Volume Graphics (2006)
T. Moller, R. Machiraju, T. Ertl, M. Chen (Editors)

GPU-assisted Multi-field Video Volume Visualization

Ralf P. Botchen!, Min Chen?, Daniel Weiskopf 3, and Thomas Ertl!

Visualization and Interactive Systems, University of Stuttgart, Germany, {botchen|ertl} @vis.uni-stuttgart.de
2Depa.rtment of Computer Science, University of Wales Swansea, UK, m.chen@swansea.ac.uk
3Graphics, Visualization, and Usability Lab (GrUVi), Simon Fraser University, Canada, weiskopf@cs.sfu.ca

Abstract

GPU-assisted multi-field rendering provides a means of generating effective video volume visualization that can
convey both the objects in a spatiotemporal domain as well as the motion status of these objects. In this paper, we
present a technical framework that enables combined volume and flow visualization of a video to be synthesized
using GPU-based techniques. A bricking-based volume rendering method is deployed for handling large video
datasets in a scalable manner, which is particularly useful for synthesizing a dynamic visualization of a video
stream. We have implemented a number of image processing filters, and in particular, we employ an optical flow
filter for estimating motion flows in a video. We have devised mechanisms for combining volume objects in a scalar
field with glyph and streamline geometry from an optical flow. We demonstrate the effectiveness of our approach
with example visualizations constructed from two benchmarking problems in computer vision.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture / Image Generation
1.3.6 [Computer Graphics]: Methodology and Techniques 1.3.m [Computer Graphics]: Video Visualization

1. Introduction

Viewing videos is a time-consuming and resource-intensive
process. Even viewing in the fast-forward mode, it takes
about 4 hours to watch a day’s recording by a CCTV (closed-
circuit TV) camera. In other words, if the footage of all es-
timated 25 million CCTV cameras in operation worldwide
were to be examined, we would need 10 million people em-
ployed to just watch videos, in the fast-forward mode, for
10 hours every day. Video visualization is a computation
process that extracts meaningful information from original
video datasets and conveys the extracted information to users
by appropriate visual representations. Although this technol-
ogy is very much in its infancy, its potential benefits in terms
of time and resource saving cannot be overestimated.

Video data can be considered as 3D volume data, with
one temporal and two spatial dimensions. One major diffi-
culty is that the geometrical objects in each video frame are
the projective representations of the original 3D spatial ob-
jects. Thus, a video volume is a 3D projection of a 4D spa-
tiotemporal description of a moving scene. Because the third
dimension of a video volume is the temporal dimension, sim-
ply visualizing a video volume using traditional volume ren-
dering techniques is often inadequate in terms of extracting

(© The Eurographics Association 2006.

and conveying the most meaningful information in a video.
For example, consider the video clip ‘LeftBox’ (Figure 1),
which is one of the benchmarking problems collected by the
CAVIAR project [FisO4]. Figure 2(a) shows a visualization
of the video volume using a technique similar to [DCO3].
Although the visualization adequately represents the objects
extracted from the background scene, it does not provide suf-
ficient motion features to allow the user to recognize that a
moving object (i.e., a person) left a stationary object (i.e., a
box) in the scene.

Although it is possible to estimate and visualize the opti-
cal flow in a video as shown in Figure 2(b), the motion on
its own cannot adequately convey the presence of objects in
the scene. These observations indicate that the combined use
of a volumetric scalar field (for the video data) and a vec-
tor field (describing the motion) might result in an effective
video visualization. We thereby face the issue of multi-field
visualization of 3D scalar and vector fields.

The combined visualization shown in Figure 2(c) sepa-
rates four stages of the video. In stage one, the person enters
the scene with a box, i.e., the person is moving. In stage
two, the person stops to deposit the box on the floor. This
fact is clearly conveyed through a lack of flow glyphs. In the

delivered by
[|

www.eg.org

EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

frame 550 frame 650 frame 750
Figure 1: Frames selected from the video clip ‘LeftBox’. A
woman deposits a box in the scene and leaves. The frames

relate to stages 2, 3, and 4 in Figure 2.

next stage, the person moves around the box. In stage four,
the person exits the scene, but leaves the motionless box on
the floor. The combination of volume and flow visualization
gives the viewer a better understanding of both the informa-
tion on location and motion of objects.

Due to the need for the simultaneous visualization of two
datasets for scalar and vector information, the challenge of
handling large 3D data is more pronounced than in tradi-
tional volume rendering. In general, it is necessary to han-
dle a large amount of data in many applications of video
visualization. For example, in scientific experiments that in-
volve a high-speed camera, an experiment of a few seconds
could result in a video of thousands of frames. For process-
ing video archives in applications such as video segmenta-
tion and geo-biological monitoring, one may need to cre-
ate a visual representation for a video of hours, days, or
sometimes even longer periods of time. Finally, in many
surveillance-related applications, one needs to handle large
real-time video streams.

