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Abstract

We show that surface reconstruction from point clouds without orientation information can be formulated as a

convection problem in a force field based on Coulomb potentials. To efficiently evaluate Coulomb potentials on

the volumetric grid on which the evolving surface (current approximation to the final surface) is convected we use

the so called ’Particle-Particle Particle-Mesh’ (PPPM) algorithm from molecular dynamics, fully implemented on

modern, programmable graphics hardware. Our approach offers a number of advantages. Unlike distance-based

methods which are sensitive to noise, the proposed method is highly resilient to shot noise since global Coulomb

potentials are used to disregard outliers due to noise. Unlike local fitting, the long-range nature of Coulomb

potentials implies that all data points are considered at once, so that global information is used in the fitting

process. The method compares favorably with respect to previous approaches in terms of speed and flexibility and

is highly resilient to noise.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation - Ap-
proximation of surfaces and contours; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling
- Physically based modeling; I.4.10 [Image Processing and Computer Vision]: Image Representation - Volumetric;

1. Introduction

Reconstructing 3D surfaces from point clouds allows one
to obtain digital representations of physical objects for ren-
dering purposes. This is a challenging problem because the
real surface has unknown topology, surface orientation at
the sample points is unknown, acquired data are often non-
uniform and contaminated by noise, and reconstruction can
be computationally very expensive.

Here we present a novel, physically-motivated method
for surface reconstruction without orientation information.
We use a fast convection algorithm (inspired by the tagging
method of Zhao et al. [ZOF01]) to attract the evolving sur-
face towards the data points. The force field in which the
surface evolves is based on Coulomb potentials evaluated on
a volumetric grid using the fast ’Particle-Particle Particle-
Mesh’ (PPPM) algorithm [HE88] from molecular dynamics.
Due to these potentials, the evolving surface is attracted to-
wards the data points and outliers due to noise are removed.
The final implicit surface is polygonized using Bloomen-
thal’s polygonizer [Blo94].

Our formulation offers a number of advantages. Implicit
surface fitting methods based on signed distance functions
are very sensitive to outliers (shot noise), since the shortest
distance from all input data points is computed. In our ap-
proach, global Coulomb potentials are used to neglect such
outliers. In contrast to local fitting methods, Coulomb poten-
tials represent global (long-range) interactions that take all
data points into account. We exploit a very efficient method
for computing Coulomb potentials which is implemented
on graphics hardware, obtaining a reconstruction algorithm
with good scaling properties.

The contributions of this paper include:

• An improved method for surface reconstruction based on
an implicit surface representation which only requires in-
formation about the position of the samples and is robust
to the presence of noise and missing data.

• Algorithms running on Graphics Processing Units (GPUs)
which accelerate the computation of Coulomb potentials.

The main advantage of our approach is improved robust-
ness of surface reconstruction with respect to noise. Further-
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Figure 1: Algorithmic flow diagram of the proposed method.

more, minimizing the bending energy of the surface ensures
that the final triangulated surface is smoother than piecewise
linear. We show that the proposed method quickly recon-
structs surfaces of large models and tolerates large amounts
of Gaussian and shot noise.

2. Related Work

Many reconstruction methods use implicit surface represen-
tations since these can deal with objects of arbitrary topol-
ogy, perform Boolean operations on surface primitives and
fill holes automatically. A common approach is to com-
pute a signed distance function and represent the recon-
structed implicit surface by an iso-surface of this function
[HDD∗92, CL96]. This requires that one can distinguish be-
tween the inside and outside of closed surfaces. To get the
orientation one may fit a local tangent plane [HDD∗92] or
use tensor-voting [TM98]. Both methods are sensitive to
noise since they require accurate normal estimates. Zhao et

al. [ZOF01] use the level-set formalism to obtain a method
for noise-free surface reconstruction which can handle com-
plicated topology and deformations. It leads to a recon-
structed surface which is smoother than piecewise linear, but
the method is very sensitive to shot noise.

