
IEEE/EG International Symposium on Volume Graphics (2010)
R. Westermann and G. Kindlmann (Editors)

Multi-layer Volume Ray Casting on GPU

Wei Li1

1Siemens Corporate Research
Princeton NJ, USA

Abstract
We present multi-layer volume ray casting that integrates various volume rendering enhancements into a unified
framework, including empty-space skipping, volume clipping, embedding opaque and semi-transparent objects,
volume editing through constructional solid geometry (CSG) operations, etc. The central idea is to consider all
these objects as volume-of-interests(VOIs). Each VOI is assigned a priority number to determine how the over-
lapped regions are handled. All the information of the VOIs are encoded into a ray-layer buffer through depth
peeling combined with layer simplification. Each pixel of a ray-layer buffer contains the information of a set of
ray segments, including the starting locations and the material IDs. The multi-layer ray caster then renders (or
skips) each ray segment with the proper viewing parameters depending on the material IDs. The ray-layer buffer
is also used to estimate the gradients of surfaces between the layers to improve shading.

1. Introduction

GPU-based volume rendering has become the most popu-
lar volume visualization approach due to the ever-increasing
power and programmability of commodity graphics hard-
ware. Especially in recent years, volumetric ray casting on
GPU has attracted great attention because of its flexibility
to incorporate enhancements to the basic algorithm that ei-
ther improve rendering speed and image quality or highlight
interesting features. In this paper, we present multi-layer vol-
ume ray casting that provides a general framework support-
ing various kinds of such enhancements.

Besides a volume dataset, the multi-layer ray caster also
takes a set of VOI models as input. Each VOI defines a
sub-region, either connected or disconnected, inside the vol-
ume space, and specifies appearance settings for the sub-
region. Multiple VOIs can overlap in space. Therefore users
may assign different priority numbers to VOIs to resolve
any conflict. Please note that the meaning of VOI in this
paper is much wider than standard volume-of-interest. We
treat various objects as VOI, although they appear very dif-
ferent from standard ones. These objects include clipping
geometry, such as cut planes and crop boxes, embedded
opaque and semi-transparent objects, editing masks, embed-
ded MPRs (multi-planar reformatting), bounding geometry
of non-empty spaces, etc.

To render a volume dataset that is partitioned by multiple

overlapped VOIs with different priorities, we first convert all
the information of the VOIs into a ray-layer buffer. The ray-
layer buffer is generated by depth peeling all VOI bound-
aries, followed by organizing the peeled fragments into lay-
ers. Each pixel in the buffer encodes the information of a
set of non-overlapping ray segments. The information in-
cludes the starting location and material ID of each ray seg-
ment. The multi-layer ray caster then casts rays segment-by-
segment according to the buffer. The layer buffer is also used
for estimating gradients on layer surfaces to improve shad-
ing effects.

In the remainder of the paper, we first list previous pub-
lications that directly relate to our work. Then we discuss
in more details about volume rendering features that can be
rendered as VOIs. Next we present the structure of the ray-
layer buffer and its generation, followed by the multi-layer
ray casting. Finally we conclude the paper with experimental
results and discussions.

2. Related work

As mentioned before, GPU-based volume rendering
[HKRs∗06] has been widely explored, and there are plenty
of publications on this topic. We only discuss literatures that
are closely related to our work. The idea of using different
parameters and modes across ray segments is adopted from
two-level volume rendering [HMiBG01] [HBH03] that fo-

c© The Eurographics Association 2010.

DOI: 10.2312/VG/VG10/005-012

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VG/VG10/005-012

Wei Li / Multi-layer Volume Ray Casting on GPU

cuses on segmented volumes with volumetric masks. Had-
wiger el al. [HBH03] also presents methods for filtering
mask boundaries. In contrast, our approach works most effi-
ciently with geometric masks that are continuous represen-
tations of boundaries and do not have to be filtered. Raman
et al. [RMC08] replaces some of the 3D volume rendering
with 2D image operations to simulate the two-level effects.
In their work a layer refers to a Photoshop-like 2D image
whereas in our work, the same term is a group of ray seg-
ments.

