
Volume Graphics (2007)
H. - C. Hege, R. Machiraju (Editors)

Variational Volumetric Surface Reconstruction from

Unorganized Points

Bjarke Jakobsen J. Andreas Bærentzen Niels Jørgen Christensen

Informatics and Mathematical Modelling, Technical University of Denmark, {bj,jab,njc}@imm.dtu.dk

Abstract

Reconstruction of smooth surfaces from point sets is an important problem in many applications since this sort

of data often appear in real-life scenarios. This paper presents method for solving this this problem at interactive

rates by means of second order energy minimization obtained by solving △2 = 0 on a discrete scalar field using

an iterative multigrid approach.

Every step in the reconstruction process takes place on the GPU. Consequently, the surface is immediately avail-

able for any standard volume visualization method utilizing packed volume textures. This eliminates the need for

lare amounts of texture transfers or a costly polygonization step.

1. Introduction

The need for interpolation of data values associated with
scattered points is something that arises in a vast number
of scenarios and a wide range of dimensions. A well studied
problem in computer graphics and computer vision is the
reconstruction of surfaces from point samples, and one ap-
proach to this problem is through the use of scattered data
interpolation. The basic idea is to find a function which has
a level set that either interpolates or approximates the input
points. There are many advantages to this strategy for sur-
face reconstruction: A wide range of techniques for convert-
ing level set surfaces to triangle meshes are available, and
numerous techniques for scattered data interpolation can be
brought to bear on the problem. For instance, radial basis
function techniques have recently become popular for that
purpose [TO99] [SPOK95].

In the work presented here, we take the approach of pro-
ducing a level set representation, but the embedding scalar
field is discretely represented in a voxel grid. This is not in
itself novel. Instead our contribution is to find the scalar field
which minimizes certain energy functionals: In particular the
bending energy. This turns out to lead to surfaces which are
fair yet interpolate the surface.

Moreover, the method is amenable to a multigrid imple-
mentation (See Section 3.3.). Consequently, it is very effi-
cient, requiring relatively few iterations at the most detailed

levels, and in many cases, we can reconstruct a volumetric
surface representation on a 2563 grid in less than a second
for relatively noise free data using our GPU based imple-
mentation.

Our method is a component in a larger framework of
streaming kernels for volume processing implemented on
the GPU which is discussed in Section 5. A particular virtue
of our method in this context is that all processing (after
the initial points have been transferred to the GPU memory)
takes place on the GPU, and there is no need to transfer the
volume back to the CPU since further processing and ren-
dering takes place entirely on the GPU.

Finally, it is possible to control the degree of confidence
in the point samples. A confidence of 1 forces the recon-
structed surface through the point while a smaller confidence
indicates that approximation is acceptable. For laser scanned
point sets, it is usually desirable to set the confidence to less
than 1 since the data set is likely to contain noise. In Section
6 we discuss these trade offs, provide timings and compare
to other methods both in terms of quality and performance.

2. Related Work

There is a great deal of literature on the reconstruction of sur-
faces from points. Arguably, these methods can be divided
into three categories.

c© The Eurographics Association 2007.

65

mailto:\protect \T1\textbraceleft bj,jab,njc\protect \T1\textbraceright @imm.dtu.dk
http://www.eg.org
http://diglib.eg.org

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

• Methods which produce implicit surfaces.
• Methods which form surfaces by connecting the points –

often based on an initial Delaunay tetrahedralizaion of the
point set. A good example is the well known power crust
algorithm due to Amenta et al. [ACK01].

• Methods which fit an existing surface representation to the
point cloud. At the same time such methods often strive
for a fair and compact representation. A good example is
the work by Hoppe et al. [HDD∗93].

Below, we will restrict the discussion to methods which re-
construct implicit representations.

