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Abstract
We present an algorithm for comparing 3D shapes by considering their pockets in the complementary space.
The pockets of a closed compact surface can be represented by a 3D volumetric function. Multi-resolution dual
contour trees are constructed from the pocket functions to efficiently match them in an affine-invariant way. DCTs
are simplified data structures computed from contour trees (CT) of 3D functions. The DCTs capture the important
features of the volumetric functions and are not sensitive to noises. Each node of a DCT corresponds to an interval
volume and is tagged with geometrical, topological, and functional attributes. Similarities among shapes are
compared by matching nodes from multi-resolution DCTs and calculating the score based on the attributes of the
matched nodes. This method is particularly useful for comparing complicated molecular shapes, for which other
properties such as electrostatic potentials can be added as additional attributes to improve performance.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Computing Methodologies]: Pattern Recogni-
tionŮSimilarity Measures; J.3 [Computer Applications]: Life And Medical Sciences;

Keywords: shape matching, pocket function, dual contour tree, affine-invariant, multi-resolution

1. Introduction

3D shape matching is an important problem in the graph-
ics and other areas. For example, a protein structure may be
represented by the shape of its molecular surface. Effective
comparison and classification of these highly complicated
3D molecular shapes are very important for the understand-
ing of their structural and functional properties. The struc-
tures of proteins and other large molecules are being de-
termined at dramatically increasing rate through structural
genomic and other efforts [BWF∗00]. Because of the high
complexity of molecular shapes, their comparison poses new
challenges.

In this paper we introduce a new algorithm for compar-
ing 3D shapes by considering their pockets in the comple-
mentary space. Instead of establishing correspondence be-
tween the original shapes, which can be very difficult for
complex shapes like molecular surfaces, we try to match the
surface pockets and compute the similarities. Pockets are the

† xiaoyu@csusm.edu

Figure 1: Example surfaces and their pocket envelopes

main features on surfaces and also often referred to as "de-
pressions" or "holes". Pockets are of particular importance
to proteins and other macromolecules because biochemical
reactions often take place in the protected yet accessible re-
gions of pockets. Therefore shape matching using pockets
may give clues to understand the protein structures and func-
tions.
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The key idea of our approach is to represent the sur-
face pockets as a volumetric shape function and construct
a rotation-invariant data structure called dual contour trees
(DCT) to efficiently compare the pocket functions.

We apply a level set marching method to compute the
pocket functions [ZB06], while other methods may also be
justified. A propagation front marches out from original sur-
face S at a constant speed to a final shell surface T . During
the marching the topology of the front would change and
the propagation is irreversible. T is chosen to be a front far
enough away such that it has the simple topology as a sphere
and its topology would not be changed by further propaga-
tion. The surface pockets can be extracted through a back-
ward propagation from T towards the original surface S. The
backward marching front F is not allowed to penetrate S and
stops when it reaches S. Pockets are defined as the regions
bounded between final backward marching front F and the
original surface S. Rather than representing the pockets as
a set of surface envelopes, one can compute a volumetric
pocket function. Assume dS(x) is the signed distance func-
tion (SDF) of the original surface S and dT (x) is that of the
shell surface T described above, where dS(x) is positive if
x is outside S but dT (x) is positive for x inside T . Then the
pocket function fP(x) is defined as

fP(x) = min(dS(x),dT (x)− t), (1)

where t is the marching distance from S to T . The pocket
function fP(x) > 0 only for points outside S and not reach-
able by backward propagation from T , i.e. points in pockets.
The bounding envelopes of pockets are then computed as
the level set φP(x) = ε , where ε > 0 is a small constant for
numerical stability. Figure 2 (a) shows a 2D color-mapped
pocket function and corresponding pockets and in Figure 2
(b) we superimpose the pockets (yellow curves) onto the
original surface (white curves) [ZB06], which come from
a slice of the molecular surface of the "Bacteriochlorophyll
Containing Protein". The result matches very well with our
intuition about pockets and holes.

(a) (b)

Figure 2: A 2D example of pocket function and extracted
pockets: (a) the pocket function is displayed as a color-
mapped image; (b) the color-map shows the SDF of the orig-
inal surface (white curves).