Krüger and Westermann [KW03] render the front and
back faces of the bounding box of a volume to generate ray
directions and texture coordinates. Scharsach [SHN∗06] re-
fines the bounding geometry from the whole dataset to the
non-empty regions, hence incorporates empty-space skip-
ping into the ray texture, instead of relying on a separate vol-
ume texture [KW03]. This uses the same principle of poly-
gon assisted ray casting [ASK92]. Both these approaches
create auxiliary 2D textures that contain the starting and end-
ing locations of rays, which have certain similarity to our
ray-layer buffer. However, both these approaches store 3D
texture coordinates in the ray texture, whereas our ray-layer
buffer only saves the Z value of the starting position of a
new layer. Not only does our method require less memory,
but it also fulfills the requirement posed by bricking that the
sampling locations in different bricks are aligned. Krüger et
al. and Scharsach et al. only output the starting and ending
texture coordinates for each ray, which essentially is a single
layer description in our multi-layer notation. For this reason,
the approach of Scharsach el al. can’t skip empty spaces be-
tween the first and last visible samples. Apparently, the sin-
gle layer representation can’t cope with embedded objects
that produce multiple layers. Stegmaier et al. [SSKE05] have
reported a single-pass ray caster exploiting dynamic branch-
ing and larger number of allowable iterations in the fragment
pipeline of the GPU. Except for using a ray-layer buffer, our
code for casting a ray segment is similar in structure to their
implementation. But beyond that we have an additional out-
side loop to go through all the non empty ray segments.

There have been a few volume rendering techniques that
involve depth peeling. Nagy and Klein [NK03] apply vol-
umetric depth peeling to visualize the first n iso-surfaces.
Rezk-Salama and Kolb [RSK06] partition a volume into
several view-dependent layers considering the accumulated
opacity. Both methods perform peeling on the volume prop-
erties, whereas our depth-peeling converts VOI information
to a ray-layer buffer. It should be noted that our frame-
work can easily incorporate these kinds of peelings within
each ray segment. Brecheisen et al. [BPVtHR08] perform
depth peeling on multiple intersecting volumes, and ray-
cast each layer in a separate rendering pass. In contrast, we
store the peeling information in a ray-layer buffer, hence
only need a single pass for raycasting which is more effi-
cient for GPU hardware. More importantly, the usage of the
ray-layer buffer permits the integration of VOI priorities and

layer simplification which are difficult for Brecheisen et al.’s
method. Lauer and Seiler present multiple-depth-buffer for
embedding translucent objects [LS]. The idea of partition-
ing volume space into layers is similar, but they don’t deal
with overlapped regions with different priorities.

GPU accelerated CSG modeling, e.g. [LF02] [GKMV03]
[HR05], has certain similarities to the generation of the ray-
layer buffer, in that they both handle the Boolean operations
of multiple geometric meshes. The difference is that CSG lit-
eratures focus more on dealing with complicated CSG trees,
whereas in our ray-layer buffer generation, the VOIs have
different priority numbers that are critical in the interaction
between VOIs. At the same time, there can be multiple VOIs
with identical priority numbers, while their logical relation
is usually much simpler. Therefore our ray-layer buffer al-
gorithm concentrates on how to handle the priority numbers
and the material IDs associated with the VOIs. Weiskopf et
al. [WEE02] achieve volume clipping through GPU stencil
test. We consider clipping as a special case of VOI and inte-
grate it into our multi-layer framework.

Multi-layer volume ray casting supports interactively
changing shape and appearance of one or more VOIs,
which has certain visual similarity to direct volume editing
[BKW08], where they use a volumetric scalar field to hold
the output of editing. They also exploit surface-aligned clip
geometry to achieve cutaway views. In comparison, our edit-
ing masks and VOI masks are preferably geometric meshes.
Please also note that our work focuses on rendering, instead
of editing, and we have no difficulty in incorporating a vol-
umetric mask in the multi-layer ray casting pipeline.

Kainz et al. [KGB∗09] combine multiple volumes and
translucent polyhedral objects by ray-casting layers too. Tak-
ing advantage of Cuda, they achieve layer sorting by a
single-pass polyhedral rendering. However Cuda still lacks
certain capabilities, such as texture fetching with trilinear in-
terpolation, that greatly degrades its performance for graph-
ics applications. Moreover, in our experiments, the cost of
the multi-pass depth peeling is nearly ignorable comparing
with the ray casting. Therefore our strategy is to keep the
ray-casting loop as simple as possible and to shift workloads
to the layer sorting. Another difference is that our system is
oriented towards prioritized VOIs, whereas Kainz et al. are
more focused on the blending of different objects.

3. Volume-of-interest

During volume rendering, each voxel is assigned a color de-
pending on its properties, such as the density and the gradi-
ent. Then the color values are composited into a frame buffer
to form an image. The color assignment typically involves a
mapping from voxel properties to an entry in a color lookup
table, referred to as a transfer function. In addition, local gra-
dients of voxels plus parameters of lights are used to pro-
duce lighting effects that are added to the transfer-function-
mapped color.

c© The Eurographics Association 2010.

6

Wei Li / Multi-layer Volume Ray Casting on GPU

In standard volume rendering, the same computation of
color assignment is performed for all voxels uniformly.
Many improvements have been proposed. For example, a
user may specify a sub-region of the volume space, and vox-
els inside the sub-region are rendered differently from vox-
els outside. Such a subregion is referred to as a volume-of-
interest (VOI).