One of the first surface reconstruction methods which
made few assumptions about the topology of the object
and the nature of the point cloud was due to Hoppe et al.
[HDD∗92]. The basic idea is to reconstruct locally a linear
signed distance field for each point. The global distance field
is then pieced together from these local distance fields, and
the surface is built by contouring. Curless et al. also created
a (pseudo) distance field, but used more information about
the scanning modality [CL96], and Davis et al. introduced
hole filling by diffusion [DMGL02]. This is reminiscent of
our method, but they simply used straight averaging to prop-
agate voxel information, hence no energy minimization took
place, and the method was only used locally to fill holes.

Finding a set of basis functions which forms an implicit
surface reconstruction of a point set, is a tricky problem
which has attracted a great deal of attention. One of the
early examples is Muraki’s method which tried to infer a
metaball model from a range scan [Mur91]. Unfortunately,
the method was fairly slow since both metaball position and
other parameters had to be inferred. More recently, radial

basis functions have been introduced to the graphics com-
munity by [TO99] and, earlier, in a different formulation by
Savchenko et al. [SPOK95]. A linear combination of radial
basis functions is found such that the 0 level set interpo-
lates or approximates the input points. The combination is
found by solving a large linear system. One problem with
RBF based methods is the need to place points inside and/or
outside the object in order to have non-zero points for the
function to interpolate. Another issue is the fact that the
linear system is both large and dense. The fast multipole
method improves performance [CBC∗01], and the system
can be made sparse if compactly supported basis functions
are used [MYC∗01]. Ohtake et al. considered an incremen-
tal approach using multi-scale RBFs [OBS03]. Shen et al.
incorporated normal information in the basis functions and
interpolated triangle primitives rather than points [SOS04].
Although great improvements have been made, radial ba-
sis functions remain relatively costly, and although the final
evaluation can be made on the graphics processor, the en-
tire process maps poorly to the GPU. The same is true of
the more efficient multilevel partition of unity method due
to Ohtake et al. [OBA∗03].

Some authors have used the level set method to recon-
struct surfaces from point data [ZOF01, Whi98]. This in-
volves defining a speed function which attracts the level set
surface to the data points. The level set method is highly
flexible and it is possible to include confidence measures and
smoothing terms in the speed function. However, it is also a
fairly complex machinery, and frequent reinitializations are
typically needed to keep the representation close to a dis-
tance field.

In [Kaz05] Kazhdan demonstrates that using Stoke’s the-
orem it is possible to reconstruct the Fourier transform of the
indicator function (which is 0 outside and 1 inside a solid)
from a set of point samples.

In more recent work [KBH06], Kazhdan et al. propose
an equivalent method for surface reconstruction based on
solving a Poisson problem on an adaptive grid. Specifically,
a slightly blurred version of the indicator function is re-
constructed. The blurring is necessary because the indicator
function is clearly not differentiable, and the problem boils
down to finding a function whose gradient field matches the
(smoothly interpolated) vector field induced by the point
samples. From the reconstructed indicator function, a sur-
face is extracted by contouring.

The Poisson approach has been used previously [ST05],
and in recent work by Bolitho et al. [BKBH07].

Our inspiration for this work came in part from meth-
ods for smoothing triangulated manifolds. It is well known
[KCVS98] that the membrane and bending energies of a
function f are minimized by solving ∆ f = 0 and ∆2 f = 0,
respectively. If f is a surface represented by a triangle mesh,
and we define a Laplace operator for triangle meshes, we can
minimize the membrane and bending energies by solving the
mentioned equations.

Much of the speed of the method is due to the GPU-
based multigrid implementation. In [GWL∗03] there is a
discussion of the issues involved in implementing a multi-
grid solver using programmable graphics hardware. How-
ever, note that they are mostly concerned with 2D Poisson
problems.