Other recent approaches are based on Radial Basis Func-
tions or RBFs [CBC∗01,KSH04,DTS02]. When using glob-
ally supported RBFs [TO02, CBC∗01] one has to solve a
large and dense linear system of equations which is ill-
conditioned [KBH06]. Also, the methods are very sensi-
tive to noise. Compactly-supported RBFs allow local con-
trol and reduce computation [OBS03]. RBFs with volumet-
ric regularization can handle noisy and sparse range data
sets [DTS02]. The ’partition of the unity implicits’ method
of Ohtake et al. [OBA∗03] combines algebraic patches and
RBFs. To deal with noisy data, Carr et al. [CBM∗03] fit a
RBF to the data combined with a smoothing during the eval-
uation of the RBF. Kojekine et al. [KSH04] use compactly-
supported RBFs and an octree data structure, resulting in
a band-diagonal matrix with reduced computational cost.
Fleishman et al. [FCOS05] proposed an adaptive method
based on the Moving Least-Squares algorithm. More re-
cently, Kazhdan proposed a Fourier transform method with
standard iso-surfacing [Kaz05], and an improved, geometri-
cally adaptive method [KBH06] with quadratic complexity.
The latter regards reconstruction as a Poisson problem tack-
led using efficient Poisson solvers. However, both methods
require orientation information and are noise sensitive.

3. The Proposed Method

The computational flow diagram of our method is shown
in Fig. 1. The method starts by assigning the input sample
points to grid cells, using cloud-in-cell (CIC) interpolation
(first step in Fig. 1). The Coulomb potentials in which the
evolving surface ΓΓΓ (see below) is convected (step 3) are com-
puted using the PPPM method (step 2). Prior to polygoniza-
tion, the resulting implicit surface is interpolated by employ-
ing a reaction-diffusion process [JR06]. Finally, we employ
Bloomenthal’s polygonizer [Blo94] to turn the implicit sur-
face into a triangulated one (second part of step 4), and use a
mass-spring system, enhanced with a bending-energy mini-
mizing term, to obtain a larger degree of smoothness (step 5).

3.1. Field Computation

We denote by S the input set of point samples (points, lines,
etc.) which are assumed to lie on or near the surface ∂MMM of
an unknown object M. The problem is to reconstruct accu-
rately the indicator function χ of the object (defined as 1 at
points inside the object, and 0 at points outside).

The reconstruction problem is formulated as the convec-
tion of a flexible enclosing surface ΓΓΓ in a conservative ve-
locity field vvv created by the input data points, described by
the differential equation

dΓΓΓ

dt
=−∇φ (ΓΓΓ(t)) . (1)

where φ is the potential, i.e., vvv = −∇φ . We regard the in-
put sample points si, si ∈ S, as electric charges qi, located at
positions rrri, i = 1,2, . . .N, so that φ becomes the Coulomb
potential, that is, the sum of potentials generated by each
charge taken in isolation:

φ(rrri) = ∑
j 6=i

q j

4πε0|rrri− rrr j|
. (2)

We use a fast convection algorithm (see Section 3.2) which
needs to evaluate Coulomb potentials not only at the posi-
tions of the sample points, but at all centers of grid cells.
Naive evaluation of the potentials at all grid positions is ex-
pensive for large grid resolutions, so we need fast adaptive
solvers to approximate them.

3.1.1. The PPPM method

An efficient approach for computing Coulomb potentials at
all grid positions, which also lends itself to a GPU imple-
mentation (see Section 4) is the so-called ’Particle-Particle
Particle-Mesh’ (PPPM) method from molecular dynamics
[HE88]. The PPPM method splits the Coulomb potential into
a short range direct interaction part (PP) and a contribution
from the mesh (PM). Accordingly, the Coulomb energy at
position rrri = [xi,yi,zi] is

Wi =
1

2

M

∑
j=1

W direct
i j +W mesh

i (3)
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The direct part of the Coulomb energy of a pair of charges
(qi,q j) separated by distance vector rrri j is given by the
Coulomb energy minus a correction term

W direct
i j (rrri j) =







qiq j

(

1−W c(rrri j)

(|rrri j |2+ε2)
1/2

)

∣

∣rrri j

∣

∣≤ Rc

0
∣

∣rrri j

∣

∣≥ Rc.
(4)

Here Rc is the direct interaction cut-off radius and ε � 1
is a “softening parameter” with dimension of length, intro-
duced to simplify the treatment of singularities occurring
when rrri j = 0. The direct contribution to the Coulomb poten-
tial vanishes at Rc, and for

∣

∣rrri j

∣

∣ ≥ Rc, there is only a mesh
contribution. The correction term W c(rrr) compensates for the
part of the interaction already covered by the mesh potential
(see Eq. (9) below).