More than one VOI can be specified for the same dataset,
and multiple VOIs may overlap in space. Each VOI is as-
signed a priority that is used to determine how the over-
lapped regions are rendered. A practical policy is that a high-
priority VOI overwrites low-priority ones, and we follow
this policy in the paper. If an overlapped region is enclosed
by two or more VOIs with different viewing parameters but
identical priorities, then the color in the region is a blend of
the contributions from these VOIs. The bounding box of a
volume is actually a VOI with the lowest priority, which we
refer to as the default VOI. Any voxel excluded by all other
VOIs are rendered according to the default VOI.

Next, we list several VOI variations. Some of them are
disguised in forms that are significantly different from the
standard VOI definition, and are not considered as VOIs by
previous volume rendering approaches.

3.1. Non-empty-space boundaries

Empty space skipping is an important acceleration technique
for volume rendering. As suggested by the name, a volume is
partitioned into regions. A region containing voxels that are
all mapped to fully invisible colors is completely skipped
and the image quality is not degraded at all. Non-empty-
space boundaries separate non-empty from empty regions.
For efficiency, they don’t have to be accurate. But all the
non-empty voxels should be enclosed. In other words, empty
voxels could be included in the non-empty region, but not
vice versa. Apparently, non-empty-space boundaries refine
the default VOI.

3.2. Cut planes, crop box, and opaque objects

Adding a cut plane is equivalent to defining a VOI as a half
space, and voxels inside the VOI are set to be invisible. A
crop box is a box that is aligned with the major axes of a
volumetric dataset. Intuitively, all voxels outside the box are
cropped. According to our VOI definition, the interesting re-
gion is outside the box where it should be rendered as empty,
whereas the region inside the box is left to other VOIs.

The standard way of embedding opaque objects is that
these objects are rendered before volume rendering, so that
the depth buffer maintains the depth of the front faces of
the opaque objects. In our multi-layer model, a depth buffer
containing the depth information of opaque objects is con-
sidered as a VOI, because it makes all the volume samples
behind its front surface invisible.

3.3. Editing mask and VOI mask

Usually, a mask in volume rendering is given in one of two
forms, 1) a polygonal mesh separating interesting and un-
interesting regions; 2) a volumetric mask defining the be-
longingness of each voxel. There are also two main sources
for masks. The first one is through imaging operations, such
as segmentation, where the output is usually in the form of a
volumetric mask. Another source is the editing of a user who
draws geometric shapes or tags individual voxels, whose
output can be of either form. One editing process in com-
mercial software is called punching, in which a user draws
a closed 2D curve that is extruded to form a 3D mesh, and
uninteresting portions are "punched away".

For efficiency, the multi-layer ray caster differentiates
masks according to the following criteria: whether any voxel
selected by the mask is visible. If all the voxels are invisible,
we call it an editing mask, otherwise it is referred to as a VOI
mask. A voxel selected by a VOI mask means that the voxel
is of interest, and not only should it be visible in the rendered
image, but it may also be highlighted with a transfer function
different from the one of the default VOI. In contrast, a voxel
inside an editing mask means it is uninteresting and should
be invisible to reveal features behind it.

3.4. Embedded semi-transparent objects

The behavior of a semi-transparent object is similar to a VOI
in that it does not change the rendering calculation outside
the object. We are most interested in embedding MPR and its
variants. Embedding MPRs in volume rendering facilitates
an observer to perceive the location and orientation of the
MPRs. Please note that all MPRs map to thin surfaces and
the volume that they occupy is zero. In other words, the front
and the back faces of the VOI defined by a MPR are always
at the same depth.

4. Generating ray-layer buffer

Before the actual ray casting, all the VOIs are processed to
resolve overlapping and to remove redundant VOI bound-
aries. The information about the simplified VOIs is written
to an intermediate buffer which we refer to as a ray-layer
buffer.

4.1. Logical relationship of layer contributors

Without loosing generality, we assume the following order
of VOI priorities: cut plane = crop box = background depth
buffer > MPR > editing mask > VOI mask > non-empty-
space boundaries. We are certainly not interested in invisi-
ble spaces, therefore, we consider the complements of cut
planes, crop boxes and background depth buffer, referred to
as cutPlanes, cropBox, and depthBu f f er respectively. Fol-
lowing is the formula for combining all VOIs:

cutPlanes∧ cropBox∧depthBu f f er∧ (MPRs∨

c© The Eurographics Association 2010.

