
IEEE/EG International Symposium on Volume Graphics (2010)
R. Westermann and G. Kindlmann (Editors)

Efficient Acquisition and Clustering of Local Histograms
for Representing Voxel Neighborhoods

Christian Meß and Timo Ropinski

Visualization and Computer Graphics Research Group (VisCG),
Department of Computer Science, University of Münster, Germany

Abstract

In the past years many interactive volume rendering techniques have been proposed, which exploit the neighboring
environment of a voxel during rendering. In general on-the-fly acquisition of this environment is infeasible due to
the high amount of data to be taken into account. To bypass this problem we propose a GPU preprocessing pipeline
which allows to acquire and compress the neighborhood information for each voxel. Therefore, we represent
the environment around each voxel by generating a local histogram (LH) of the surrounding voxel densities. By
performing a vector quantization (VQ), the high number of LHs is than reduced to a few hundred cluster centroids,
which are accessed through an index volume. To accelerate the required computational expensive processing steps,
we take advantage of the highly parallel nature of this task and realize it using CUDA. For the LH compression we
use an optimized hybrid CPU/GPU implementation of the k-means VQ algorithm. While the assignment of each
LH to its nearest centroid is done on the GPU using CUDA, centroid recalculation after each iteration is done on
the CPU. Our results demonstrate the applicability of the precomputed data, while the performance is increased
by a factor of about 10 compared to previous approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In many application areas of volume rendering, knowledge
regarding the neighborhood of a voxel is necessary during
rendering. For instance, during a medical diagnosis or pre-
operative planning, it can be essential to know which struc-
tures are adjacent [MNTP07]. Another example is the appli-
cation of advanced illumination models, where knowledge
of a voxel’s neighborhood is essential in order to compute
appropriate shading effects. Among these techniques are
occlusion-based shading effects [Ste03,RMD∗08] which are
known to improve the spatial comprehension [TCM06] by
incorporating the neighborhood of a voxel during rendering.
Additionally, Lundström et al. could show, that the neigh-
borhood information of a voxel can be exploited in order
to design meaningful transfer functions [LLY05, LLY06].
While all mentioned techniques are tailored towards interac-
tive volume rendering, the acquisition of a voxel’s neighbor-
hood during rendering time, would have a serious impact on
the rendering speed and hence not permit interactive frame

rates. When for example considering a neighborhood having
the radius r = 24, the information of already 4

3 πr3 ≈ 57.900
voxels has to be taken into account. Since getting the in-
formation for each voxel during rendering would require
an additional 3D texture fetch, this cannot be done on-the-
fly even with current graphics processing units. Therefore,
often a preprocessing is exploited in order to generate the
desired neighborhood information [Ste03, RMD∗08]. While
preprocessing solves the problem of expensive neighbor-
hood data acquisition during rendering, the vast amount of
generated data does still not allow interactive volume render-
ing. Therefore, researchers have proposed techniques, which
allow an efficient representation of the local neighborhood
information. Local histograms (LHs) are such a represen-
tation, they have been already exploited in the area of vol-
ume graphics [LLY05, LLY06, RMD∗08]. While LHs rep-
resent the distribution of values in a specified area, they do
not contain any spatial information. It has been shown, that
several application examples, as transfer function design as

c© The Eurographics Association 2010.

DOI: 10.2312/VG/VG10/117-124

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VG/VG10/117-124

C. Meß, T. Ropinski / Efficient Environment Acquisition

well as ambient occlusion can disclaim the spatial informa-
tion by still achieving reasonable results. However, storing
a LH for each voxel still requires an enormous amount of
memory. When for instance dealing with a data set stored
with a precision of 12 bits, each LH would already consume
4096×2Byte≈ 8KByte, whereby 4096 is the number of re-
quired bins and we assume that all occurrences of one in-
tensity value can be represented by 2 Bytes. For a data set
having 512× 512× 512 voxels, this would result in 1 terra
byte of additional data. Obviously, dealing with this amount
of additional data during rendering is not feasible. There-
fore, LH compression can be exploited, whereby a promis-
ing way to reduce the number of LHs is to apply clustering
techniques. This is also the direction, which we follow in this
paper. By exploiting the parallel nature of the generation and
the clustering of LHs, we are able to reduce the amount of
histograms accessed during rendering to a few hundred clus-
ter centroids. These centroids are accessed during rendering
through an index volume. We have chosen to exploit a hybrid
CPU/GPU implementation of the k-means vector quantiza-
tion (VQ) algorithm. Since the clustering algorithms operate
in a vector space of high dimensionality, namely the number
of bins of the LHs, i. e., 4096 for 12 bit data, the clustering is
a very time consuming process. In this paper we will show,
how the CUDA architecture can be exploited in order to ac-
celerate LH generation and clustering by a factor of about 10
as compared to previous approaches. We will explain how to
exploit the shared memory provided by current GPUs in or-
der to allow data caching and thus improve the computation
speed. Thus the required computation time becomes man-
ageable, and the door is opened for other applications of LH
techniques.