3. Reconstruction

We consider the volume to represent a scalar field f : R
3→

R, and the aim of our algorithm is to minimize an energy
E[f] subject to the constraint that f (~pi) = vi for a set of in-

terpolation conditions. These conditions are defined by the
point set. The energy is either the membrane energy

EM [f (x)] =
∫

f
2
x + f

2
y + f

2
z (1)

which is minimized by ∆ f = 0 or the bending energy

EB[f (x)] =
1

2

∫

f
2
xx + f

2
yy + f

2
zz +2 f

2
xy +2 f

2
xz +2 f

2
yz . (2)

c© The Eurographics Association 2007.

66

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

which is minimized by ∆2 f = 0. As we shall see, minimizing
the former energy is somewhat faster, but interpolation is
more reliably achieved using the latter. All computations are
performed numerically by discretizing the Laplace operator.
The discretized version, L, is defined in appendix A.

The interpolation conditions, pi are placed at voxel cen-
ters: From the plane defined by an input point and its normal,
we create three constraints in the vicinity of the input point.
The constraint location pi is a voxel center, and the voxel
value, vi, is the plane distance. This process is described in
detail in Section 3.1.

Subsequently, we use Jacobi iteration in order to solve the
PDE, i.e. to minimize△ f or△2 f . This process is described
in detail in Section 3.2.

Unfortunately, this process tends to converge very slowly,
and if too few iterations are used, the desired smoothness
is not obtained, nor are large holes closed. For this reason,
we start at very low resolution, typically 4×4×4 where all
voxels receive a constraint and then progress to higher reso-
lutions. Each time the resolution is increased, we interpolate
the solution at the previous level to the more detailed level.
We compute novel voxel constraints and then solve again
using Jacobi iteration as before. Typically, we progress until
we reach a resolution of 256×256×256 which is where the
graphics hardware limit is encountered. Since we use the so-
lution at a lower level to initialize the solution at a higher
level, the solution converges far more quickly than if we
simply started at the highest resolution. The details of this
multigrid scheme are provided in Section 3.3.

3.1. Generating Interplation Conditions

The compution of the interpolation conditions is done by as-
signing a value to each voxel enclosing a sample (here we
construe a voxel as a small box). The value is calculated as
the distance ρ between the voxel center c and the surface
from which the sample is taken. As illustrated in figure 1(a),
two different approximations of ρ are used: ρ1 which is the
the signed distance between c and the plane defined by the
sample location x and normal~n, and ρ2 which is the euclid-
ian distance between x and c.

In the case of multiple samples located in the same voxel,
the distance value for the particular voxel can be determined
by picking the closest based on ρ2, whereas the actual dis-
tance value used when solving the PDE is ρ1.

Each sample contributes to more than the single voxel lo-
cated near the surface as described in the previous. From a
surface sample located at x, two normal samples are defined
by

x̂ = x± τ~n , (3)

where τ is magnitude of the offset vector defined in both
the positive and negative normal direction such that normal

c
ρ1

ρ2

~nx

(a) surface samples

c
x

x+ τ~n

x− τ~n

~n

(b) normal samples

Figure 1: Calculating of the interpolating conditions for a

voxel centered at c for a sample located at x

samples are introduced both inside and outside the surface
as illustrated in figure 1(b). For a particular normal sample,
the value of ρ2 is calculated using the position of the cor-
responding surface sample x in order to ensure that surface
samples are not culled away by normal samples. Likewise,
the plane equation needed to calculate ρ1 is the same for
both surface and normal samples.

The purpose of the extra samples is the same as the pur-
pose of the normal constraints used for RBF interpolation
which is to ensure the gradient of the reconstructed surface
function evaluated at the location of a particular point sam-
ple is close to the normal of the sample. The magnitude τ of
the offset vector is chosen such that it is proportional to the
voxel spacing of the discretization grid.

3.2. PDE Solving

The idea behind the algorithm presented here is to formulate
minimization of the bending energy for a trivariate function
f (x,y,z) represented discretely as a grid of scalar values, d.
A voxel in the grid will be denoted di where i is the grid
index.