A standard method for comparing volumetric functions is

to compute their inner product. The L2 norm is commonly
used to compute the inner product of two functions f and
g. Similarity metrics are then defined based on the defini-
tion of norms. The most popular metrics are Hodgkin index
SH( f ,g) =

〈 f ,g〉
‖ f‖2+‖g‖2 and Carbo index SC( f ,g) =

〈 f ,g〉
‖ f‖·‖g‖ .

The inner product method is clearly not rotational-
invariant. 3D volumetric functions f and g can be aligned
relative to each other with six-dimensional freedom of ro-
tations and translations. The inner product 〈 f ,g〉 should be
computed for the best alignment. However, it is not trivial
to geometrically align large molecules [BW03]. The align-
ments are often done manually, otherwise one has to search
the six-dimension rotational and translational space to find
the best alignment. Such search is expensive and usually
does not guarantee to find the best alignment.

In this paper, we construct an affine-invariant structure,
called dual contour tree (DCT), to represent the pocket func-
tion. DCTs are simplified data structures computed from
contour trees (CT) [KOB∗97] of 3D functions. The DCTs
capture the important features of the volumetric functions
and are not sensitive to noises. Each node of a DCT cor-
responds to an interval volume and is tagged with geometri-
cal, topological, and functional attributes. one can efficiently
compare 3D shapes by matching multi-resolution hierar-
chies of DCTs. The major steps of the complementary shape
comparison algorithm are:

1. Compute a pocket function to represent the main features
of 3D shapes [ZB06].

2. Compute a contour tree (CT) for the volumetric pocket
function [CSA03].

3. Construct the finest-level dual contour tree (DCT) from
the CT in the previous step.

4. Compute the geometrical, topological, and functional at-
tributes for the nodes in the DCT.

5. Build a multi-resolution hierarchy of the attributed dual
contour tree (MACT) by merging adjacent functional in-
tervals.

6. Match two MACTs and compute their similarity score.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of existing shape matching algo-
rithms and introduces some relevant background. Section 3
describes the methods of constructing the DCT, computing
its nodal attributes, and building the multi-resolution hier-
archy. Section 4 presents the steps to match two MACTs
and compute the similarity scores. Section 5 then dis-
cusses the implementation and some empirical results of our
method.We conclude in section 6.

2. Related Work and Background
Shape matching is traditionally done by finding correspon-
dences between the compared shapes. As discussed earlier,
spatial alignment can be very expensive. A common ap-
proach is to segment the shapes into basic parts and match

c© The Eurographics Association 2006.

80



Xiaoyu Zhang / Complementary Shape Comparison with Additional Properties

those parts and their spatial relationships [DGG03,BCGJ98,
BMP02, BM92, KPNK03]. This scheme may be applied to
match complementary space features like pockets and use
the spatial relationships of matched pockets to align the orig-
inal shapes.

Another approach is to compute some fixed length vec-
tors as the shape descriptors or signatures for 3D shapes
and compute the similarity metrics of shapes using the dis-
tance between the shape descriptors. Various descriptors
have been used for shape matching, such as curvature dis-
tributions [ACH∗91, SKG97], shape distributions and his-
tograms [OFCD01, ATRB95, KFR04], and coefficients of
functional expansions [ASBH90, KFR03] etc. The descrip-
tors can be pre-computed and are almost always rotation-
invariant. The shape descriptors have been applied to re-
trieve similar shapes from a 3D shape database [FKMS05].
As far as we know, no descriptor has been developed for
complementary space features like pockets, and the shaper
descriptor have not yet been applied to complex 3D shapes
like molecular surfaces.

If we represent the shape with a continuous volumetric
function f , e.g. the pocket function, defined on a 3D domain
M , f : M → R. The original surface S is often a special
level set of f . The functional range of f is the interval be-
tween the minimum and maximum values of f : [ fmin, fmax].
Signatures can be computed for volumetric shape functions
as well. One example is the contour spectrum [BPS97],
which is a set of histograms for the level sets of the function,
such as their areas and the volumes enclosed by the level
sets. Although the contour spectrum is certainly rotation-
invariant, it has limited success in comparing volumetric
shape functions.

While a isovalue w scans monotonically through the func-
tional range [ fmin, fmax] of f , the evolution of the homol-
ogy classes of the level set L(w) is studied in Morse the-
ory [Mil63]. The critical points of f are the positions where
the gradient vanishes, i.e. ∇ f = 0, and they are assumed to
be non-degenerate in Morse theory. The topology of L(w)
changes only at the critical points of f , and the correspond-
ing functional values are called critical values.