In the remainder of this paper we will first discuss some
related work in Section 2, before describing our hybrid
GPU/CPU processing pipeline in Section 3. Furthermore,
we will discuss performance results and the influence of pa-
rameters on the output quality. To demonstrate the applica-
bility of the generated data, some application examples are
discussed in Section 5. Finally, the paper concludes in Sec-
tion 6.

2. Related Work

In recent years, several interactive volume rendering tech-
niques have been proposed, which exploit neighboring in-
formation in order to improve the visual results. In the fol-
lowing we briefly review the literature regarding two main
areas, where neighboring information is used: transfer func-
tion design and advanced illumination. Lundström et al.
where the first, who have employed a voxel’s neighbor-
hood in order to support the transfer function design pro-
cess [LLY05, LLY06]. By computing LHs, more specifi-
cally so-called Partial Range Histograms, they were able to
classify and visually separate structures, which where not
classifiable with conventional transfer function approaches.

To incorporate the information provided by the LHs, they
showed how to use them as an additional dimension within
the transfer function design process. Thus, tissues overlap-
ping in intensity space could be visually separated. A simi-
lar though different approach has been proposed by Patel et
al. [PHBG09]. They define a transfer function based on the
first and second statistical moments. While in the approach
by Lundström et al. [LLY05] the neighborhood for which
the LH has been precomputed is fixed, Patel et al. derive
the statistical properties based on a growing neighborhood
centered at each voxel. By detecting trends in these values,
they were able to provide a 2D projection, which is facil-
itated in the transfer function design process. Haidacher et
al. have extended this concept and proposed a more intuitive
user interface for statistical transfer functions, and show how
the incorporated properties could still be exploited when the
data set is subject to noise [HPB∗10]. Correa et al. have
proposed a technique, which nicely demonstrates the depen-
dencies between transfer function design and advanced il-
lumination [CM09]. They provide a technique, which can
be used to classify data directly based on the ambient oc-
clusion of a voxel. In their paper they present how to de-
rive so-called occlusion patterns during a preprocessing and
present them within the occlusion spectrum, which is used
as the foundation of their transfer function space. While all
discussed techniques have been tailored at transfer function
design, occlusion based shading has also been enabled by
exploiting precomputed voxel neighborhoods. Stewart has
presented a technique called vicinity shading [Ste03]. With
vicinity shading it becomes possible to simulate illumina-
tion of isosurfaces within a volumetric data set. Therefore,
in a precomputation the vicinity of each voxel is analyzed
and the resulting value, which represents the occlusion of the
voxel, is stored in a shading texture which can be accessed
during rendering. Ropinski et al. have exploited a similar ap-
proach [RMD∗08]. Based on LHs, they determine the oc-
clusion of a voxel. By modulating the precomputed LHs
with the transfer function during rendering, they are able to
achieve occlusion-based shading effects during rendering in-
teractively. Thus, ambient occlusion as well as color bleed-
ing can be simulated. However, their technique requires an
expensive preprocessing algorithm in order to generate the
neighborhood information, which is independent from the
transfer function.

To reduce the amount of data produced by the mentioned
preprocessing techniques, k-means clustering can be used. In
the last years a number of approaches to accelerate k-means
by mapping parts of the algorithm onto the GPU were intro-
duced. Che et al. describe how to map general-purpose ap-
plications on GPUs using CUDA [CBM∗08]. Among other
applications they focus on data mining and show a CUDA
implementation of k-means. To speed up data access, all
centroids are stored in constant memory. The CUDA im-
plementation achieves a 72× speedup compared to a single-
threaded and a 35× speedup compared to a four-threaded

c© The Eurographics Association 2010.