The mesh potential φ mesh is obtained by solving Poisson’s
equation on the grid

∇2φ(rrri) =−ρ(rrri), (5)

where ρ(rrri) and φ(rrri) are the charge density and the elec-
tric scalar potential at grid point rrri, respectively. Here ρ(rrri)
is the charge per grid cell volume, and is computed in two
steps. In the first step we use the linear charge assignment
scheme in [HE88]. Every charge qi is distributed over its 6
surrounding grid points, and the charge at grid point rrri is
computed as

q(rrri) =
M

∑
k=1

qkH(rrri− rrrk). (6)

Here H = Hx Hy Hz is the weight of a charge located at rrr,

Hx(ri,x− rx) =

{

1− |ri,x−rx|
hx

∣

∣ri,x− rx

∣

∣< hx

0
∣

∣ri,x− rx

∣

∣≥ hx,

where M is the size of the grid, hx is the mesh grid spac-
ing in dimension x, and Hy, Hz are defined similarly. In the
second step, the charges are spread over a larger neighbour-
hood of grid points, in order to produce a smooth total charge
distribution. This step is implemented using the approach
in [BLdL98], in which the charges are spread by a diffusion
process. The method proceeds by solving Poisson’s equa-
tion, Eq. (5), on the mesh. Then, the mesh-energy term is
computed as a weighted sum over the same grid points used
in the first charge-assignment step

W mesh
i = qi ∑

k

H(rrri− rrrk)φ(rrrk)−W
sel f
Gauss,i, (7)

where W
sel f
Gauss,i is a correction term for the mesh energy

which a particle experiences from its own charge distribution
(the self-energy). This constant term per particle is given by

W
sel f
Gauss,i = q2

i /σ , (8)

where σ = 2
√

DNt , D is the diffusion coefficient, and Nt is
the number of time steps of the diffusion process (Nt and
D can be deduced using the cut-off radius parameter Rc,

see [BLdL98] for details). For a Gaussian charge distribu-
tion, obtained by solving a linear diffusion equation, the cor-
rection term W c(rrr) in Eq. (4) is given by

W c
Gauss(rrr) = erf(rrr/σ) , (9)

where ‘erf’ denotes the error function. Note that we have ne-
glected all constants in the description of the PPPM method.
Assuming that qi = q = 1, the electric scalar potential is
given by φ(rrri) = W (rrri)/qi = W (rrri), i = 1,2, . . . ,M.

Setting the softening parameter ε in (4) to some very small
value will result in large potentials at input sample positions.
This has the desirable effect that regional maxima of the
Coulomb potential exist at the locations of the data points,
for noise-free data. If the input data set is noisy, however,
then a larger value of the parameter ε is required in order to
cancel regional maxima located at outlier positions. In prac-
tice, we fix the value of this parameter, but for noisy data
sets, we increase the size of the neighbourhood of a point in
which the direct potential is computed (see Section 6).

3.2. Fast Convection based on Tagging

We use the tagging algorithm of Zhao et al. [ZOF01],
adapted for the scalar electric potential φ(rrr), which we
briefly summarize here. The algorithm starts by labeling
points on the bounding box of the computational domain as
exterior and all other points as interior. Then, those interior
points that have at least one exterior neighbour are labeled as
temporary (unknown) boundary points and are inserted into
a minimum-sorted heap. Next, the remaining interior points
are swept to march the temporary boundary points inwards
towards the input points, as follows. The temporary bound-
ary point with the smallest potential (which is on top of the
heap) is checked to see whether it has at least one interior
neighbour with a smaller or equal potential value. If it does
not have such a neighbour, the point is taken out from the
heap, turned into an exterior point, and all its interior neigh-
bours are inserted into the heap. Otherwise, the point is re-
moved from the heap, turned into a final boundary point, and
none of its neighbours is added to the heap. This process is
repeated until no further movement of the temporary bound-
ary points is possible.

Clearly, this algorithm moves the points of the evolving
surface uphill, in the direction of the gradient ∇φ , towards
their closest point(s) in the data set. Moreover, each point
of the final surface satisfies ∇φ = 0. Therefore the tagging
algorithm can be considered as a fast steady-state solver for
similar convection problems.

