
Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors)

Pre-integrated Flow Illustration for Tetrahedral Meshes

N. A. Svakhine1, D. Ebert1, E. Tejada2, T. Ertl2 and K. Gaither3

1Purdue University
2University of Stuttgart

3Texas Advanced Computing Center, University of Texas, Austin

Abstract
Previous work has demonstrated the clarity and usefulness of illustrative techniques for visualizing flow data.
However, previous systems were limited to applying these techniques to uniform grids. Since unstructured grids
have emerged as a common basis for computing flow simulations, we present a method to apply and extend the flow
illustration approach to tetrahedral meshes using pre-integrated GPU-accelerated raycasting. Our illustrative
rendering techniques can also be applied for other pre-integrated volume rendering systems. Additionally, we
explore new feature illustration techniques for flow visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Interaction techniques;
I.3.7 [Computer Graphics]: Color, shading;

1 Introduction

In recent works [SJEG05], we have seen the use of illus-
trative techniques [ER00] applied to three-dimensional flow
datasets. The usage of these illustrative effects has been very
effective in removing the usual clutter associated with three-
dimensional flow visualizations. However, the approach has
been limited to regular rectangular grids. In this work, we
are applying several approaches from tetrahedral rendering
research to extend and apply illustrative effects to unstruc-
tured volumetric data.

2 Background

Many flow visualization techniques have been developed re-
cently (e.g., [Wij02]) and are effective for 2D flows, however
the density of the representations often limits their effective-
ness for 3D flows, particularly in viscous flows. As an alter-
native, illustration has been considered as a viable approach;
in [SLM02] various NPR techniques are applied to flow vol-
umes, showing the potential of volume illustration [ER00].

Svakhine et al. [SJEG05] fused flow visualization meth-
ods with hardware-accelerated volume illustration algo-
rithms [SE03] and NPR techniques. This method, however,
is limited to regular grids, while flow simulations are very
often performed on non-regular grids and visualization tech-

niques that operate on these grids do not map directly to
GPU textures.

The first approach proposed to interactively render tetra-
hedra was the Projected Tetrahedra algorithm [ST90].
GPU-accelerated tetrahedral rendering (e.g., [RKE00,
WKME03b]) addresses the rendering performance, while re-
cent works in pre-integrated volume rendering provide sev-
eral improvements [EKE01, WKME03a, KQE04].

3 Exposition

In this section, we describe the modifications introduced in
the GPU-based raycasting algorithm for tetrahedral meshes
to generate illustrative effects.

3.1 Pre-integrated Volume Rendering

Hardware-accelerated pre-integrated volume rendering pre-
computes the ray integral for each rendering primitive us-
ing the ray entry and exit point values (s(f) and s(b)), the
thickness of the primitive l, and stores these values in the
table texture. During the rendering step, for each ray, the
(s(f), s(b), l) values (see Figure 1) are extracted (in the frag-
ment shader) and used as indices for pre-integration table
lookup. To estimate the gradients, we use barycentric inter-
polation [WKME03a], which is sufficient for datasets with

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

N. A. Svakhine et al. / Flow Illustration for Tetrahedral Meshes

good resolution where regions of interest are highly sam-
pled.

Figure 1: Ray traversal for a tetrahedral raycaster. The in-
formation gathered from the current tetrahedron is depicted.

3.2 Adding Illustrative Effects

The illustrative effects we present are accomplished by mod-
ifying either the pre-integrated table, as done in [ME04] for
regular volumes, or the fragment shader. We introduce illus-
trative effects based on gradient enhancement, silhouetting,
curvature enhancement and banding as described below. For
that, a scaling mask m, which depends on the illustrative
effect, is computed and used to scale the extinction coeffi-
cient linearly to modify the associated color C̃(s(f),s(b), l)
and opacity α(s(f),s(b), l) stored at each entry (s(f),s(b), l)
of the pre-integrated table. The masked opacity α(m) and
masked associated color C̃(m) are defined as:

α(m)(s(f),s(b), l) = 1− e(m log(1−α(s(f),s(b),l))), (1)

C̃(m)(s(f),s(b), l) =
α(m)(s(f),s(b), l)

α(s(f),s(b), l)
C̃(s(f),s(b), l). (2)

View-dependent gradient-based effects. Illustrative effects
can be achieved by masking each entry (s(f),s(b),l) of the
pre-integrated table using the approximated view-dependent
gradient magnitude given by (s(b)−s(f))/l. While not as ac-
curate as the full gradient magnitude enhancement [ER00], it
tends to highlight parts of essential high-gradient dataset fea-
tures. The view-dependant gradient magnitude can be used
to generate different effects (e.g. gradient magnitude iso-
lines, low/negative gradient magnitude sample cull). For in-
stance, the effect shown in Figure 2 was obtained by defining
the mask m as

ω ·

(∣∣∣∣∣
s(f) − s(b)

l

∣∣∣∣∣

)p

, (3)

where ω is an artificial used-defined opacity scaling factor
and p is a scalar that controls how much the gradient magni-
tude affects the opacity of the pre-integrated table entry.