Another approach of comparing the volumetric shape
functions is to use some affine-invariant topological struc-
tures, such as Morse complexes [EHNP03] and contour trees
(CT) [KOB∗97]. Similar surface topological structures such
as Multi-resolution Reeb Graphs (MRG) are defined and
used for shape matching [HSKK01]. Both Morse complexes
and contour trees are related to the critical points of the vol-
umetric function f . A complex shape function usually has a
large number of critical points, many of which are caused by
small noises. Because of the complexity of the shape func-
tion, it is difficult to directly compute the Morse complex
and even harder to establish correspondences between them.

A contour tree (CT) [KOB∗97] captures the topologi-
cal changes of the level sets for the entire functional range

[ fmin, fmax] of f . Each node of the CT corresponds to a crit-
ical point and each arc connecting two critical points corre-
sponds to a set of continuous contours of the same topology.
A cut on a CT arc (v1,v2) at the isovalue w ( f (v1) ≤ w ≤
f (v2)) corresponds to a connected component (contour) of
the level set L(w). So the number of connected components
for the level set L(w) is equal to the number of cuts to the
CT at the value w .

Although the CT is affine-invariant, it is very difficult to
determine correspondences between two CTs due to the vast
number of nodes corresponding to the critical points of f .
An example of CT is shown in Figure 4 (f).

Carr et al. [CSA03] present an efficient two-pass scheme
to compute a CT in O(m+n logn) time, where m is the num-
ber of simplices and n is the number of vertices in the mesh
M . The CT can be enhanced by tagging arcs with topo-
logical information such as the Betti numbers of the corre-
sponding contour classes [PCM02]. In the next section, we
describe the algorithm of constructing the DCT and nodal
attributes to compare volumetric shape functions , based on
enhanced CTs computed with those CT algorithms.

3. DCT Algorithm
In order to compare volumetric shape functions, we intro-
duce dual contour trees (DCTs) as a simplified structure con-
structed from CTs.

3.1. Dual Contour Tree
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Figure 3: A simple 2D example function, its contour tree,
and dual contour tree. (a) The function values are labeled on
vertices and values in a simplex are linear interpolations of
vertex values. (b) The CT of the function. Critical points are
colored differently: minima in red, saddle points in green,
and maxima in blue. Two interval volumes within the func-
tional interval [2,5] are highlighted in yellow. (c) The three-
range DCT constructed by the cuts at w1 = 2 and w2 = 5.

We illustrate the idea of constructing a DCT using a sim-
ple 2D example in Figure 3. Figure3 (a) shows a function f
defined on a 2D mesh M whose vertices are labeled with
function values and Figure 3 (b) shows the contour tree of f .
The contour tree is cut at two isovalues w1 = 2 and w2 = 5,
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and the two cuts correspond to two level sets shown in Figure
3 (a). The level set L(w2 = 5) has three connected compo-
nents (colored in magenta) and L(w1 = 2) has a single con-
tour (colored in green). There are two interval volumes be-
tween the cut w1 and w2. An interval volume is a connected
region of the domain M , in which the function value of f
lies between two specific isovalues. The interval volumes
are highlighted in Figure 3, and clearly they are bounded
by contours at isovalues w1 and w2. Each interval volume
corresponds to a set of connected CT arc segments between
the cuts at w1 and w2, as highlighted in Figure 3 (b).

Each interval volume becomes a node in the dual contour
tree (DCT) and two DCT nodes are connected by an edge
if the corresponding interval volumes are adjacent (sharing
the same contour at their boundaries). The DCT constructed
from the CT and the two cuts in Figure 3 (b) are illustrated
in 3 (c). The steps to construct a DCT from a given CT are
described below:

1. Divide the functional range [ fmin, fmax] of the function f
into N intervals, which cut the CT arcs into segments in
N ranges. Without loss of generality, we can assume that
CT arcs are not cut at critical values.

2. For each range i (1 ≤ i ≤ N), we use a Union-Find data
structure to assign all cut CT arc segments in the range
into disjoined sets. Each set of connected arc segments
becomes a DCT node at level i.

3. If a DCT node n at level i and a DCT node m at level
i−1 contain segments from a shared CT arc, their corre-
sponding interval volumes are adjacent. An edge is insert
between n and m. Clearly edges only exist between DCT
nodes in adjacent ranges.