7

Wei Li / Multi-layer Volume Ray Casting on GPU

editingMasks∨ voiMasks∨nonEmptySpaceBoundaries)(1)

where ∧ represents AND, and ∨ denotes OR.

Note that each entry in formula 1 may stand for multi-
ple VOIs. For example, editingMasks denotes the combina-
tion of multiple editing VOIs through user specified Boolean
operations. Specifically, during the punching operation de-
scribed in section 3.3, usually a user enlarges the excluded
regions by drawing planar curves at different viewing direc-
tions. Therefore, these editing masks are combined through
Boolean OR.

4.2. Ray-layer buffer

A ray layer-buffer is a screen-sized 2D image, with each
pixel corresponding to a ray. Every entry in the buffer con-
tains a depth value specifying where a new ray segment be-
gins, and its material ID. A ray segment ends where a new
segment begins. All the samples of a ray segment share the
same material ID and adjacent ray segments always have dif-
ferent material IDs. All VOIs considered in our algorithm
contribute four types of material IDs:

• mtIdVolume: a ray segment is rendered using the default
transfer function and other viewing parameters.

• mtIdEmpty: a ray segment is completely invisible and can
be skipped.

• mtIdVOIi: there can be more than one VOI masks, each
has a unique material ID. i is the mask index.

• mtIdMPR: representing all types of MPRs.

Each VOI is rendered with an ID. Some use the corre-
sponding material ID, while others are associated with in-
termediate mesh IDs that eventually are converted to mate-
rial IDs. There are two such mesh IDs: meshIdClipping and
meshIdMprClipping, both involve clipping. Following is a
mapping of VOIs to material IDs and mesh IDs:

• Bounding box of non-empty spaces: mtIdVolume
• Cut planes, crop box, background depth: meshIdClipping
• Editing mask: mtIdEmpty
• Voi maski: mtIdVOIi
• MPR: mtIdMPR
• MPR with clipping front enabled: meshIdMprClipping

The fragments resulted from rendering the VOIs are
depth-peeled into layers and then merged according to their
priorities. Figure 10 shows an examplery ray-layer buffer of
a single ray. Figure 10(a) shows the VOI regions that inter-
sect this ray, including two parts from the bounding boxes of
non-empty spaces, one cut plane, one editing mask, one VOI
mask and one MPR. The heights of the VOI boxes in 10(a)
represent their priorities. Figure 10 (b) shows ray layers af-
ter resolving all overlapping using the priorities of the VOIs.
The information of (b) is encoded in the ray-layer buffer dis-
played in (c), in which the name of each box is the material
ID omitting the mtID prefix. The arrows pointing from (c) to
(b) illustrate the starting depths of the ray segments.

Figure 1: Ray-layer buffer of a single ray. (a) Contribut-
ing VOIs. The heights of VOIs represent their priorities. (b)
Merged VOIs with overlapping resolved. (c) Ray-layer buffer
where the name in the boxes are material IDs and the arrows
to (b) illustrate the starting depths of the ray segments.

Because our renderer supports bricking, the starting loca-
tion of each ray segment does not need to be very accurate,
as it will be rounded to the nearest aligned sampling loca-
tion anyway. Taking advantage of this property, we encode
the depth and material ID of each ray segment into a sin-
gle floating point number: rayIn f o = depth + beo×mtId,
where beo is the boundary encoding offset, and equals to the
maximal depth value. If the accuracy of the depth becomes
a concern, they can certainly be stored in a separate buffer at
the cost of increased memory.

For GPU implementation, the layer information is packed
into the color channels of multiple RGBA textures. In most
of the cases, the maximal number of layers maxLayers, and
the total number of color channels numColorChannels con-
form to this equation: maxLayers = numColorChannels−1.
A special case is when there is an MPR that does not inter-
sect any other VOIs. Then the corresponding MPR layer is
represented by a single entry in the ray-layer buffer. In the
extreme case, there could be numColorChannels MPR lay-
ers in a scene.

4.3. Layer generation

A ray-layer buffer is generated by depth-peeling [Eve01]
VOI definitions. The peeled fragments are then grouped into
ray layers. In GPU-based CSG, a stencil buffer is employed
to count the difference between the number of front-facing
fragments and that of back facing fragments, in order to de-
termine whether a fragment is enclosed in a primitive. Un-
fortunately, it is difficult to adopt this approach, because
each of our VOI is associated with a priority and an ID, that
are critical in layer placement. In addition we need to apply
optimizations to reduce the complexity of layers. Therefore,
we perform similar stencil tests inside a GPU program.

Figure 2 is a block diagram of layer generation from
peeled fragments. We maintain an insideFlag array, that

c© The Eurographics Association 2010.