118

C. Meß, T. Ropinski / Efficient Environment Acquisition

CPU implementation. Unfortunately this technique is not
feasible for our purposes, because on recent CUDA capa-
ble GPUs only 64 KB of constant memory is available.
Our typical centroid dimension is 256 and we are dealing
with floating point numbers. So, in our application, constant
memory would only be sufficient for 64 centroids. Zechner
and Granitzer [ZG09] present a hybrid approach to accel-
erate k-means clustering. The labeling stage is performed
on the GPU using CUDA, whereas the centroid recalcula-
tion is done completely on the CPU. To measure speedup
they compare computation times for various dimensions,
data set sizes and code book sizes with CPU based im-
plementations. In comparison to a fully SIMD optimized
CPU implementation a 14× speed improvement could be
shown. While our approach is inspired by their proceeding,
we have extended it and integrated a bricking approach, to
allow to further exploit parallelism and deal with data, which
does not fit into GPU memory. Wu et al. focus on cluster-
ing of very large data sets and propose a stream-based al-
gorithm [WZH09]. CUDA supports asynchronous memory
transfers and streaming, which allows GPU and CPU com-
putations to overlap with memory transfers. Data sets not fit-
ting into GPU memory are partitioned into blocks which are
distributed among the available streams. Compared to an un-
optimized single core CPU implementation a 300× speedup
and compared to a highly optimized CPU version running
on eight cores a 29.3× speedup could be observed. In con-
trast to the preceding methods Hong et al. [HtLlDt∗09] show
how both steps, data object assignment and centroid recal-
culation, can be offloaded to the GPU. This is achieved by
an intermediate step after each iteration. Cluster labels are
downloaded to the CPU and two structures, a reordered la-
bel data set and a data set counting the data objects in each
cluster, are computed. These structures are then uploaded to
the GPU and used within centroid recalculation.

3. Local Histogram Generation and Clustering via
CUDA

While all the techniques discussed in Section 2 exploit
neighborhood information, there are mainly two issues.
First, the precomputation times are very long, and second,
in many cases a large amount of data is generated, which
needs to be compressed in order to make it handy during
rendering. While the first problem can be addressed by ex-
ploiting the parallel processing power of current GPU ar-
chitectures, the second problem can be faced by applying
sufficient clustering techniques. In this section we describe
how to exploit the parallel processing power and realize the
clustering using CUDA. Before explaining our approach, a
short description of the CUDA hardware and programming
model is given. The precomputation itself comprises of two
main steps, which are later on covered in more detail. In the
first preprocessing step a LH for each voxel is computed rep-
resenting the distribution of voxel densities within a sphere
with radius r. In the second step a clustering of these n LHs

Figure 1: CUDA thread hierarchy: Threads are organized
in up to three dimensional blocks and blocks are grouped in
a two dimensional grid (modified from [NVI09]).

is performed using the k-means algorithm resulting. The out-
come of this clustering are m� n LHs, which are the cen-
troids of the identified clusters. Thus we generate m LHs as
well as a volumetric index data set, which relates each voxel
of the original data set to one of the m histograms.

3.1. Compute Unified Device Architecture (CUDA)

In the CUDA programming model threads are extremely
lightweight. Thread creation and scheduling is very inex-
pensive and so a low granularity decomposition of prob-
lems can be achieved. With respect to volume rendering,
a typical design goal for a CUDA algorithm is that each
thread handles the computation for a single voxel. To man-
age this huge amount of threads the CUDA programming
model arranges threads in an hierarchy as shown in Figure 1.
Threads are grouped in thread-blocks which are again orga-
nized in a grid. A grid is executed within a kernel on the GPU
and thread-blocks are scheduled onto the processors by the
CUDA runtime [NVI09].