The DCT provides a simpler representation of the orig-
inal function than the CT by eliminating small undulations
in a functional range while preserving potentially-significant
features like high mounds and deep pockets. The complex-
ity of the DCT can be controlled by selecting the number
of ranges N. The structure of the DCT converges to the CT
as the number of ranges increases and the size of ranges de-
creases.

We often want to focus on comparing particular regions
of the volumetric shape functions. For instance, we are
only interested in the pocket regions of the pocket function
fP(x), i.e. the functional range fP(x) > 0. This can be eas-
ily achieved by restricting the total functional range of the
DCT to a subrange [ f1, f2]⊂ [ fmin, fmax]. In our algorithm of
complementary shape comparison with pocket functions, we
choose the DCT functional range as [ε,max( fP(x))], where
ε ≥ 0 is a constant. The steps to construct a DCT for a
subrange [ f1, f2] is almost the same. We simply ignore CT
arc segments outside the subrange [ f1, f2]. However, notice
that the DCT is no longer necessarily a single tree but a
graph of multiple trees because the 3D volume satisfying
f (x) ∈ [ f1, f2] are not always connected.

3.2. Node Attributes
In order to quantitatively measure the similarities of DCTs,
we define attributes based on the volumetric shape func-
tion and additional properties, e.g. electrostatic potential of
molecules. A DCT node m corresponds to a connected inter-
val volume Vm ⊂ M . We first look at some geometrical and
topological attributes related to the shape of Vm:

• vol(m): The volume of the interval volume Vm. If compar-
ison is desired for shapes of different scales, normalized
volume may be used instead, by assuming the total vol-
ume of the shape function domain is one. Matched DCT
nodes should have similar volumes.

• area(m): The area of the surfaces bounding Vm. It may be
also normalized for cross-scale comparisons.

• I(m) = (I1, I2, I3): The principal values of the moment of
inertia for Vm. The moment of inertia tensor is defined as

Ii j =
∫

Vm
(xi − xc

i )(x j − xc
j)d3~x =

∫

Vm
xix jd3~x−V (m)xc

i xc
j,

where ~xc =
(

xc
1,xc

2,xc
3
)

is the center of mass for Vm. The
principal axes of Ii j are calculated and the diagonal val-
ues of I along the principal axes are recorded as a triplet
I(m) = (I1, I2, I3), where I1 ≥ I2 ≥ I3. I(m) provides in-
formation about the overall shape of Vm.

• B(m) = {Bl(m),Bu(m)}: The Betti number attribute rep-
resenting the topologies of the lower and upper bounding
surfaces for Vm. Bl(m) and Bu(m) are triplets containing
the three possibly non-zero Betti numbers (β0,β1,β2) for
3D surfaces. If a bounding surface consists of multiple
contours, its Betti triplet is the sum of those of individual
contours.

Other geometrical and topological attributes may also be
added to the DCT node. Actually all the shape descriptors
[ACH∗91, SKG97, OFCD01, ATRB95, KFR04, ASBH90,
KFR03] can be potentially treated as node attributes. Com-
pared to one shape descriptor for a entire shape, the added
level of DCT structure of the volumetric shape function
would make the comparison more accurate.

Another advantage of our method is to incorporate addi-
tional properties into comparison. Particularly for comparing
molecular shapes, additional properties such as electrostatic
potential, electron density, and solvent accessibility are very
important for finding structurally and functionally similar
bio-molecules. Not accidentally those properties in pockets
are most important because biochemical reactions often take
place in the protected yet accessible regions of pockets.

We consider electrostatic potential as an example prop-
erty, which is another volumetric function defined on the
same domain. Here we calculate the multi-pole expansion
of the property function distributed over the interval volume
Vm. Following descriptors may be added to the DCT node as
functional attributes:

• P(m): The integral of the potential p over the interval vol-
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ume Vm, P(m) =
∫

Vm
pd3~x is the first term of the multipole

expansion.
• ~D(m): The dipole moment of the potential p over Vm is

a vector ~D(m) =
∫

Vm
p · (~x−~xc)d~x. We use the magnitude

of ~D(m) and its angle relative to the main principle axis
of Vm as node attributes.