3.3. Surface Interpolation and Polygonization

Once the classification of the grid points into interior, bound-
ary and exterior has been completed, i.e., the characteristic
function χ of the model has been computed, one can use
Bloomenthal’s method [Blo94] to polygonize the implicit
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surface given by the zero level set of the scalar field f de-
fined by

f (x,y,z) =







−1 if (x,y,z) is labeled as INTERIOR

0 if (x,y,z) is labeled as BOUNDARY

1 if (x,y,z) is labeled as EXTERIOR.
(10)

Direct polygonization will cause “staircase” artefacts in the
resulting mesh. A better approach is to interpolate the im-
plicit surface using a reaction-diffusion process described by
the following PDE

∂u

∂ t
= µ∇2u+ | f |( f −u), (11)

where µ is a small regularization constant which controls the
amount of smoothing, u is the concentration of diffusing ma-
terial, with the volume f as initial condition, u(t = 0) = f .
The last term in Eq. (11) ensures that the reaction-diffusion
equation reaches a steady state not far from the original val-
ues of f .

After computing the potentials a smooth scalar field u

emerges and by tracing its zero iso-surface, the implicit sur-
face is turned into a triangulated one. Since boundary voxels
form thin bands along surface borders, only a small number
of iterations is required, resulting in fast computation. The
resulting triangulated surface is used as initialization for a
more computationally demanding smoothing method based
on a mass-spring system. That is, the input mesh is regarded
as a mass-spring system having particles with small, equal
masses at its vertices connected by springs along its edges.
Then, the potential energy of a particle pi of the mass-spring
system due to its interactions with neighbouring particles p j,
j ∈Ni is given by

Ei = ∑
j∈Ni

αEsi j
(rrri j)+(1−α)Ebi j

(rrri j,nnni), (12)

where the first term represents the energy of the spring con-
necting the particles, the second term is the bending energy,
and α is a scalar weight. Further, rrri j = xxx j− xxxi is the vector
separating the two particles, and nnni is the normal of the mesh
at pi. For further details we refer to [JR06].

4. Implementation

We now describe GPU implementations of most
computationally-demanding parts of the proposed method.
We present (i) an iterative method for the computation of the
reaction-diffusion equation, Eq. (11), and (ii) an implemen-
tation of the PPPM method. The mass-spring system was
also implemented on graphics hardware using the layout
of [BFGS03] for efficiently storing sparse matrices on the
GPU. Referring to Fig. 1, the field computation step and
the two smoothing methods based on reaction-diffusion and
mass-spring systems are implemented on GPU hardware.
The convection and polygonization steps are still performed
on the CPU, as current GPUs do not permit an efficient
implementation of a sorted heap, nor do they yield better

performance than CPUs for polygonization of implicit
surfaces.

4.1. Reaction-Diffusion

Eq. (11) is discretized using finite differences (forward dif-
ferences in time and central differences in space), such that
the discrete update rule is

un+1
i, j,k ← un

i, j,k +∆t

(

µ ∑
(l,m,n)∈N6

un
i+l, j+m,k+n

−6un
i, j,k +

∣

∣ fi, j,k

∣

∣( fi, j,k−un
i, j,k)

)

, (13)

where ∆t is the time step (∆t ≤ ∆x∆y∆z
6µ for stability reasons),

n is the current iteration, and N6 denotes the neighbours of
location (i, j,k) using 6-connectivity. This discrete update
rule can be straightforwardly implemented on GPU hard-
ware by making use of a fragment program which computes
(13) at each iteration, based on two textures and a ping-pong
approach for render-to-texture.

4.2. Coulomb Potentials

4.2.1. Mesh Contribution

The mesh contribution is obtained by evaluating Poisson’s
equation on the grid (see Section 3.1), after the initial charge
distribution has been computed using linear diffusion. Both
the diffusion and Poisson equations needed to compute the
mesh contribution are evaluated in a fashion similar to that
described in the previous subsection.

4.2.2. Direct Part

The direct part of the Coulomb potential needs some ex-
tra consideration. At first glance, its computation may seem
similar to that of distance transforms, which can be effi-
ciently implemented on graphics hardware using z-buffer
depth tests or blending. Nevertheless, in our case the mini-
mum computation needed for distance transforms is replaced
by addition, see (3) and (4). Although the summation in (3)
can be performed using alpha blending or using the OpenGL
accumulation buffer, a major issue is the limited precision
available. Therefore, we use a different approach based on
the concept of splatting. Accordingly, a fragment program
accumulates different contributions due to nearby charges
which splat (or distribute) values of the ’splatting kernel’
given in (4). The details are as follows.