In order to utilize the GPU resources in an efficient way
it is crucial to optimally exploit the CUDA hardware model
and especially the different memory types (see Figure 2). On
a CUDA capable GPU a number of multiprocessors (MP)
resides. Each MP consists of eight Scalar Processor (SP)
cores and a small amount (16 KB) of fast on-chip read-write
shared memory (SM), which can be shared among the SPs.
For acceleration of texture fetches a texture cache is avail-
able and each thread can access the 64 KB of very fast read
only constant memory. Device memory is the slowest type
of memory, but readable and writable from both host (CPU)
and device (GPU).

c© The Eurographics Association 2010.

119

C. Meß, T. Ropinski / Efficient Environment Acquisition

Figure 2: CUDA hardware model: Arrows indicate the
direction of memory access. White boxes indicate memory
components and light gray boxes stand for processing units.
Multiple scalar processors (SPs) are arranged within multi
processors (MPs).

3.2. Local Histogram Generation

Throughout the rest of this paper we refer to LH(x) as the
local histogram for voxel x and LH as the complete set of
local histograms for the entire volume data set. The LH(x)
of a voxel x incorporates all voxels x̃ within a sphere Sr(x)
with radius r around the given voxel x. An LH(x) consists of
b bins, where b is the bit depth of the underlying volume data
set. Each bin LHk(x),0≤ k< b sums up the amount of voxels
with intensity k within Sr(x). To incorporate distances, the
contribution of a single voxel y ∈ Sr(x) to a bin LHk(x) can
be weighted by the distance between x and y. Because in
many cases for classifying the neighborhood of x, only the
relative distribution of LH(x) is relevant, we normalize each
LH(x) such that ∑

b
k=1 LHk(x) = 1.

A workflow of our algorithm for GPU-based LH gener-
ation is shown in Figure 3. For checking if a voxel y lies
in the sphere Sr(x) with radius r and center x, and to com-
pute weighted LH(x) contributions, it is necessary to calcu-
late the distance between x and y. This distance has to be
computed approximately 3

4 πr3 times, i. e., for every voxel in
Sr(x). When using the Euclidean distance

d(x,y) =
√

(x1− y1)2 +(x2− y2)2 +(x3− y3)2

especially the square root calculation will slow down the
LH(x) generation, because this operation is a rather ex-
pensive CUDA function. To avoid this, we precompute a
distance mask on the CPU and transfer the results to the
constant memory of the GPU. The precomputed values are
stored in a 3D array and thus the distance can be obtained by
fetching the 3D array at the offset coordinates of y in relation
to x. Because constant memory is a limited resource (64 KB
for each SM), only distances for positive x, y and z values
(one quarter of a hemisphere) are stored. The other distances

are derived through sign changes, which can be performed
at virtually no performance costs.

After uploading the distance lookup array to global device
memory the volume data set is decomposed into bricks to
support volume- and LH-sizes exceeding device RAM. This
is necessary, since for a small volume data set with dimen-
sion 1283 a LH of size 2 GB (1283 * 256 bins * 4 byte) is cal-
culated. Thus, special border treatment is needed for brick-
ing in order to produce correct LHs for voxels whose spheres
don’t fit completely into a brick. Therefore, the bricks over-
lap each other by sphere radius r.

The CUDA kernel for LH generation is organized in the
following way. Each thread is responsible for calculating the
LH(x) of one voxel x. The position of this voxel inside the
volume brick depends on the thread- and block-indices of
the thread. For each thread, space for one LH(x) is allocated
in SM. Because of the maximal block-size of a kernel call,
the number of threads running on a MP at a time, is limited
by the size of SM. On current GPUs the size of SM is 16 KB
and a LH(x) with 256 bins occupies 1 KB. Thus, 16 threads
per thread-block is the upper limit, but the usable size of SM
can be decreased by using many local variables within a ker-
nel. In our implementation good results were achieved using
a block size of (2× 2× 2). In some situations a block size
of (2× 1× 2) seems to be even faster. With regard to the
CUDA Hardware Model these low thread counts are subop-
timal leading to a low utilization of the GPU. Future GPUs
with an increased SM size will allow a much better utiliza-
tion and significantly speed up our algorithm. To exploit data
locality using the texture cache the volume bricks uploaded
to device memory are bound to 3D-textures. The processing
is performed by consecutively uploading the bricks to global

Figure 3: GPU-supported LH generation: While the dis-
tance mask and the bricks are calculated on the CPU, the
actual LH calculation as performed on the GPU. After each
calculation step, the LH chunks containing the results are
downloaded to the CPU.

c© The Eurographics Association 2010.