• Q(m) = (Q1,Q2,Q3): The quadropole moment of the po-
tential p over Vm is a tensor defined as

Qi j(m) =
∫

Vm
p · (xi − xc

i )
(

x j − xc
j

)

d3~x

=
∫

Vm
p · xix jd3~x− xc

i D j(m)− xc
jDi(m),

where Di(m) is the ith component of the dipole mo-
ment. We again choose the principal values of Qi j(m),
Q1 ≥ Q2 ≥ Q3, as attributes of a DCT node.

The attributes of the DCT node m can be then summarized
into a vector m̃ as following:

m̃ = {vol(m),area(m), I(m),B(m),P(m),D(m),Q(m)} .

3.3. Multi-resolution Hierarchy
In order to facilitate the comparison of attributed DCTs,
they can be further organized in a hierarchical multi-
resolution form. This Multi-resolution Attributed Contour
Tree (MACT) is constructed from a fine DCT by merging
its adjacent functional intervals recursively.

Without loss of generality, we assume a finest DCT D has
N = 2k functional intervals. The DCT at the next coarser res-
olution would have N/2 intervals, each of which is merged
from two intervals of the finer DCT. A set S of connected
DCT nodes in the two combined intervals are merged into
a single node n in the coarser DCT. This can be achieved
again by using a Union-Find data structure. The node n is
called the parent of nodes in the set S , which are the children
of n. The merging process can be recursively applied to the
coarser DCTs until there is only a single interval spanning
the entire functional range under consideration. If we call the
finest DCT Dk and the next coarser one Dk−1 etc, then we get
a sequence of increasingly coarser DCTs (Dk,Dk−1, ...,D0).
Figure 4 (c) and (d) show the DCTs at two different levels
of the hierarchy. The complexity of the DCTs at coarser lev-
els is significantly reduced and the hierarchy makes it much
easier to find correspondences between DCT nodes of two
shape functions.

As mentioned earlier, a DCT of a restricted subrange
[ f1, f2] may be a graph consisting of multiple trees in the
finest level. In the coarsest level DCT D0, each individ-
ual tree is merged in to a single node. Numerous nodes in
the coarsest DCT D0 may complicate the matching process.
However, most of those nodes are very small in size and can
often be pruned as noise if their volumes are under certain
threshold. Pruning a lower resolution DCT node shall re-
move all its child nodes from finer DCTs as well. In Figure 4

(d) for the pocket function of the unbinding "Staphylococcal
Nuclease" (PDB code 1KAA), only four nodes are left in D0
after pruning, where size threshold is set as 1% of the total
pocket volume.

The attributes of a node in the coarser level of the hierar-
chy is evaluated recursively from those of its children. Most
attributes discussed in section 3.2 are additive. For example,
if a node m has children m1, ...,ml in the finer level DCT,
the volume attribute vol(m) is just the sum of volumes of its
children:

V (m) =
l

∑
i=1

V (mi).

The Betti numbers attributes of the finest DCT can be com-
puted from an augmented CT [PCM02]. Consider a merged
DCT node m from its children in two intervals of the finer
DCT. The lower bounding surface of m is the union of the
lower boundaries of its children in the lower interval. There-
fore Bl(m) is the sum of Bl(m)’s of those children, and
Bu(m) can be computed similarly.

As for the functional attributes from the additional prop-
erty functions, the values for the node m can be calculated
from those of its children as well. For example, P(m) =

∑l
i=1 P(mi). Similar but more involved equations exist for

D(m) and Q(m). Next we describe the matching algorithm
based on the multi-resolution hierarchy of DCTs.

4. Matching Algorithm

4.1. Similarity Metrics

First we look at the similarity metric between two DCT
nodes if the correspondence is established. The similarity
〈m,n〉 between two nodes m and n is defined based on their
attribute vectors m̃ and ñ as a weighted average of the simi-
larity metrics of individual attributes:

〈m,n〉 = ∑
i

wi · 〈ai(m)ai(n)〉, (2)

where 〈ai(m)ai(n)〉) is the similarity metric of the ith at-
tribute in the vector m̃ and ñ and the weights satisfying
0 ≤ wi ≤ 1 and ∑wi = 1 control the relative importance of
different attributes in the comparison. The similarity metric
of individual attributes is defined as follows such that the
exactly same attributes achieve the maximum value = 1.