For a given cut-off radius Rc, we build a collection TRc

(of size |TRc
| = Rc + 1) of textures, each texture represent-

ing the contribution of a charge qi in a plane z = zi + r, with
r ∈ [−Rc;Rc] (assuming that the coordinate system has the
origin in rrri = [xi,yi,zi]). Then, each texture tz,Rc,ε ∈ TRc

en-
codes the influence of the charge in the plane z = zi +r, when
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Algorithm 1 The direct part of the Coulomb potential.

for each slice k do

Clear the color buffer of the p-buffer;
for l:=-Rc to Rc do

z:=abs(l);
Map textures tacc and ts,z,Rc ,ε , with s = 0,1,2,3;
for y:=0 to H-1 do

for x:=0 to W-1 do

if any grid location (x+ s,y, l + k), s = 0,1,2,3, con-
tains charge then

Read rectangular region ((x−Rc)/4,y−Rc,(x +
Rc)/4+1,y+Rc +1) to texture tacc;
Pass the charges at (x+ s,y, l +k), s = 0,1,2,3, as
parameters to the fragment program;
Draw quad at ((x− Rc)/4,y− Rc,(x + Rc)/4 +
1,y+Rc +1);

x:=x+4;
Read the color buffer into slice k;

x and y vary in the interval [−Rc,Rc], i.e.,

tz,Rc,ε (x,y)←
1− erf

(

d
σ

)

d
, (14)

where d =
√

(x−Rc)2 +(y−Rc)2 + z2 + ε2. The kernels
are packed into 4-component RGBA textures along rows,
such that four operations can be performed without the need
for extra computations. The input volumetric grid on which
the potentials are to be evaluated is packed similarly. This
implies that the width of each texture needs to be 2Rc + 4
instead of 2Rc +1 and one needs to keep four times as many
textures as initially in the collection TRc

, a set for each pos-
sible shift s ∈ {0,1,2,3} along the x axis, i.e.,

ts,z,Rc,ε (x+ s,y)← tz,Rc,ε (x,y).

The pseudo-code of the algorithm for the direct part of
the Coulomb potential is given in Algorithm 1. Note that,
in addition to the collection TRc

of RGBA textures, the pro-
gram also uses a temporary RGBA texture tacc in which
rectangular regions of the p-buffer (storing the values of the
direct part of the Coulomb potential, for the current slice
k) are read whenever the region of influence of any charge
located at positions (x + s,y, l + k), s = 0,1,2,3 intersects
the slice plane. This texture, along with textures ts,z,Rc,ε ,
s = 0,1,2,3, is passed as input to a fragment program which
(i) performs lookups into textures ts,z,Rc,ε to retrieve 4-
component vectors ttt0, ttt1, ttt2, ttt3, (ii) computes the weighted
sum S = q0ttt0 + q1ttt1 + q2ttt2 + q3ttt3, where q0,q1,q2,q3 are
the charges at locations (x+ s,y, l +k), s = 0,1,2,3, and (iii)
sets the color of the fragment to C = S + tttacc, where tttacc is
the 4-component vector extracted from texture tacc. When
k+ l is outside the range given by the number of slices of the
volume, we simply skip the computation for the current l.

The complexity of the PPPM method is thus linear with
the size of the computational grid. The obtained speed-up
ranges from 4 to 8 compared to a CPU implementation.

Figure 2: Reconstruction of large models, see Table 1.

5. Results

5.1. Large Data Sets

The parameters of the method were set as follows. For the
PPPM method, the cut-off radius Rc was set to 8, and we
computed an approximate solution to Poisson’s equation us-
ing Np = 30 iterations of Jacobi’s method. Implicit surface
interpolation was implemented as discussed in Section 4.1;
we set µ = 0.05 and used Nm = 20 iterations. The parame-
ters of the Verlet integrator of the mass-spring system were
dt = 0.1 and t = 10. The weight in Eq. (12) was set to
α = 0.1, to emphasize the bending-energy minimizing term.
Further, to facilitate the relaxation of the mesh structure into
a smooth configuration, the rest lengths of the springs were
set to 95% of the initial edge lengths. Finally, the largest di-
mension of the computational grid was set to 400.