120

C. Meß, T. Ropinski / Efficient Environment Acquisition

device memory for computing the LHs one per thread. Dur-
ing this computation, we iterate over all voxels within the
neighborhood of radius r and write their contribution into the
corresponding bin of LH within SM. When all voxels have
been processed and thus the LH has been generated, every
thread normalizes the computed histogram and writes it to
device memory. After all bricks have been processed, they
are transferred to the host system (the CPU in Figure 3) and
written to file system. The algorithm stops when all bricks
have been processed.

3.3. Local Histogram Clustering

With the technique described above a normalized local his-
togram LH(x) was generated for each voxel x. In principle
this data can be used already during rendering, but the size
of LH will rapidly exceed device memory making interactive
frame rates unfeasible. To solve this problem the amount of
data has to be compressed. We use a clustering algorithm to
achieve this goal. The result of the clustering is a smaller
set of local histograms, the centroids of the clustering pro-
cess, which we denote as a code book (cb), and a volumetric
data set, which assigns each voxel to a cluster, the labeling
volume.

As clustering method we have chosen the k-means cluster-
ing algorithm. k-means is a commonly used clustering algo-
rithm initially proposed by MacQueen [Mac67]. In general
k-means consists of two steps. Within the first step the data

Figure 4: GPU-supported LH clustering: In our hybrid ap-
proach, first codebooks are initialized on the CPU and up-
loaded to GPUs device memory. As long as bricks need to be
processed, they are also uploaded sequentially and the code-
vector assignment is done until the algorithm terminate.

set is subdivided into k subsets by assigning each data point
to its nearest centroid. When all data points are assigned,
the centroids are recalculated in a second step by finding the
center of each cluster. These steps are iterated until no data
point moves from one cluster to another. To start the algo-
rithm k centroids have to be chosen randomly or by using
special seeding algorithms. Pena et al. give a comparison of
various k-means initialization methods [PLL99]. Our GPU-
based implementation is inspired by the approach presented
by Zechner and Granitzer [ZG09], while we have integrated
a bricked processing scheme, to support LHs and data sets
exceeding GPU memory. The phases of the algorithm are
outlined in Figure 4. In the first step a starting cb is gener-
ated on the CPU by randomly choosing n LH(x) out of LH.
In the following these n histograms are also denoted as the
code vectors (cv) of the codebook (cb). All cvi ∈ cb with
0≤ i < k are sorted by their mean intensity value in ascend-
ing order.

The initial cb is transferred to device memory. In order
to fit into device memory the LH has to be split in bricks.
Each brick is uploaded to the GPU and for each LH(x)∈ LH
the index of the cv ∈ cb with the smallest distance to LH(x)
is determined. This is achieved by using the CUDA kernel
shown in Listing 5, where each thread determines the mini-
mal distance to one LH(x). The LH(x) on which the thread
works is defined by the block- and thread-index. In detail
each thread iterates over all cv ∈ cb and stores the distance
and the index of the cv with the minimal distance to the
LH(x) in a local variable. Because all threads in a block
are operating on one cv in parallel, the cv is stored in fast
SM. When all threads in a block have determined the in-
dex of the cv with minimal distance, this index is written to
the appropriate position in the label data set. This label data
set has the same dimension as the source data set. When all
bricks are processed the labels are downloaded to the CPU
and a new ordered code book cbnew is constructed. The al-
gorithm converges to an approximately optimal cb if the dis-
tance dist(cbnew,cbold) falls below a pre-defined threshold.

4. Performance Results

Table 1 shows the precomputation times achieved with
our approach. All tests have been performed on an AMD
Phenom 8750 Triple-Core processor system with 2400 MHz
(4 GB RAM), equipped with a GeForce 9800 GTX+ GPU
(512 MB RAM). The Cornell box results show the depen-
dency of the precomputation time on the sphere radius r and
number of codewords cw. The histogram generation took be-
tween 2.45 and 19.58 minutes for sphere radii between 8 and
24 voxels. During the clustering, the number and length of it-
erations heavily depends on the number of codewords. While
for 256 codewords, one iteration takes only about 0.4 min-
utes, when dealing with 2048 codewords, 1.92− 2.85 min-
utes are used. Since the clustering is performed on normal-

c© The Eurographics Association 2010.