8

Wei Li / Multi-layer Volume Ray Casting on GPU

counts the front and back-facing fragments of each material
ID, even if a fragment is discarded and does not contribute
to the layer buffer. By scanning the insideFlags, the material
ID of the VOI that encloses the input fragment and has the
highest priority is found. Denote it as currentId. If currentId
is different from the material ID of the previous layer, the
current fragment is written to the buffer with currentId. Note
that a back-facing fragment indicates the exit of the con-
tributing VOI, therefore currentId will be different from the
ID of the VOI. For example, in Figure 10(c), the start of
the right most volume layer is contributed by a back-facing
fragment of the VOI mask, but the material ID is Volume.
Clipping mesh either clears all previous layers if it is front
facing, or marks the layer generation as finished for this ray
if back-facing. MPR meshes are simply written out without
further process. If the MPR is currently inside an non-empty
layer, an entry with the same depth as the MPR but using
the previous material ID is appended so that the layer be-
ing intersected continues. In Figure 10(c), the MPR and the
second VOI0 represent such a case.

Update insideFlags
& find currentId

Process
meshIdClipping

Process meshIdMpr

Merge neighboring
mtIdVolume segments

Encode fragment into
layers using currentId

Figure 2: From peeled fragments to layers.

One optimization in layer generation is dedicated to the
bounding boxes of non-empty spaces. As we know, the union
of the bounding boxes is a hull of all non-empty voxels, and
it may enclose empty voxels depending on the trade-off be-
tween the simplicity and the accuracy of the hull. The hull
could be further simplified view-dependently during layer
generation without affecting image quality. Therefore, if the
empty segment between two adjacent mtIdVolume layers is
shorter than a given threshold, they are merged into one.

4.4. Fragments with identical depth values

If two fragments falling to the same pixel have identical
depths, then standard peeling algorithm only outputs one
of them. This produces incorrect insideFlags for the pixel.
Please note that unless two polygons are co-planar, the prob-
lem only happens in rare cases when the common points of
the two surfaces project exactly to the center of certain pix-
els. It is reasonable to require that the boundary of each VOI
does not self-intersect. But it is still possible that a back fac-
ing surface touches a front facing surface of the same VOI,
which is quite common for the corners and edges of non-
empty-space bounding boxes. Different VOIs could also pro-
duce fragments with same depth and same facing. We need
a comparison that considers depth, facing and meshId which
is unfortunately unavailable in standard depth test. One so-
lution for current GPU is that all these factors are encoded to

form a new number in a similar way to the encoding of ray-
layer buffer entries. The encoded number is set as the modi-
fied depth in the peeling fragment program. Some hardware
may not support depth test anymore if the depth is modified
in a fragment program. In that case the value could be writ-
ten to one of the color channels and use the MIN or MAX
operation of the frame buffer.

5. Multi-layer volume ray caster

Our system supports bricking that partitions a volume
dataset into multiple small sub-volumes, each called a brick.
The ray-layer buffer is created for the whole volume and
shared by all bricks. We feel this way is much easier to de-
tect any error or bug in the ray buffer, and our experiments
show that it is more efficient than using a different ray-layer
buffer for each brick.

5.1. Ray casting using ray-layer buffer

Once the ray-layer buffer is generated, the multi-layer ray
caster takes the buffer as input and casts rays segment-
by-segment. It first fetches and decodes the information of
the current layer, that includes the start (rayStart) and end
(rayEnd) locations of the ray-segment plus the material ID.
If it is a valid segment, it calls raycast1Layer to render the
segment. raycast1Layer returns a Boolean flag. If true, the
ray caster continues to the next layer. A false notifies the
main loop that the ray casting is terminated, and no need to
process the following layers.

The flowcart of raycast1Layer is shown in Figure 3. The
function first checks if rayStart is behind the far end of
the current brick to determine whether the current and all
the following ray segments are outside the brick. If so, ray-
cast1Layer simply returns false indicating the termination of
the ray for the current brick. If renderMpr flag is set, an MPR
layer is rendered before ray casting in the intersection of the
range [rayStart,rayEnd] with the current brick. Then the ac-
cumulated opacity is inspected to dertmine possible termina-
tion. Whether rayEnd is behind the far end of the brick is an
indicator of whether all the following layers are outside the
current brick. Depending on this indicator, raycast1Layer re-
turns false for termination or true to continue to the next ray
segment.

A material ID uniquely determines which parameters are
used to render a ray segment. The most common parame-
ter that changes with material ID is the transfer function.
To support multiple transfer functions in a single render-
ing pass, we stack these transfer functions into a single 2D
texture, and add an offset equals to materialId ×D to the
texture coordinates, where D is the size of a single transfer
function texture divided by the size of the stacked texture,
both along the stacked direction. The right portion of Figure
12 shows a texture stacking two transfer functions, and the

c© The Eurographics Association 2010.