The meshes resulting from this experiment are shown in
Fig. 2. All computations were performed on a system with
an Opteron processor and a GeForce FX 7900 GTX GPU.
Timings (in seconds) are given in Table 1. The most ex-
pensive computations are the convection algorithm and the
PPPM method. The time taken to reconstruct nicely either of
the models Happy Buddha, Dragon, Hand or Asian Dragon
(see Fig. 2) is well under one minute, whereas the Armadillo
model needs roughly 70 seconds. The sixth column of Ta-
ble 1 shows the approximation error – an estimate of the
quality of the reconstruction. This error is an upper bound for
the average distance from the data points to the surface, and
it is computed as the average distance from the data points to
the centers of mass of the mesh triangles. The error is given
in percentages of the diagonal of the bounding box of the
data points.

5.2. Noise Data

5.2.1. Shot Noise

We changed a certain amount of empty voxels by assign-
ing them the value one, i.e., the same numeric value used
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Table 1: Statistics, reconstruction quality and timings.

Model Points Grid Vertices Triangles Error Field comput. Conv. Interp. Smoothing Total
(%) Time (s) Time (s) Time (s) Time (s) Time (s)

Buddha 543,625 170x400x170 283,964 567,964 0.07 12.2 9.6 0.9 2.1 25.2

Armadillo 172,974 337x400x307 359,490 718,976 0.04 21.5 39.2 3.5 4.2 69.1

Dragon 433,375 400x284x184 371,988 743,976 0.08 16.4 18.4 1.5 4.1 40.8

Hand 327,323 400x283x143 179,484 359,004 0.04 9.9 15.7 1.3 1.8 29.2

Asian Dragon 3,609,600 400x226x269 199,594 399,188 0.05 14.3 23.8 1.8 2.0 42.7

40% 60% 80%

100% 160% 200%

Figure 3: Shot noise. The number of corrupted voxels is

given as a percentage of the number of non-empty grid cells.

to assign the input points. The number of corrupted voxels
is expressed as a percentage of the number of non-empty
voxels. We used nearest-neighbour interpolation for grid as-
signment, as this results in a binary volume and represents a
fair experimental setting, without a-priori information. The
results are shown in Fig. 3; the number of non-empty voxels
was 3,337. The cut-off radius Rc of the PPPM method was
increased from 8 to 30. A larger cut-off radius results in a
larger support of the PP kernel covering most of the exterior
volume around the object, which will be correctly labeled
as exterior. Note that the method is able to reconstruct the
surface of the cactus shown in Fig. 3 even when as much as
100% of the non-empty voxels have been corrupted by noise.
Thus, the new method tolerates twice as much shot noise as
compared to [JR06].

5.2.2. Gaussian Noise

The input points were perturbed by zero-mean Gaussian
noise with standard deviations σ = 0.5,1.0,1.5(%), ex-
pressed as percentages of the length of the diagonal of the
bounding box; see Fig. 4. The grid size was 140×146×250.
The parameters of the method were set as in the previous
section, except that the stopping time t of the mass-spring
system was increased from 10 to 20. Unlike methods which
rely on distance transforms, our method can cope with large

σ = 0.0% σ = 0.5% σ = 1.0% σ = 1.5%

Figure 4: Gaussian noise with zero mean and deviation σ (a

percentage of diagonal size of the bounding box); first row:

non-empty grid cells, second row: reconstructed surfaces.

amounts of Gaussian noise. For example, in the third case
(σ = 1.0%) shown in Fig. 4, 1% of the diagonal of the
bounding box means that σ = 3.2, which implies that the
coordinates of most points were randomly translated in the
interval [−9.6;9.6]. Yet, even in these cases the method is
able to output smooth surfaces.

5.3. Comparison to Other Methods

We compare the results of our method to those obtained us-
ing Power Crust [ACK01], Multi-level Partition of Unity
implicits (MPU) [OBA∗03], the method by Hoppe et al.