Using the squared Laplace operator defined in appendix
A , the discrete partial differential equation to solve in order
to minimize the bending energy can be written

L2
d = 0 . (4)

This PDE is solved using Jacobi iteration with a simple up-
date rule for a particular voxel value di.

di← di−
δ

ν
L2(di) , (5)

where ν is used as a weight for each neighboring voxel. For
a particular case where a 6 voxel neighborhood is used, ν

becomes 7/6. The damping factor δ is used for stability. The
present experiments use δ = 0.4.

For the voxels used in the present context, there is a dis-
tinction between voxels with an interpolation condition and
those without. To incorporate this distinction in the model,

c© The Eurographics Association 2007.

67

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

the confidence value w is used to dampen the smoothing ad-
ditionally. The complete update rule becomes

di← di +(1−w)
δ

ν
L2(di) , (6)

where w = 0 everywhere except at voxels with an interpo-
lation condition. The confidence value can then be used to
force the surface to interpolate the point samples by setting
w = 1.

3.3. Multigrid Solution

On a fine grid, the convergence of (6) is very slow. To speed
up the convergence, a multigrid approach is applied. The op-
erators for resolution changing are illustrated in figure 2,
where the coarse-to-fine operator, known as prolongation

and fine-to-coarse, known as restriction, as shown. As seen,

c

c00 c01

c10 c11

(a) Prolongation

c

c00 c01

c10 c11

(b) Restriction

Figure 2: Resolution changes for grids where the value at

a voxel centered at c is calculated by interpolating between

ci j . The destination voxel is highlighted in grey

both operators are easily defined simply by performing a tri-
linear interpolated lookup of the destination voxel centered
in c in the source grid, thus using the voxel values from the
source grid centered at ci j to calculate the value at c. The
two-dimensional illustrations above, extend trivially to three
dimensions.

Since the point samples are independent of grid resolu-
tion, the interpolation conditions are recomputed after each
resolution change. Hence, the precision of the interpolation
conditions gets better with increasing resolution.

We do not impose boundary conditions. Voxel indices are
simply clamped to the indices of the boundary voxels. Con-
sequently, the outside neighbour of a boundary voxel is it-
self.

4. Implementation

We perform the operations on the volume by utilizing the
capabilities to render directly to textures available in mod-
ern graphics hardware using the concept of frame buffer ob-

jects defined in OpenGL. This way we implicitly loop over
each voxel by means of the rasterization step in the render-
ing pipeline. The processing of a fragment corresponds to

performing the actual calculation of the value for the corre-
sponding voxel. Since most voxel operations use very small
kernels, the amount of work done in each fragment is not
very large.

4.1. Voxel packing/unpacking

We represent the voxels of the scalar field by packing them
into 2D textures. The reason a 3D texture is not used, is that
the complete volume cannot be bound to the framebuffer at
once.

The packing is done in such a way that the slices of the
3D volume are laid out as tiles in the 2D texture as shown in
figure 3.

3D domain

2D domain

pack(x)

unpack(xp)

Figure 3: Overview of voxel packing

The function pack(x) does the conversion from a voxel
cell x = [x,y,z]T to a grid cell xp = [xp,yp]

T and is defined

pack([x,y,z]T) =

[

x+Dx(z mod S)
y+Dy⌊z/S⌋

]

, (7)

where D is the resolution of the voxel grid, and S is the num-
ber of tiles in each row of the packed 2D texture. The reso-
lution of the packed 2D texture is

DxS×Dy(Dz/S) , (8)

which imposes the constraint that Dz must be divisible by S.

The inverse of pack(x) is the unpack(xp) which gives the
voxel cell for a given position in the packed texture:

unpack([xp,yp]
T) =





xp mod Dx

yp mod Dy

⌊xp/Dx⌋+S⌊yp/Dy⌋



 . (9)

4.2. Updating

Values of the scalar field are modified by the GPU by render-
ing a viewport-sized quadrilateral to the particular 2D tex-
ture. We use two separate textures to employ a ping-pong
scheme, where one texture is read-only input and the other
is write-only output. Iterative updates are thus performed by
alternating the role of each texture. The current values of the
scalar field can at any time be found in the texture last writ-
ten to.

c© The Eurographics Association 2007.