9

Wei Li / Multi-layer Volume Ray Casting on GPU

renderMpr
rayStart inside

brick

renderMpr

rayStart behind
rayEndBrick?

materialId ==
meshIdEmpty

[rayStart, rayEnd]
intersects brick

Raycast
intersection

rayEnd behind
rayEndBrick

true

Opacity
reaching 1

false

N

Y

N
Y

Y

Y

N

Y

N

YNY

N

N

Figure 3: Ray-cast of a single segment.

red arrows indicate the transfer function usage of the VOIs.
To be more efficient, MPRs and editing masks are handled
specially. For a MPR layer, a color is directly assigned in
the program instead of going through a texture lookup. The
front faces of editing masks are converted to mtIdEmpty
during ray-layer buffer generation, and all ray segments la-
beled with mtIdEmpty are skipped.

5.2. Gradient estimation with ray-layer buffer

The surfaces of a mask could cut through volume regions
having low gradient magnitudes. In other words, the quality
of gradients in these areas are poor. If shading is performed
there, images will be quite noisy, as shown in Figure 11(a).
One option is to disable shading in regions with low gradi-
ent magnitude, as shown in 11(b). Images then become less
noisy, but the mask surfaces look very flat. Figure 11(c) is
an image shaded with gradients estimated from the ray-layer
buffer. Obviously, the shading provides additional hints on
the shape of the mask.

(a) (b) (c)

Figure 4: Shading using the ray-layer buffer; (a)shading
using gradients of the volume; (b)Shading disabled in low
gradient magnitude regions; (c)shading with gradients esti-
mated from the ray-layer buffer.

.

The ray-layer buffer contains sufficient information for

computing the gradients of layer surfaces. The main issue
is that the ray segments are encoded individually for each
ray. For example, a surface falls to layer i of ray r1. But the
same surface could be stored as layer j for ray r2. Where
r1 and r2 are direct neighbors, and i �= j. Therefore, a nat-
ural way is to search the neighboring ray segments. The
one that has the same material ID and the minimal differ-
ence in depth is most likely contributed by the same sur-
face. In practice, we adopt an even simpler approach. It is
based on the assumption that the depth values produced by
the same surface have strong coherency. An entry in the
ray-layer buffer has at least one direct neighbor that is pro-
duced by the same surface and is encoded into the same
layer. Figure 5 is the flowchart of the simplified gradient
estimation. The blue square indicates the entry in the ray-
layer buffer corresponding to the layer being ray casted.
The four yellow squares represent the entries of the same
layer in the four neighboring pixels of the ray-layer buffer.
Note that we only take the difference with smaller absolute
value to avoid computing gradients using depth values from
different layer surfaces. Also note, the computation is per-
formed on entries encoded with material ID, so that differ-
ences between entries with different material IDs are huge.
pixelSpacing is the distance between two neighboring pixels
in world space. Here we assume the image is isotropic in X
and Y directions. The surface gradient is then blended with
gradient computed from the volume: gradient = blend ∗
volumeGradient + (1 − blend) ∗ sur f aceGradient, where
blend = min(1,gradientMagnitude/threshold).

dx1

dx2

dy2

dy1

if(abs(dx1)<abs(dx2)
dx = dx1

else dx = dx2

if(abs(dx1)<abs(dx2)
dx = dx1

else dx = dx2 normal = (dx, dy,
pixelSpacing)

Figure 5: Gradient estimation from the ray-layer buffer. The
blue square indicates the entry in the ray-layer buffer cor-
responding to the layer being ray casted. The four yellow
squares represent the entries of the same layer in the four
neighboring pixels of the ray-layer buffer.

6. Experimental Results

We have implemented the multi-layer ray casting using
OpenGL 2.1 and GPU programs written in GLSL. All the
images are rendered with a Nvidia Quadro FX 5600. Fig-
ure 12 is a screen shot of our testing system, that is con-
figured with three MPR views and one volume rendering
(VR) view. The bottom MPR is overlayed with a mask curve
editor. Masks are created by extruding from the 2D pla-
nar curves. Two mask curves are applied. In the VR image,
we can see that the VOI mask is the union the two tube-
shaped regions parallel to the directions of head-to-feet and

c© The Eurographics Association 2010.

10

Wei Li / Multi-layer Volume Ray Casting on GPU

anterior-to-posterior respectively. The transfer function tex-
ture stacked with two TFs are shown in the rightmost column
with red arrows indicating the regions that are color-mapped
by the TFs. Note that the multi-layer ray caster is not lim-
ited to extruded meshes at all. It supports arbitrary closed
polygon mesh as long as there is no self-intersection. We re-
stricted our test cases simply because such a 2D curve editor
is easy to implement and use.