Curvature-based contour effects. Curvature-based illustra-
tion (Figure 2) is obtained by estimating the curvature for
the segment between s(f) and s(b) as ‖(~n(b) −~n(f))/l‖. The
mask m used in this case is given by

ω ·

(
‖~n(f) −~n(b)‖

l

)p

. (4)

Banding effects. Banding is achieved by scaling the entries

Figure 2: The Cylinder dataset. From top to bottom, left
to right: volume rendering with no enhancement, view-
dependent gradient enhancement; curvature-based illus-
tration with two different p values; banding (and mixed
banding-volume rendering) of the scalar value.

of the pre-integrated table with the mask:

((1+ sin(ooπk)) ·0.5)p . (5)

where oo is the value to mask (e.g. scalar value, gradient
magnitude). Figure 2 shows banding of the gradient magni-
tude of the Cylinder dataset.

Gradient-based contour effects (silhouettes). As the work
by Engel et al. [ME04] also describes, a similar approach can
be used for contour enhancement. The contour/silhouette in-
formation can be extracted from the dataset by calculating
φ =< ~n,~v >, where ~n is the normalized gradient vector, ~v
is the view vector [ER00]. A one-dimensional opacity trans-
fer function α(φ) is then used to highlight areas where φ is
close to 0, showing only the samples where~v and~n are near
orthogonal, which corresponds to a contour line of a surface.
This illustrative effect is shown in Figure 5.

Gradient-based masked contour effects (masked sil-
houettes). Another way of obtaining gradient-based con-
tours/silhouettes (Figure 3) is by masking the entries of
the pre-integrated table similarly to the view-dependent
gradient-enhancement effect. The mask m is obtained using
the following formula

g(‖∇ f‖) · (1−|φ|)p, (6)

where ∇ f is the gradient and g(·) is a windowing function
(usually a linear function clamped to [0,1]) used to restrict
the detection of contours to the interfaces between different
materials.

c© The Eurographics Association 2006.

N. A. Svakhine et al. / Flow Illustration for Tetrahedral Meshes

Figure 3: Masked silhouettes for the Cylinder dataset. From left to right: silhouettes, silhouettes and surface rendering, top
view of the silhouettes, top view of silhouettes and volume rendering.

4 Implementation

We modified the implementation of our single-pass ray-
caster [TE05] to include the illustration techniques described
above. As before, the data structure holding the tetrahedral
mesh is stored in a set of textures used by the shader to cal-
culate, for each iteration of the ray integral computation, the
current tetrahedron and its entry and exit points. As in previ-
ous work [WKME03a] the values at these points are interpo-
lated from the values stored at the vertices of the tetrahedron
using barycentric coordinates. The values obtained and the
distance between the points are used to fetch the contribution
of the ray segment to the ray integral from the pre-integrated
table modified by our techniques. We also implemented the
logarithmic sampling proposed by Kraus et al. [KQE04] for
the pre-integrated table.

Depending on the illustration technique applied to the
data, modifications to the raycaster were introduced either in
the pre-integrated table computation or in the shader. These
modifications are described in the following paragraphs.

Gradient enhancement. View-dependent gradient enhance-
ment is achieved by scaling each entry of the pre-integrated
table using Equations 1 and 2 and the mask given by Equa-
tion 3. Therefore, the only modification to the raycaster is
introduced in the computation of the pre-integrated table.

Silhouettes. Silhouetting is implemented as in the work by
Meissner and Engel [ME04]. A pre-integrated table is calcu-
lated as usual but instead of using the interpolated values s(f)

and s(b) at the entry and exit points respectively to perform
the color and opacity fetch, we construct the pre-integrated
table indexed by (φ(f),φ(b), l).

Masked silhouettes. For masked silhouettes given by Equa-
tion 6, since φ can only be calculated in the fragment
shader, the masking takes places during rendering using
Equations 1 and 2.

Curvature-based. As for masked silhouettes, the mask in
this case can be calculated only during rendering. Therefore,
we modify the shader to apply the mask given by Equation 4.

Banding. Banding is achieved by masking the entries of the
pre-integrated table using Equation 5. No modification is in-
troduced into the rendering process.

5 Results

In this section we present performance results and a discus-
sion of the visual results obtained. The tests were performed
on a standard PC equipped with a NVidia GeForce 7800
GTX (512MB) graphics card. The target viewport size was
640 × 480. Table 1 shows the performance results for the
illustration techniques presented. We notice that the perfor-
mance change is depreciable even for datasets with millions
of tetrahedra.