68

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

The operations are implemented in fragment programs.
We choose a fixed number of iterations on each level. This
is a fairly common approach, but we might save some it-
erations or get better precision if we used a threshold on
the residual to select when to stop. On graphics hardware
this is only possible if we measure the residual in the L∞

norm using occlusion queries [GWL∗03]. Unfortunately,
these queries would introduce considerable latency.

5. Applications and Rendering

The iterative nature of the method makes it useful for several
applications for the reconstructed shape.

• Boolean operations with analytically defined primitives
are easy to implement by evaluating the resulting implicit
function in every voxel.

• Shapes represented by point sets do not define a proper
volume measure. The volume of the shape described by
the scalar field can be computed by counting the number
of inside voxels using an occlusion query. The accuracy
of this measure is of course highly dependant on the reso-
lution of the voxel grid.

• The scalar field can be turned into a distance field by using
re-initialization [JBS06] which is easily implemented on
the GPU.

To render the shape we ray-cast the volume using frag-
ment programs as described in [KW03]. During ray traver-
sal, the voxels along the ray are unpacked from the packed
texture using the unpack function implemented within the
fragment program. Since our data is an approximate distance
field, we can use the value of d to determine the step length
along the ray. Because of this very few samples along the
ray are needed to find the surface intersection. In the pixels
near the silhouette where the ray is nearly tangent to the sur-
face, more samples are needed. However, the dynamic loop
capabilities of modern GPUs makes this issue less problem-
atic since silhouette pixels in general only occupy a small
percentage of the entire rendered image.

Once the intersection point is found, the surface normal
is calculated from the gradient which can be approximated
using central differences. With these properties we employ
simple Phong-shading, but other more elaborate shading
schemes could be used, see [HSS∗05].

Since we render directly from the texture on which we
perform the voxel operations, we are able to calculate sev-
eral iterations of a number of manipulation tools between
the rendering of each frame while still maintaining real-time
frame rates.

6. Results and Discussion

We now describe the results obtained. The system used is
equipped with a Nvidia Geforce 8800GTX graphics card

(a) 643

(b) 1283

(c) 2563

Figure 4: Stanford dragon reconstructed at different resolu-

tions

with 768 mb video memory. The effect of increasing the res-
olution is shown in Figure 4. The two energy minimization
operators are applied in Figure 5. The use of w as a way of
forcing interpolation is seen in b) and d) whereas approx-
imation is performed in a) and c). The multigrid approach
is mainly used to speed up the convergence of the itera-
tions to the PDE solution. A nice side effect is that holes are
closed without compromising the minimization of the bend-
ing energy (Figure 6). As seen in Figure 7, the multigrid ap-
proach facilitates the reconstruction of interpolating surfaces
and gives a significant speed-up in the reconstruction of ap-
proximating surfaces. The computation times of the shown
renderings are listed in table 1, where n f refer to the num-
ber of iterations used at the finest grid and nc the number
on the preceding coarse grids. To test the effect on the re-

c© The Eurographics Association 2007.

69

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

(a) △, pc = 0.9 (b) △, pc = 1.0

(c) △2, pc = 0.9 (d) △2, pc = 1.0

Figure 5: Ear impression reconstructed using different diffu-

sion operators and regularization parameters. Note that the

points are shown.

Figure 6: Reconstruction of the Stanford bunny. Notice how

the holes are filled nicely

construction time of the number samples, we construct the
dragon model at different decimation levels. Figure 8 show
that when the number of samples is increased by a factor
of 500 (from 3536 to 1767812), the construction time is in-
creased by only 43%.