Figure 6: Screen shot of the testing system for multi-layer
ray casting.

Figure 13 demonstrates the capability of the multi-layer
ray casting in handling embedded curve MPR. Figure 13(a)
is the 2D curve that is extruded into a 3D surface defining
the sampling locations of the curve MPR image. The curved
surface is expected to better follow features inside a dataset.
13(b) displays the curve MPR embedded into the volume
rendering. 13(c) represents the same scene settings but with
all volume samples in front of the surface removed. Note that
Figure 13(c) also enables shading on the MPR surface while
13(b) does not.

(a) (b) (c)

Figure 7: Curve MPR. (a) 2D planar curve. (b) Curve MPR
embedded into volume rendering. (c Embedded curve MPR
with clipping front enabled and shading on the curve sur-
face.

.

Figure 14 displays the rendering of a ribbon MPR. As
suggested by its name, a ribbon MPR is just like doing a
MPR along a ribbon that bends and twists in 3D space. Fig-
ure 14(a) is the ribbon MPR image, and Figures 14(b) and
(c) show the ribbon MPR embedded into volume rendering

without and with shading on the ribbon surface respectively.
The embedded ribbon MPR clearly conveys the 3D shape
and orientation that is lacked in the 2D ribbon MPR image.
Note that the shading of the ribbon surface highlights the
self-folded areas of the ribbon.

Figure 9 presents the relative performance of the multi-
layer volume ray caster to a reference single-layer renderer.
The reference renderer is used in a commercial medical
imaging software and has been extensiv ely optimized by

(a) (b) (c)

Figure 8: Ribbon MPR. (a) Normal 2D ribbon MPR. (b)
Ribbon MPR embedded in VR. (c) Embedded ribbon MPR
with shading.

.

professionals. The absolute FPS depends on various factors,
such as the viewport size, dataset, transfer function, etc. The
single-layer renderer uses a ray texture that specifies the start
and end position of each ray for empty space skipping. When
no VOI is enabled, the multi-layer renderer is slightly slower.
When one or more editing masks that remove interior are en-
abled, the relative speed of the multi-layer renderer vs. the
single-layer version becomes faster, and it increases with the
number of editing masks. This is because the size of empty
spaces increases for the multi-layer ray caster, while the sin-
gle layer renderer ignores all the masks. With three edit-
ing masks, the multi-layer ray caster is 18% faster than the
single-layer renderer. The overhead of the ray-layer buffer
generation is approximately linear to the number of VOIs.
If excluding this overhead, which is 14% for three VOIs,
the multi-layer ray caster would be 32% faster because of
the skipping of more empty spaces. We also did a test by
setting the transfer functions of the masks to be exactly the
same as the default VOI, so that the multi-layer ray caster
renders identical images as the single-layer ray caster, no
matter how many VOIs are enabled. The results are shown
in Figure 9 as the serie labeled "‘Relative FPS using VOI
masks". Obviously, this setting should not be applied in any
practical usage. But the data does show the overhead in-
side the mulit-layer ray casting GPU program where each
ray segment is rendered as multiple smaller ray segments in
this scenario, although every segment uses identical parame-
ters. With three VOIs, the overhead in GPU program is about

c© The Eurographics Association 2010.

11

Wei Li / Multi-layer Volume Ray Casting on GPU

-3.34%
0.38%

15.58%
18.73%

8.73% 9.73% 11.39% 14.01%

-3.34%

-18.41%

-31.73%
-35.31%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

0 1 2 3

of VOIs

Relative FPS
using editing
masks

Ray-layer
buffer
generation
cost

Relative FPS
using VOI
masks

Figure 9: Relative performance of the multi-layer volume
ray casting vs. single-layer ray caster and cost of ray-layer
buffer generation

21%, which equals to the overall slowdown (35%) minus the
ray-layer buffer generation cost (14%).

7. Conclusion and discussion

In this paper, we have presented multi-layer volume ray cast-
ing. It provides a unified framework for handling various en-
hancement to standard volume ray casting. In our current
implementation, the peeling still requires multiple rendering
passes and exhibits unignorable overhead. There have been
a few modification proposals for GPU, e.g. [BCL∗07], and
utilizations of GPU extensions [MB07], so that each peel-
ing generates multiples sorted fragments. The generation of
the ray-layer buffer certainly can take advantage of these en-
hancements if they become available. If in the future, the
stencil test becomes more programmable and flexible, there
is an option for us to move some functions in layer gener-
ation from the fragment pipeline to the stencil operations.
Even a simple extension that makes the stencil buffer read-
able to the fragment program will be very helpful. Fortu-
nately it becomes available in OpenGL 3.0 [SA08]. With
this new feature, we can use the stencil tests to count front
and back faces of VOIs, instead of tracking these informa-
tion inside a fragment program, and it avoids the identical
depth problem completely. Depending on the contents of the
stencil buffer, the encoding fragment program determines
the material ID of each layer based on their priorities, and
outputs as appropriate to the ray-layer buffer. With the ad-
vancement of future GPU, the overhead of multi-layer ray
casting will have much less impact, and its advantage will
be more obvious.