121

C. Meß, T. Ropinski / Efficient Environment Acquisition

data set size sphere hist. gen. codewords iterations VQ time per LH codebook
(voxel3) radius (min.) (min.) iteration (min.) size size

Cornell box 128×128×128 12 2.45 256 6 2.37 0.40 2 GB 256 KB
Cornell box 128×128×128 8 1.48 2048 9 17.29 1.92 2 GB 2 MB
Cornell box 128×128×128 24 19.58 2048 19 54.19 2.85 2 GB 2 MB

Head 192×192×110 12 10.16 2048 11 59.07 5.37 3.9 GB 2 MB
Hand 244×124×256 24 78.28 2048 10 101.58 10.16 7.4 GB 2 MB
Feet 128×64×128 12 1.26 2048 12 9.17 0.76 1 GB 2 MB

Table 1: CUDA accelerated preprocessing times for selected data sets. Preprocessing was performed on AMD Phenom 8750
Triple-Core processor at 2400 MHz (4 GB RAM) and GeForce 9800 GTX+ GPU (512 MB RAM).

1C:\Users\ropinski\Desktop\vq.c

float dist = 0.0f;
float minDist = CUDART_MAX_NORMAL_F;
int centroid = -1;

// for all codeVectors
for(int i=0; i<sizeCodeBook; ++i) {
 // load one cv component to SM
 if(tid < numBins) {
 cv[tid] = cb[i*numBins+tid];
 }
 __syncthreads();

 // calc distance
 dist = 0.0f;
 for(int j=0; j<numBins; ++j) {
 dist += pow(lh[gid] - cv[j], 2);
 }

 if(dist < minDist) {
 minDist = dist;
 centroid = i;
 }
}
__syncthreads();

// write centroid index to device mem
dVolume[gid] = centroid;
__syncthreads();

Figure 5: The main loop of the k-means algorithm as real-
ized with our CUDA kernel.

ized LHs, as described above, the radius r has only a minor
influence on this stage, in that sense that larger r may re-
sult in more similar LHs. The Feet, Head and Hand data set
have been preprocessed with exactly the same parameters
as described by Ropinski et al. [RMD∗08]. Thus, to provide
some reference for our performance gain, we will compare
our results to their results. However, it should be noted, that
their technique is different in the sense, that the clustering
is performed on packed histograms, usually having a dimen-
sion of 64. Our technique works on the original histograms
potentially leading to better results for applications, where
a higher accuracy is required. When applying our technique
to packed histograms a further significant speedup could be
gained. Although these differences exist, Ropinski et al.’s
technique [RMD∗08] is the most similar, and therefore cho-

sen for comparison. As it can be seen, for the Feet data set
(r = 12, cw = 2048), our histogram generation takes only
1.26 minutes compared to 15.98 minutes of the previous ap-
proach (speedup: 12.68). Furthermore, we could reduce the
clustering time for this data set from 320.81 minutes down
to 9.17 minutes (speedup: 34.98). A performance gain could
also be achieved for the Head data set (r = 12, cw = 2048),
where we require 10.16 minutes for the histogram genera-
tion as compared to the 16.63 minutes of the multi-core CPU
implementation (speedup: 1.64). In this case the clustering
could be improved to last only 59.07 as compared to 528.58
minutes (speedup: 8.95). In [RMD∗08], the authors present
also a timing of 61.60 minutes for the training phase of the
clustering based on this data set. However, this has been
achieved by simplifying the clustering (and also considering
packed histograms), which potentially leads to less accurate
results. For the Hand data set (r = 12, cw = 2048), we were
able to reduce the histogram generation from 514.31 minutes
to 78.28 minutes (speedup: 6.57), and the clustering from
633.80 minutes down to 101.58 minutes (speedup: 6.24). It
should be noted, that the clustering times presented in this
paper are for the entire clustering process, and not just for
the VQ training as it is the case in [RMD∗08].

Thus, dependent on the data set and preprocessing param-
eters, we are able to achieve a performance gain of 1.64−
12.68 for the histogram generation and of 6.24− 34.98 for
the clustering. While these reported processing times make
the environment generation for volumetric data sets already
usable, we are confident that newer graphics hardware will
result in an additional performance gain.