7. Discussion and Conclusions

Our method is very fast compared to other methods for sur-
face reconstruction for unorganized points. It is hard to make
a truly fair comparison between one’s own method and those
used in other papers. That being said, the time to reconstruct
the Stanford Bunny from the original scans is usually on
the order of minutes. According to Table 2 in [KBH06], the
multilevel partition of unity method is amongst the fastest,

(a) 2563 only, #△2 = 400,
pc = 1.0

(b) 83 to 2563 multigrid,
#△2 = 50, pc = 1.0

(c) 2563 only, #△2 = 1000,
pc = 0.9

(d) 83 to 2563 multigrid,
#△2 = 50, pc = 0.9

Figure 7: Ear impression reconstruction of interpolating

(a,b) and approximating (c,d) surfaces with and without

multigrid. In (f), the△2 operator is only applied at the finest

level

time model fig. res. w nc n f

2.1 dragon 4(a) 643 0.9 100 50
3.1 dragon 4(b) 1283 0.9 100 50
6.7 dragon 4(c) 2563 0.9 100 40
0.3 ear (△) 5(a,b) 2563 1 3
1.8 ear (△2) 5(c,d) 2563 10 20
3.1 bunny 6 2563 0.9 20 30
4.6 ear (m) 7(b,d) 2563 0 50

39 ear (s) 7(a) 2563 1.0 400
91 ear (s) 7(c) 2563 0.9 1000

Table 1: Reconstruction times (in seconds) of the shown

models. The two bottom rows are single grid timings.

reconstructing a mesh model in 28 seconds. We produce a
volume in 3.1 seconds as shown in Table 1.

Our method is a part of a larger package of GPU based
stream kernels which we use to manipulate and render vol-
ume data. Thanks to this framework there is rarely any need
to read the volume back from graphics memory, and the only
communication overhead is the initial point transmission.

One disadvantage of the method is that the amount of sur-
face detail we can reconstruct is currently limited by the

c© The Eurographics Association 2007.

70

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

N samples

T
im

e
(m

s)

103 104 105 106 107

10000

1000

Figure 8: Relation between point set size and reconstruction

time

maximum texture size which does not permit us to use vol-
umes larger than 256×256×256. Compared to the adaptive
volume method used by Kazhdan et al. [KBH06] this might
seem unimpressive. Fortunately, we seem to be able to ob-
tain slightly better precision at the same level of resolution
(compare Figure 4(c) to Figure 3 in [KBH06]) in roughly
a quarter of the time. One particular reason for this might
be the fact that the method by Kazhdan et al. reconstructs a
slightly blurred version of the indicator function (the indica-
tor function is 1 inside the solid and 0 outside), and, unless
the indicator function belongs to a sphere there is no level-
set corresponding precisely to the unblurred, true shape. Put
differently, a slight smoothing of the shape is an integral part
of their scheme.

We provide several “knobs” for configuring the method to
particular situations. The user can choose

• Minimizing the membrane or bending energy.
• Number of Jacobi iterations at each level.
• Point confidence.

Minimizing the membrane energy is faster – the operator
is simpler and requires fewer iterations. However, if the point
confidence is smaller than 1, shrinkage is often pronounced.
The slightly slower bending energy is better at coping with
situations where we want the surface to interpolate. To aid
selection of the right scheme we offer three scenarios:

• In the case of a very dense point cloud, almost every voxel
near the surface receives a point splat. In this case, it is
fairly unimportant which energy is minimized since the
appearance of the surface is largely (even if not entirely)
determined by the point splats. The multigrid scheme is
still fairly important however, since it ensures that the in-
side/outside information is efficiently propagated and that
holes are closed. The Laplacian scheme is fast and suffi-
cient.

• Most point clouds are noisy to some degree. In this case,
a point confidence of 1 is clearly inappropriate since we
do not want to model the noise. Either the Laplacian or
the square Laplacian could be used. The issue is mostly
shrinkage. If the cloud is sparse, shrinkage tends to be

exacerbated because there are fewer constraints, hence the
square Laplacian scheme is preferable.