〈vol(m),vol(n)〉 = 1− |vol(m)− vol(n)|

max(vol(m),vol(n))

〈B(m),B(n)〉 =
1
3

2
∑
i=0

min(βi(m),βi(n))

max(βi(m),βi(n))

〈I(m), I(n)〉 = 1−
max j=1,2,3(

∣

∣I j(m)− I j(n)
∣

∣)

max(I1(m), I1(n))
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〈P(m),P(n)〉 = 1− |P(m)−P(n)|

max(|P(m)| , |P(n)|)

〈D(m),D(n)〉 = 1− |D(m)|− |D(n)|

max(|D(m)|, |D(n)|)

〈Q(m),Q(n)〉 = 1−
max j=1,2,3

∣

∣Q j(m)−Q j(n)
∣

∣

max(|Q1(m)| , |Q1(n)|)

The similarity score of functional attributes may be negative,
e.g. 〈P(m),P(n)〉 < 0 if P(m) and P(n) have opposite signs
and so is 〈Q(m),Q(n)〉. This feature gives penalty to molec-
ular pockets with similar shape but different functional prop-
erties. The maximum similarity score between two nodes is
clearly 1, achieved when they have exactly the same attribute
vectors.

〈m,n〉 ≤ 〈m,m〉 = 〈n,n〉 = 1

If the correspondences between nodes in two DCTs D and D′

have been established, the similarity score between D and D′

is computed from the scores of matched node pairs:

〈D,D′〉 =
∑i(vol(mi)+ vol(ni)) · 〈mi,ni〉

∑i vol(mi)+ vol(ni)
, (3)

where the similarity score 〈mi,ni〉 of a matched node pair
mi ∈ D and ni ∈ D′ is weighted by the average of their
normalized volumes. Therefore bigger weights are given to
larger interval volumes and the similarity score 〈D,D′〉 ≤ 1.

For a multi-resolution hierarchy of dual contour trees
(MACT) M = {Dk,Dk−1, . . . ,D0} with total k +1 levels, Di
at level i is matched to the DCT D′

i at the same level of the
other MACT M′. The correspondences are found in a order
from coarser DCTs to finer DCTs as described in section 4.2.
The similarity score 〈M,M′〉 between MACTs M and M′ is
evaluated as the average of the scores of DCTs from level 0
to k:

〈M,M′〉 =
1

k +1

k
∑
i=0

〈Di,D′
i〉. (4)

The similarity score 〈M,M′〉, clearly satisfying 〈M,M′〉 ≤ 1,
is the measure of the similarity between two volumetric
shape functions, particularly the pocket functions in this pa-
per.

4.2. Matching Algorithm

The volumetric shape functions are compared by matching
their MACTs. The matching process is performed from the
coarsest to the finest level of the hierarchies, where we as-
sume that the MACTs M and M′ have the same number of
levels. The matching algorithm attempts to find the maximal
set of matched MACT node pairs between two MACTs M
and M′. The DCT nodes m ∈ M and n ∈ M′ of a matched
pair must satisfy following conditions:

• The nodes m and n do not belong to any other pairs.
• m and n must belong to the DCTs at the same level of the

hierarchies, i.e. m ∈ Di ⊂ H and n ∈ D′
i ⊂ H ′, where Di

and D′
i have the same number of functional intervals.

• m and n must belong to the same functional interval of Di
and D′

i.
• The parent p(m) of m and p(n) of n are also a matched

pair (p(m), p(n)) in the coarser level DCTs. The only ex-
ception is D0, whose nodes have no parents.
We use a greedy algorithm to find the pairs of matched

nodes, starting from level 0 of the hierarchies. The steps to
match the DCT Di ⊂ M and D′

i ⊂ M′ at level i (i = 0, . . . ,k)
are as follows,
1. Add all nodes of the DCT Di into a priority queue Q,

ranked by their volumes.
2. Remove the node m with the highest priority from Q.

Search for the best matching node n from possible candi-
dates in the other DCT D′

i, constrained by the conditions
mentioned above. The best match should have the highest
score 〈m,n〉 weighted by their average volumes.

3. If a node n is found, the pair (m,n) is added to the set of
matched pairs at resolution level i and n is also removed
from future consideration.

4. Repeat step 2 and 3 until the queue Q is empty or no more
candidates available in D′

i.
5. Calculate the similarity score 〈DiD′

i〉 by using the pairs
of matched nodes in level i.