5. Application Examples

To demonstrate the applicability of the presented precom-
putation technique, we will present some application results
within this section, which are based on the dynamic ambient
occlusion technique presented by Ropinski et al. [RMD∗08].
As mentioned in Section 2, Ropinski et al. have used LHs
to simulate advanced illumination effects. By exploiting this
transfer function independent representation, they are able to
change all important rendering parameters interactively. To
achieve this, they modulate the stored LHs with the transfer
function during rendering, by multiplying each bin’s value

c© The Eurographics Association 2010.

122

C. Meß, T. Ropinski / Efficient Environment Acquisition

LHj(x) with the opacity τα (j) and the color τrgb(j), as as-
signed with the transfer function to intensities equal to j:
c j = τα (j) · τrgb(j) · LHj(x). The result of the thus modu-
lated bin values are composited and weighted by the number
of voxels represented by the LH. Hence, for each LH an en-
vironmental color c′j can be obtained. To just compute an
approximation of the ambient occlusion, τrgb(j) can be ne-
glected from the previous equation.

During rendering the computed c′j can be assigned to
each voxel by using the index volume storing the cluster
IDs. This requires only one additional 3D texture fetch and
thus makes the environmental color available with compa-
rable little overhead. We have tested our preprocessed vol-
umes with this simple rendering technique. The results are
shown in Figure 6, whereby the subfigures (a) and (b) have
been generated with our technique and (c) shows a compar-
ison taken form the original dynamic ambient occlusion pa-
per [RMD∗08]. Both used data sets have been preprocessed
with a sphere radius of r = 12, while for the Cornell box data
set 256 codewords and for the Visible Human head data set
2048 codewords have been used. As it can be seen, the vi-
sual quality of the images is comparable to the original ones,
although significant less preprocessing time is required.

While the presented images show the applicability of the
data for dynamic ambient occlusion shading, we believe, that
other approaches could also benefit from the improved pre-
computation times. Probably the easiest integration would
be to exploit our data for the transfer function design based
on LHs, as described by Lundström et al. [LLY06].

6. Conclusions and Future Work

In this paper we have presented a hybrid GPU/CPU tech-
nique for the generation and clustering of LHs in volu-
metric data sets. By exploiting the capabilities of modern
stream processing APIs, we are able to perform this pre-
processing about 10 times faster, than previous reported ap-
proaches [RMD∗08]. This performance gain is achieved by
exploiting the shared memory of current GPUs, which is ac-
cessed by our CUDA implementation. Furthermore, by per-
forming some subtask of the used k-means VQ algorithm on
the CPU and others on the GPU, the strengths of both units
can be combined. Thus, while the assignment of each LH to
its nearest centroid is done on the GPU using CUDA, cen-
troid recalculation after each iteration of the VQ is done on
the CPU. We have demonstrated the applicability of the gen-
erated histograms by showing dynamic ambient occlusion
examples as well as histogram-dependent transfer functions.
Both are promising techniques, which have been proposed
before, but are so far not widely used. One reason for that
might be the lack of efficient LH computation methods. We
believe, that the reported preprocessing times are manage-
able and this LH generation based on volumetric data sets
becomes practical.

In the future, we would like to provide our computation

algorithm as an open source library for other researchers.
Thus, the functionality can be adapted and new techniques
based on LHs can be developed. Furthermore, we would like
to offload codebook recalculation on to the GPU, as demon-
strated by Hong et al. [HtLlDt∗09]. Besides this optimiza-
tion, we see further potential performance improvements
techniques. For example, we could adapt the histogram
packing technique proposed by Ropinski et al. [RMD∗08].
We believe, that besides the discussed approaches, other ex-
amples could also benefit from the usage of LHs. For in-
stance, to allow an interactive contrast enhancement based
on LHs, our approach could be helpful.

Acknowledgments

This work was partly supported by grants from Deutsche
Forschungsgemeinschaft, SFB 656 MoBil (project Z1). The
presented concepts were implemented using the Voreen vol-
ume rendering engine (http://www.voreen.org).