• In the case of a point cloud with relatively little noise, we
clearly wish to set the point confidence to 1 in order to get
precise interpolation. Assuming the cloud is sparse, the re-
sults are invariably poor using the (non-square) Laplacian
as shown in Figure 5(a). In this case, the square Laplacian
scheme must be used.

8. Future Work

Presently, we set the point confidence for all points. This is
simple but not the best solution. A better solution would be
to use some real confidence measure for each point. To han-
dle larger resolutions than those used in the present work, a
block-oriented scheme might be tractable, although the task
of defining the PDE on the boundary between blocks is non-
trivial.

9. Acknowledgements

The input models used in this paper are laser range scans, all
courtesy the Stanford 3D Scanning Repository, except the
ear impression scan (figures 5 and 7) which is courtesy of
Eriksholm, Oticon A/S.

References

[ACK01] AMENTA N., CHOI S., KOLLURI R.: The power crust.
Proceedings of the sixth ACM symposium on Solid modeling and

applications (2001), 249–266.

[BKBH07] BOLITHO M., KAZHDAN M., BURNS R., HOPPE H.:
Multilevel streaming for out-of-core surface reconstruction. In
Symposium on Geometry Processing (2007), pp. 69–78.

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C., EVANS

T. R.: Reconstruction and representation of 3d objects with ra-
dial basis functions. In Proc. of SIGGRAPH (2001), pp. 67–76.

[CL96] CURLESS B., LEVOY M.: A volumetric method for build-
ing complex models from range images. Proc. of SIGGRAPH

(1996), 303–312.

[DMGL02] DAVIS J., MARSCHNER S. R., GARR M., LEVOY

M.: Filling holes in complex surfaces using volumetric diffu-
sion. In First International Symposium on 3D Data Processing

Visualization and Transmission (3DPVT’02) (2002).

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-
BKE D., HUMPHREYS G.: A multigrid solver for boundary value
problems using programmable graphics hardware. In Proc. of

Graphics Hardware 2003 (2003).

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD

J., STUETZLE W.: Surface reconstruction from unorganized
points. Proc. of SIGGRAPH (1992), 71–78.

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD

J., STUETZLE W.: Mesh optimization. Proc. of SIGGRAPH

(1993), 19–26.

c© The Eurographics Association 2007.

71

B. Jakobsen, J. A. Bærentzen & N. J. Christensen / Variational Volumetric Surface Reconstruction from Unorganized Points

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER

K., GROSS M.: Real-time ray-casting and advanced shading
of discrete isosurfaces. In Proceedings of Eurographics 2005

(2005), pp. 303–312.

[JBS06] JONES M. W., BÆRENTZEN J. A., SRAMEK M.: 3d
distance fields: A survey of techniques and applications. IEEE

Transactions on Visualization and Computer Graphics (2006).

[Kaz05] KAZHDAN M.: Reconstruction of solid models from ori-
ented point sets. In Eurographics Symposium on Geometry Pro-

cessing (2005), pp. 73–82.

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson sur-
face reconstruction. In Eurographics Symposium on Geometry

Processing (2006), pp. 61–70.

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL

H.-P.: Interactive multi-resolution modeling on arbitrary meshes.
In Proc. of SIGGRAPH (1998), pp. 105–114.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for gpu-based volume rendering. In Proceedings of IEEE

Visualization 2003 (2003).

[Mur91] MURAKI S.: Volumetric shape description of range data
using "blobby model". ACM SIGGRAPH Computer Graphics 25,
4 (1991), 227–235.

[MYC∗01] MORSE B. S., YOO T. S., CHEN D. T., RHEIN-
GANS P., SUBRAMANIAN K. R.: Interpolating implicit surfaces
from scattered surface data using compactly supported radial ba-
sis functions. In SMI ’01: Proceedings of the International Con-

ference on Shape Modeling and Applications (2001), IEEE Com-
puter Society.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.: Multi-level partition of unity implicits. Proc. of

SIGGRAPH (2003), 463–470.

