flow. Efficient
3D texture advection has been achieved by mapping from
logical 3D memory to 2D physical memory implemented by
2D textures. 2D texture memory has the advantage of fast
read and write accesses that are independent of GPU archi-
tecture. Streakline-like structures are constructed by a flex-
ible particle injection and blending scheme that allows for
different materials as well as for noise and dye advection.
We have presented a GPU-based real-time computation of
gradients as a basis for volume illumination. The perception
of orientation and depth of streaklines is improved by Phong

http://www.vis.uni-stuttgart.de/texflowvis

D. Weiskopf, T. Schafhitzel & T. Ertl / Real-Time Advection and Volumetric Illumination for the Visualization of 3D Unsteady Flow

illumination, cool/warm shading, halos, or color-based depth
cues. A generic volumetric importance function is used to
address the issue of clutter and occlusion: Important flow re-
gions are emphasized and visual complexity is reduced in
less interesting parts by modifying the transfer function. All
steps of our visualization system are capable of real-time vi-
sualization. We believe that interactivity is one of the major
building-blocks for achieving an appropriate volumetric vi-
sualization of 3D flow because interaction helps to address
perceptual issues of occlusion and spatial perception.

Since our visualization method is “orthogonal” to fea-
ture descriptions, advanced interactive feature definitions
[DGHO3] could be incorporated in future work. Another
interesting line of research could include techniques from
multi-field visualization to simultaneously visualize vector
data (by advection) and additional attributes, such as pres-
sure or temperature.

Acknowledgments

We would like to thank Roger Crawfis for providing the
tornado data set used in Figure 4, Simon ‘“nine-to-go”
Stegmaier for help with the A, code, and Mark Segal (ATT)
for the Radeon X800 Platinum Edition graphics board.

References

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields us-
ing line integral convolution. In Proc. ACM SIGGRAPH (1993),
pp. 263-270. 2

[DGHO3] DOLEISCH H., GASSER M., HAUSER H.: Interactive
feature specification for focus+context visualization of complex
simulation data. In EG /IEEE TCVG Symp. Vis. (2003), pp. 239—
248. 2,8

[ERO0] EBERT D., RHEINGANS P.: Volume illustration: Non-
photorealistic rendering of volume models. In IEEE Vis. (2000),
pp. 195-202. 6

[GGSC98] GOOCH A., GOOCH B., SHIRLEY P., COHEN E.: A
non-photorealistic lighting model for automatic technical illus-
tration. In Proc. ACM SIGGRAPH (1998), pp. 101-108. 6

[HAO4] HELGELAND A., ANDREASSEN O.: Visualization of
vector fields using seed LIC and volume rendering. IEEE Trans.
Vis. and Comp. Graph. 10, 6 (2004), 673-682. 2,6

[IG97] INTERRANTE V., GROSCH C.: Strategies for effectively
visualizing 3D flow with volume LIC. In IEEE Vis. (1997),
pp. 421-424. 2,6

[JEHOO] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.
Hardware-accelerated texture advection for unsteady flow visu-
alization. In J[EEE Vis. (2000), pp. 155-162. 2

[JEHO2] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.:
Lagrangian-Eulerian advection of noise and dye textures for un-
steady flow visualization. IEEE Trans. Vis. and Comp. Graph. 8,
3(2002), 211-222. 2,6

[JH95] JEONG J., HUSSAIN F.: On the identification of a vortex.
J. Fluid Mech. 285 (1995), 69-94. 6

[LBS03] L1 G. S., BorboLoOI U., SHEN H. W.: Chameleon:
An interactive texture-based framework for visualizing three-
dimensional vector fields. In IEEE Vis. (2003), pp. 241-248. 2

[LHD*04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLUK B., POST F. H., WEISKOPF D.: The state of the art in
flow visualization: Dense and texture-based techniques. Comp.
Graph. Forum 23,2 (2004), 143-161. 2

[LJHO3] LARAMEE R. S., JOBARD B., HAUSER H.: Image
space based visualization of unsteady flow on surfaces. In IEEE
Vis. (2003), pp. 131-138. 2

[MB95] MAX N., BECKER B.: Flow visualization using moving
textures. In Proc. ICASW/LaRC Symp. Visualizing Time-Varying
Data (1995), pp. 77-87. 2

[Per03] PERCY J.: OpenGL extensions. ATI presentation at ACM
SIGGRAPH 2003, http://www.ati.com/developer,
2003. 3

[PVH*03] PosT F. H., VROLUK B., HAUSER H., LARAMEE
R. S., DOLEISCH H.: The state of the art in flow visualiza-
tion: Feature extraction and tracking. Comp. Graph. Forum 22, 4
(2003), 775-792. 2

[RGW*03] ROTTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSER W.: Smart hardware-accelerated volume rendering.
In EG /IEEE TCVG Symp. Vis. (2003), pp. 231-238. 4

[RHTE99] REZK-SALAMA C., HASTREITER P., TEITZEL C.,
ERTL T.: Interactive exploration of volume line integral convolu-
tion based on 3D-texture mapping. In IEEE Vis. (1999), pp. 233—
240. 2

[SIM96] SHEN H.-W., JOHNSON C. R., MA K.-L.: Visualizing
vector fields using line integral convolution and dye advection.
In Vol. Vis. Symp. (1996), pp. 63-70. 2

[Sta99] STAM J.: Stable fluids. In Proc. ACM SIGGRAPH (1999),
pp. 121-128. 2

[TvWO03] TELEA A., VAN WDK J. J.: 3D IBFV: Hardware-
accelerated 3D flow visualization. In /EEE Vis. (2003), pp. 233—
240. 2,4

[VW91] VAN WUK J. J.: Spot noise — texture synthesis for data
visualization. Comp. Graph. (Proc. ACM SIGGRAPH 91) 25
(1991), 309-318. 2

[vW02] VAN WUK J. J.: Image based flow visualization. ACM
Trans. Graph. 21, 3 (2002), 745-754. 2,4

[vWO03] VAN WUK J. J.: Image based flow visualization for
curved surfaces. In JEEE Vis. (2003), pp. 123-130. 2

[WEO4] WEISKOPF D., ERTL T.: GPU-based 3D texture advec-
tion for the visualization of unsteady flow fields. In Proc. WSCG
Short Comm. Papers (2004), pp. 181-188. 2,4,7

[WHEO1] WEISKOPF D., HOPF M., ERTL T.: Hardware-
accelerated visualization of time-varying 2D and 3D vector fields
by texture advection via programmable per-pixel operations. In
Proc. VMV (2001), pp. 439-446. 2

[WWEO04] WEISKOPF D., WEILER M., ERTL T.: Maintaining
constant frame rates in 3D texture-based volume rendering. In
Proc. IEEE CGI (2004), pp. 604-607. 3

[XZC04] XUE D., ZHANG C., CRAWFIS R.: Rendering implicit
flow volumes. In IEEE Vis. (2004), pp. 99-106. 2

(© The Eurographics Association 2005.

http://www.ati.com/developer