[HDD∗92], the FFT method in [Kaz05] and the Poisson-
based method [KBH06]. The experiment was performed us-
ing the Stanford bunny data set consisting of 362,000 sam-
ples assembled from ten range images. The normal at each
sample was estimated from the positions of the neighbours
of the sample (as in ref. [KBH06]), as this is required by
the MPU, FFT and Poisson methods. The results are shown
in Fig. 6. Since this data set is noisy, interpolating methods
such as the Power Crust generate very noisy surfaces with
holes due to the non-uniformity of the samples. Hoppe’s et

al. method [HDD∗92] generates a smooth surface, but some
holes are still visible due to the non-uniform distribution
of samples, which the method cannot properly handle. The
MPU method yields a smooth surface without holes, but with
some artefacts due to the local nature of the fitting which
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Figure 5: Left-to-right, top-to-bottom: noisy range data

set with 2,008,414 input points and 4000 outliers; recon-

structed surfaces by (i) the level-set method of Zhao et
al. [ZOF01] (2,139 sec.), (ii) Hoppe et al. [HDD∗92] (610
sec.), and (iii) the proposed method (318 sec.).

Method Time Peak mem. Triangles Error
Power Crust 504 2601 1,610,433 4×10−4

Hoppe et al. 82 230 630,345 6×10−4

MPU 78 421 2,121,041 4×10−4

FFT method 93 1700 1,458,356 6×10−4

Poisson method 188 283 783,127 5×10−4

Our method 75 236 1,292,609 4×10−4

Table 2: Computing time (seconds), peak-memory usage

(mega-bytes), number of triangles and reconstruction error

for the Stanford bunny by different methods (see also Fig. 6).

does not cope well with the noise and non-uniformity of
the data. Global methods such as the FFT, Poisson and our
method accurately reconstruct the surface of the bunny, see
Table 2. The smallest reconstruction error was achieved by
the Power Crust, MPU and our method. Note that although
the Power Crust method should have produced an interpo-
lating surface, thus achieving a smaller upper-bound error,
this does not happen in this case, as the reconstructed sur-
face contains holes. The computing time of our method is
comparable to that of the MPU method, which is one of
the fastest reconstruction methods [OBA∗03, KBH06]. Al-
though the FFT method is also fast in this case, it becomes
impractical at higher grid resolutions due to its large mem-
ory requirements [Kaz05]. The Poisson method is roughly
two times slower than our method and has higher memory

Figure 6: Reconstruction of the Stanford bunny; Left-to-
right, top-to-bottom: Power Crust, Hoppe et al., MPU, FFT-

based, Poisson reconstruction, and our method.

usage. However, if larger accuracies are needed, geometri-
cally adaptive methods such as the MPU and Poisson be-
come more efficient.

Among the few methods which can tolerate a large
amount of outliers is the recent one by Kolluri et al.

[KSO04]. The CPU time reported in [KSO04] is one order
of magnitude larger than that of our method, on the same in-
put set (compare Fig. 1 in [KSO04] to Fig. 5). Additionally,
we compared our method to the level-set method of Zhao et

al. [ZOF01] also implemented on GPU hardware, and to that
of Hoppe et al. [HDD∗92], see Fig. 5. Our method is roughly
twice as fast as Hoppe’s method and the reconstructed sur-
face is cleaner than that obtained by the level-set method
which is much slower. Note that none of the other methods
listed in Table 2 can cope with shot noise, and/or they re-
quire normal estimates at the sample points which in this
case cannot be obtained.

5.4. Limitations

Surface features smaller than the grid resolution are not ap-
propriately reconstructed. A solution is to increase the reso-
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lution at the expense of larger computational time and mem-
ory requirements. The method is not geometrically adaptive,
but we are currently investigating adaptive, multi-resolution
approaches based on octrees. As is usual for methods that
employ implicit surface representations, we assume that the
surfaces to be reconstructed are closed, though the method
does intrinsically perform hole filling by minimal surfaces.

6. Conclusions

We have shown that surface reconstruction can be formu-
lated as a convection problem of a surface in a velocity
field generated by Coulomb potentials, and that this formu-
lation offers a number of advantages. The method can be
used to efficiently reconstruct surfaces from clean as well as
noisy and non-uniform real-world data sets. Further, it can
deliver multi-resolution representations of the reconstructed
surface, and can be used to perform reconstruction starting
from particle systems, contours or even grey-scale volumet-
ric data leading to image segmentation. In our implemen-
tation, we took advantage of the increased computational
power of modern GPUs and ported most constituent parts
of the method on graphics hardware.
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