References
[ASK92] AVILA R. S., SOBIERAJSKI L. M., KAUFMAN A. E.:

Towards a comprehensive volume visualization system. In Visu-
alization (1992), pp. 13–20. 2

[BCL∗07] BAVOIL L., CALLAHAN S., LEFOHN A., COMBA J.,
SILVA C.: Multi-fragment effects on the GPU using the k-buffer.
In Interactive 3D Graphics and Games (2007). 8

[BKW08] BÜRGER K., KRÜGER J., WESTERMANN R.: Direct
volume editing. IEEE TVCG 14, 6 (2008), 1388–1395. 2

[BPVtHR08] BRECHEISEN R., PLATEL B., VILANOVA A., TER
HAAR ROMENY B.: Flexible GPU-based multi-volume ray-
casting. Vision, Modelling and Visualization (2008), 1–6. 2

[Eve01] EVERITT C.: Interactive order-independent trans-
parency. Nvidia white paper (2001). 4

[GKMV03] GUHA S., KRISHNAN S., MUNAGALA K.,
VENKATASUBRAMANIAN S.: Application of the two-sided
depth test to CSG rendering. In Interactive 3D graphics (2003),
ACM, pp. 177–180. 2

[HBH03] HADWIGER M., BERGER C., HAUSER H.: High-
quality two-level volume rendering of segmented data sets on
consumer graphics hardware. Visualization (2003), 301–308. 1,
2

[HKRs∗06] HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D., ENGEL K.: Real-time Volume Graphics. A. K.
Peters, Ltd., Natick, MA, USA, 2006. 1

[HMiBG01] HAUSER H., MROZ L., ITALO BISCHI G., GRER
M. E.: Two-level volume rendering. IEEE TVCG 7 (2001), 242–
252. 1

[HR05] HABLE J., ROSSIGNAC J.: Blister: GPU-based rendering
of boolean combinations of free-form triangulated shapes. ACM
Trans. Graph 24 (2005), 1024–1031. 2

[KGB∗09] KAINZ B., GRABNER M., BORNIK A., HAUSWIES-
NER S., MUEHL J., SCHMALSTIEG D.: Ray casting of multi-
ple volumetric datasets with polyhedral boundaries on manycore
gpus. Siggraph Asia (2009). 2

[KW03] KRÜGER J., WESTERMANN R.: Acceleration Tech-
niques for GPU-based Volume Rendering. In Visualization
(2003). 2

[LF02] LIAO D., FANG S.: Fast volumetric CSG modeling using
standard graphics system. In ACM symposium on Solid modeling
and applications (2002), pp. 204–211. 2

[LS] LAUER H., SEILER L.: Method and apparatus for volume
rendering with multiple depth buffers. US Pathent 6310620. 2

[MB07] MYERS K., BAVOLI B. L.: Stencil routed k-buffer.
Nvidia white paper (2007). 8

[NK03] NAGY Z., KLEIN R.: Depth-peeling for texture-based
volume rendering. In Pacific Graphics (2003), p. 429. 2

[RMC08] RAMAN S., MISHCHENKO S., CRAWFIS R.: Layers
for effective volume rendering. In Volume Graphics (2008). 2

[RSK06] REZK-SALAMA C., KOLB A.: Opacity Peeling for Di-
rect Volume Rendering. Computer Graphics Forum 25, 3 (2006),
597–606. 2

[SA08] SEGAL M., AKELEY K.: The OpenGL graphics system:
A specification (version 3.0), 2008. 8

[SHN∗06] SCHARSACH H., HADWIGER M., NEUBAUER A.,
WOLFSBERGER S., BÜHLER K.: Perspective isosurface and
direct volume rendering for virtual endoscopy applications. In
EUROVIS (2006), pp. 315–322. 2

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL
T.: A Simple and Flexible Volume Rendering Framework
for Graphics-Hardware–based Raycasting. In Volume Graphics
(2005), pp. 187–195. 2

[WEE02] WEISKOPF D., ENGEL K., ERTL T.: Volume clipping
via per-fragment operations in texture-based volume visualiza-
tion. In Visualization (2002), pp. 93–100. 2

c© The Eurographics Association 2010.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