References

[CBM∗08] CHE S., BOYER M., MENG J., TARJAN D., SHEAF-
FER J. W., SKADRON K.: A performance study of general-
purpose applications on graphics processors using CUDA. J.
Parallel Distrib. Comput. 68, 10 (2008), 1370–1380. 2

[CM09] CORREA C., MA K.-L.: The occlusion spectrum for
volume classification and visualization. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1465–1472.
2

[HPB∗10] HAIDACHER M., PATEL D., BRUCKNER S., KANIT-
SAR A., GRÖLLER M. E.: Volume visualization based on statis-
tical transfer-function spaces. In Proceedings of the IEEE Pacific
Visualization Symposium 2010 (2010), p. to appear. 2

[HtLlDt∗09] HONG-TAO B., LI-LI H., DAN-TONG O., ZHAN-
SHAN L., HE L.: K-Means on commodity GPUs with CUDA. In
Computer Science and Information Engineering, World Congress
on (Los Alamitos, CA, USA, 2009), vol. 3, IEEE Computer So-
ciety, pp. 651–655. 3, 7

[LLY05] LUNDSTRÖM C., LJUNG P., YNNERMAN A.: Extend-
ing and simplifying transfer function design in medical volume
rendering using local histograms. In EuroVis (2005), pp. 263–
270. 1, 2

[LLY06] LUNDSTRÖM C., LJUNG P., YNNERMAN A.: Lo-
cal histograms for design of transfer functions in direct volume
rendering. IEEE Transactions on Visualization and Computer
Graphics 12, 6 (2006), 1570–1579. 1, 2, 7

[Mac67] MACQUEEN J. B.: Some methods for classification
and analysis of multivariate observations. In Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability
(1967), Cam L. M. L., Neyman J., (Eds.), vol. 1, pp. 281–297. 5

[MNTP07] MÜHLER K., NEUGEBAUER M., TIETJEN C.,
PREIM B.: Viewpoint selection for intervention planning. In
EuroVis (2007), pp. 267–274. 1

[NVI09] NVIDIA: CUDA programming guide 2.3, 2009. 3

[PHBG09] PATEL D., HAIDACHER M., BALABANIAN J.-P.,
GRÖLLER M. E.: Moment curves. In Proceedings of the IEEE
Pacific Visualization Symposium 2009 (2009), pp. 201–208. 2

c© The Eurographics Association 2010.

123

http://www.voreen.org

C. Meß, T. Ropinski / Efficient Environment Acquisition

(a) (b) (c)

Figure 6: The preprocessed data sets have been tested by applying dynamic ambient occlusion and color bleeding [RMD∗08].
In (a) only the ambient occlusion approximation is applied, while in (b) also the environmental color has been exploited. (c)
shows a comparison to (b) taken from the original paper on dynamic ambient occlusion [RMD∗08].

[PLL99] PEÃŚA J., LOZANO J., LARRAÃŚAGA P.: An empirical
comparison of four initialization methods for the k-means algo-
rithm. Pattern Recognition Letters 20, 10 (1999), 1027 – 1040.
5

[RMD∗08] ROPINSKI T., MEYER-SPRADOW J., DIEPENBROCK
S., MENSMANN J., HINRICHS K.: Interactive volume rendering
with dynamic ambient occlusion and color bleeding. Computer
Graphics Forum 27, 2 (2008), 567–576. 1, 2, 6, 7, 8

[Ste03] STEWART A. J.: Vicinity shading for enhanced percep-
tion of volumetric data. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03) (2003), p. 47. 1, 2

[TCM06] TARINI M., CIGNONI P., MONTANI C.: Ambient oc-
clusion and edge cueing to enhance real time molecular visualiza-

tion. IEEE Transactions on Visualization and Computer Graph-
ics 12, 6 (2006). 1

[WZH09] WU R., ZHANG B., HSU M.: Clustering billions of
data points using GPUs. In Proceedings of the combined work-
shops on UnConventional high performance computing work-
shop plus memory access workshop (Ischia, Italy, 2009), ACM,
pp. 1–6. 3

[ZG09] ZECHNER M., GRANITZER M.: Accelerating K-Means
on the graphics processor via CUDA. In Intensive Applications
and Services, International Conference on (Los Alamitos, CA,
USA, 2009), IEEE Computer Society, pp. 7–15. 3, 5

c© The Eurographics Association 2010.

124