Figure 4: Shock dataset: silhouettes illustration.

Combustion Cylinder Shock
Num. tetrahedra 215040 624960 1923048

Volume rendering 4.74 5.09 2.88
Gradient enhanced 4.68 5.12 2.99
Curvature-based 5.26 4.96 2.51

Banding 4.68 5.12 2.24
Silhouettes 5.02 4.98 2.94

Masked silhouettes 4.99 5.05 2.78

Table 1: Performance in frames per second for the test
datasets with the illustration techniques presented.

From the set of figures shown above, we can see that flow
structures can be extracted from the data using the illus-
trative effects described. For the case of the Cylinder (Fig-
ures 2-3), Shock (Figure 4), and Combustion Chamber (Fig-
ure 5) datasets, flow structures were extracted by applying
illustrative effects without needing to spend much time in
finding a proper transfer function, as is generally needed
with normal volume rendering.

6 Conclusion and Future Work

Volume illustration applied to flow datasets helps gain in-
sight into the structures contained in the flow data. In pre-
vious work [SJEG05], illustration techniques were used ex-
clusively for flow datasets resampled on regular grids. How-
ever, a significant number of simulations are computed on

c© The Eurographics Association 2006.

N. A. Svakhine et al. / Flow Illustration for Tetrahedral Meshes

Figure 5: Illustrative effects for the Combustion Chamber
dataset. From top to bottom: no illustration, banding, gra-
dient enhancement, and silhouettes. Notice that the same
transfer function is used for all cases except the silhou-
ettes rendering where the transfer function is indexed by
(φ(f),φ(b), l).

unstructured grids. Applying illustrative effects directly to
tetrahedral grids provides a direct rendering approach. Al-
though we have shown how these effects can be applied
to such grids, there are still issues to be solved, such as a
semiautomatic setting of the parameters used for each tech-
nique, and the removing of artifacts that arise due to the con-
stant gradient within each tetrahedron. Another promising
research direction is employing the extra local flow prop-
erties (such as curl, vorticity, second directional derivatives

etc.) for calculating the illustrative enhancements highlight-
ing flow features of interest.

Acknowledgments

This work was partially supported by the German Academic
Exchange Service (DAAD) with grant A/04/08711, US Na-
tional Science Foundation (grants NSF ACI-0081581, NSF
ACI-0121288, NSF ACI-0328984, NSF IIS-0098443, NSF
ACI- 9978032, and NSF ACI-0222675) and Adobe Systems
Incorporated. The authors would like to thank Martin Kraus,
University of Stuttgart, for valuable discussions.

References

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Proc. of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware (2001), pp. 9–16.

[ER00] EBERT D., RHEINGANS P.: Volume illustration: non-
photorealistic rendering of volume models. In Proc, of IEEE
Visualization (2000), pp. 195–202.

[KQE04] KRAUS M., QIAO W., EBERT D. S.: Projecting tetra-
hedra without rendering artifacts. In Proc. of IEEE Visualization
(2004), pp. 27–34.

[ME04] MEISSNER M., ENGEL K.: Pre-integrated non-
photorealistic volume rendering. In Proc. of VMV 2004 (2004),
pp. 437–445.

[RKE00] ROTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering based on cell-
projection. In Proc. of IEEE Visualization (2000), pp. 109–116.

[SE03] SVAKHINE N., EBERT D.: Interactive volume illustration
and feature halos. Pacific Graphics ’03 Proceedings 15, 3 (2003),
67–76.

[SJEG05] SVAKHINE N. A., JANG Y., EBERT D. S., GAITHER

K. P.: Illustration and photography inspired visualization of
flows and volumes. In Proc. of IEEE Visualization (2005), p. 87.

[SLM02] STOMPEL A., LUM E. B., MA K.-L.: Feature-
enhanced visualization of multidimensional, multivariate volume
data using non-photorealistic rendering techniques. In Proc. of
Pacific Graphics (2002).

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approximation
to direct scalar volume rendering. In Proc. of Volume Visualiza-
tion (1990), pp. 63–70.

[TE05] TEJADA E., ERTL T.: Large Steps in GPU-based De-
formable Bodies Simulation. Simulation Practice and Theory
13, 9 (2005), 703–715.

[Wij02] WIJK J. V.: Image based flow visualization. ACM Trans-
actions on Graphics 21, 3 (2002), 745–754.

[WKME03a] WEILER M., KRAUS M., MERZ M., ERTL T.:
Hardware-based ray casting for tetrahedral meshes. In Proc. of
IEEE Visualization (2003), p. 44.

[WKME03b] WEILER M., KRAUS M., MERZ M., ERTL T.:
Hardware-based view-independent cell projection. IEEE Trans-
actions on Visualization and Computer Graphics 9, 2 (2003),
163–175.

c© The Eurographics Association 2006.