6. Repeat the steps 1 to 5 from level i = 0 to k. Calculate
the final score 〈M,M′〉 as the similarity measure between
two shapes.
Next we look at the time complexity of the complemen-

tary shape comparison algorithm. The time can be divided
into that of a off-line process of constructing the pocket func-
tion and its multi-resolution DCTs and that of an on-line
matching process.

We here focus on the off-line time complexity of con-
structing the DCT and its hierarchy. In the worst case, the
complexity is O((logn + m) ·D), where m is number sim-
plices and n is the number of vertices in the function domain
M and D is the number of nodes in the finest DCT. D can be
controlled by the number of functional intervals and is usu-
ally much smaller than n and m. In our experiments, most
DCT construction time is spent on computing various node
attributes of the finest DCT. The DCTs can then be stored
with the shape functions for future comparisons. Please refer
to cited literatures for the time complexity of pocket function
and CT generation.

The time complexity of the on-line matching algorithm
is O(D1 ·D2) in the worst case, where D1 and D2 are the
number of nodes in the finest DCTs. This step usually is
very fast in our experiments and takes only seconds because
D1 and D2 are much smaller than the original data size. If
time is critical in shape comparison, a early termination ap-
proach can be adopted to stop the matching process after a
few coarser level DCTs are compared and the time limit has
been reached.
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Figure 4: Shape comparison of the protein "Staphylococcal Nuclease" in the binding (PDB code: 1ATT, (e) left) and unbinding
(PDB code: 1KAA, (e) right) state.

5. Implementation and Results

We implemented the complementary shape matching
method in C++. The code is portable across platforms. The
effectiveness of the DCT matching algorithm depends on the
selection a good shape function. The pocket function in the
complementary space appears to have the potential of being
a good shape function, especially for molecular shapes.

We first test our implementation on a subset of pro-
tein structures downloaded from the Protein Data Bank
(PDB). The molecular surfaces of the proteins are com-
puted as a level set of a synthetic electron density scalar
function in space R3 [Bli82]. Figure 4 shows the results of
comparing two protein shapes. "Staphylococcal Nuclease"
(PDB code 1A2T) is a protein for nucleic acid binding and
binds two ligands "S-(Thioethylhydroxy)Cystine"(CME)
and "Thymidine-3’,5’-Diphosphate"(THP). The protein
1A2T and one of its bound ligand (THP) are drawn in Fig-
ure 4 (a) while the other ligand is on the back side. Due to
the bound ligands, the shape of "Staphylococcal Nuclease"
(1A2T), especially the pocket regions, has changed from that
of its unbound sibling (PDB code 1KAA). We compute the
pocket function of 1A2T and 1KAA and compare them us-
ing the multi-resolution DCT algorithm described in this pa-
per. Figure 4 (b) uses volume rendering to display the pocket
function of 1ATT over its molecular surface. The correspon-
dences between the pocket regions of 1ATT and 1KAA are
easily established by using the multi-resolution DCT hierar-
chy, as illustrated in Figure 4 (e). The complementary shape
matching makes the evident structural differences between
two proteins, which are not obvious by looking at the orig-
inal shapes directly. The CT of the 1ATT pocket function
is shown in Figure 4 (f), which is too complex to be com-

pared to each other. Two lower-resolution DCTs of the pro-
tein 1KAA are shown in Figure (c) (four intervals) and (d)
(one interval).

We also test robustness of our algorithm by modulating
the original shapes with small random noises. Such noises
may significantly increase the number of critical points in
the pocket functions, sometimes by more than twenty times.
However, such noises are effectively removed from DCTs
and the modulated shapes are almost perfectly matched to
original ones.

6. Conclusions

In this paper we presented a novel algorithm for shape
matching by using surface pockets in the complementary
space as a volumetric shape function and compute an affine-
invariant multi-resolution dual contour tree to compare
shape functions with properties. The DCT algorithm seg-
ments the 3D shape function into smaller feature elements,
i.e. the DCT nodes. Those feature elements combined with
geometrical and topological attributes and additional prop-
erties such as electrostatic potentials, are shown to be very
effective for comparing complex structures like molecular
surfaces. It can also be applied to general 3D shapes.

Further improvements of the method may include adding
more shape descriptors to the DCT nodes, e.g. the ones de-
scribed in the cited literatures. Another future work is to
build a shape database of pocket functions and correspond-
ing multi-resolution attributed dual contour trees (MACT)
for all known protein structures in PDB, in order to facilitate
the study of protein structures and functions.
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