[OBS03] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: A multi-
scale approach to 3d scattered data interpolation with compactly
supported basis functions. In Shape Modeling International 2003

(2003), pp. 153–161.

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.: Interpo-
lating and approximating implicit surfaces from polygon soup. In
Proc. of SIGGRAPH (Aug. 2004), pp. 896–904.

[SPOK95] SAVCHENKO V., PASKO A., OKUNEV O., KUNII T.:
Function Representation of Solids Reconstructed from Scattered
Surface Points and Contours. Computer Graphics Forum 14, 4
(1995), 181–188.

[ST05] SIBLEY P., TAUBIN G.: Vectorfield isosurface-based re-
construction from oriented points. SIGGRAPH sketches (2005).

[TO99] TURK G., O’BRIEN J. F.: Shape transformation using
variational implicit functions. In Proc. of SIGGRAPH (1999),
pp. 335–342.

[Whi98] WHITAKER R.: A level-set approach to 3d reconstruc-
tion from range data. International Journal of Computer Vision

29, 3 (1998), 203–231.

[ZOF01] ZHAO H., OSHER S., FEDKIW R.: Fast surface recon-
struction using the level set method. 1st IEEE Workshop on Vari-

ational and Level Set Methods, 8th ICCV 80, 3 (2001), 194–202.

Appendix A: Energy Minimization

For a trivariate function, the bending energy is described by
the functional

EB[f (x)] =
1

2

∫

f
2
xx + f

2
yy + f

2
zz +2 f

2
xy +2 f

2
xz +2 f

2
yz . (10)

This energy is minimized using Euler’s equation where the
above functional is set to zero. The integrand F is defined by

EB[f (x)] =
1

2

∫

F(fxx, fyy, fzz, fxy, fxz, fyz) ,

and Euler’s equation is used to obtain

∂E

∂ f
=

∂2

∂x2

∂F

∂ fxx
+

∂2

∂y2

∂F

∂ fyy
+

∂2

∂z2

∂F

∂ fzz

+
∂2

∂x∂y

∂F

∂ fxy
+

∂2

∂x∂z

∂F

∂ fxz
+

∂2

∂y∂z

∂F

∂ fyz
.

The first terms expands to

∂2

∂x2

∂F

∂ fxx
=

∂2

∂x2

∂(f 2
xx + . . .)

∂ fxx

=
∂2

∂x2
(2 fxx + . . .) = 2 fxxxx ,

and similar calculations for the remaining terms lead to the
equation

∂E

∂ f
= fxxxx + fyyyy + fzzzz

+2 fxxyy +2 fxxzz +2 fyyzz .

This result is simply the squared Laplace operator. To mini-
mize the bending energy, we solve

△2
f = fxxxx + fyyyy + fzzzz

+2 fxxyy +2 fxxzz +2 fyyzz = 0 . (11)

Similar calculations give the ordinary Laplace operator

△ f = fxx + fyy + fzz = 0 , (12)

which in terms minimize the membrane energy defined in
(1).

Equation (11) is solved through iterative updates of the
individual voxels, where the value d represents the voxel
value. We use the discrete Laplace operator L(d)

L(d) =
1

n
∑

di∈N(d)

(di−d) , (13)

where the neighborhood N(d) a 6 voxel ”plus” kernel. In
other words, the Laplacian L(d) is defined for a voxel d as
the sum of differences between d and voxel values di in the
neighborhood divided by the number of neighbors.

The squared Laplacian L2(d) is simply defined as the
Laplacian of the Laplacian of each neighbor.

L2(d) =
1

n
∑

di∈N(d)

(L(di)−L(d)) . (14)

c© The Eurographics Association 2007.

72