In this paper, we address technical problems associated
with the fast rendering of large video data as a volume. In
particular, our objective is to generate an effective multi-
field visualization by combining volumetric scalar and vec-
tor data in order to extract and convey the most meaningful
information in a video. Our strategy is to use the capabil-
ities of modern GPUs (graphics processing units) to syn-
thesize interactive multi-field visualization (see Section 5).
A complementary strategy is to design a scalable rendering
method for video datasets of varying size. We employ brick-
ing techniques to overcome the difficulties of accommodat-
ing large video streams in GPU memory (see Section 6). The
basic software architecture of our visualization system is dis-
cussed in Section 3, the preprocessing stages in Section 4.

Part of the work described in this paper was used to sup-
port a major user study on visual signatures in video visu-
alization [CBH*06]. In this paper, we focus on the techni-
cal and algorithmic development of a system, called VVR
(Video Volume Renderer), which provides interactive render-
ing of video volumes and extracts visual signatures for anal-
ysis. Technically, VVR represents a major leap from previ-
ous video volume visualization in terms of rendering speed,
visualization features, and the scalability of data size.

..!‘ R
o
2
-~
‘l
(a) object volume (b) optical flow

St e

& e \
(c) object volume with optical flow

Figure 2: Volume visualization of extracted objects in a
video in (a) and flow visualization of an estimated optical
flow of the same dataset in (b). Image (c) shows a combina-
tion of both visualizations.

2. Related Work

Video visualization was introduced by Daniel and Chen
[DCO3] as a means of processing large volumes of video
data. We adopt their idea of a horseshoe layout for video
rendering because the horseshoe geometry has a number of
merits, including a cost-effective space utilization and a pro-
vision of four visible sides of a video volume. However, the
horseshoe layout requires the rendering of a deformed video
volume. A generic way of rendering deformed volumes is
to use ray casting (e.g., ray reflectors [KY97]). The origi-
nal implementation of horseshoe volume rendering is based
on a related implementation by CPU ray casting, which is
not interactive [DCO3]. In this paper, we use 3D texture slic-
ing for interactive volume rendering [CCF94]. We adopt the
approach by Rezk-Salama et al. [RSSSGO1], which utilizes
texture slicing to render deformed volumes in real time. In
their approach, a backward mapping is employed to modify
the texture coordinates that address the dataset.

One part of our approach is to include the visualization of
the optical flow in the video volume visualization. General
flow visualization methods have a long tradition in scientific
visualization [WEOS]. There exist several different strategies
to display a vector field associated with a flow. One visual
representation used in this work relies on glyphs to show the
direction of a vector field at a collection of sample positions,
e.g., by employing arrows or hedgehogs to visually encode
direction [KH91, Dov95]. Another visual representation re-
lies on the characteristic lines, such as streamlines, obtained
by particle tracing. A major problem of 3D flow visualiza-
tion is the potential loss of visual information due to mutual
occlusion. This problem can be addressed by improving the
perception of streamline structures [IG98] or by appropriate
seeding [GGS02].

(© The Eurographics Association 2006.

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

3. VVR System Architecture

The flow chart in Figure 3 shows the overall system archi-
tecture of VVR, which includes two major functional sub-
systems, namely video processing and video rendering. The
video processing sub-system consists of a collection of fil-
ters for generating a variety of 3D scalar fields and vec-
tor fields that highlight different features of a video. Many
of these filters designed for volume rendering are discussed
in [CBH*05]. In the following section, we will concentrate
on the computation of a flow field from a video volume, and
volumetric seeds for flow geometry.

The video rendering sub-system is the main focus of this
paper. We adapt volume bricking to handle large volume and
flow datasets. One modification is that we partition data only
in the temporal dimension instead of the spatial partitioning
commonly used in traditional volume rendering. As shown
in Figure 3, the bricking process affects most modules in the
rendering sub-system through a loop that triggers a dynamic
update within each module. Because of the existence of this
loop and the logical brick structure, our bricking mechanism
supports scalable multi-field visualization, including video
spans, glyph geometry for flow visualization, and dynamic
streamlines. The rendering framework will be detailed in
Section 5 and the bricking strategy in Section 6.

4. Video Processing
4.1. Optical Flow

One ingredient of our approach is the optical flow of the
video. To compute the optical flow, we adopt a gradient-
based differential method [HS81]. Our implementation is
based on a modified version of the gradient-based differen-
tial method [BFB94].

Let us consider an image sequence as an intensity function
I(p,t), where p = (x,y) is a position on an object in motion,
and ¢ is the time variable. The translation of p with velocity
v = (dx/dt,dy/dr) = (u,v) is thus:

I(p,t) =1(p—v1,0).
A Taylor expansion of the above expression results in
Ix(p7t)u+I)’(p7t)v+lt(p7t) =0)

where I, Iy, and I; are the partial derivatives of I(p,). This
problem is not well posed with two unknown variables (u,v).
It is common to introduce further constraints in order to
solve for (u,v). Many proposed methods including [HS81]
associate the above equation with a global smoothness term,
and perform a cost minimization over a defined domain D:

/D(Ixu L+ 1)+

du du\? av\? av
A2 — — d
Kf?X) +(3y> +(9X) +<3y) } P
where A indicates the influence of the smoothness term,

(© The Eurographics Association 2006.

captured video data

|1

l l Vdeo Processing
Change Edge Optlcal Flow Seed
Detection Detection Estlmatlon Generatlon
extracted 4-band object optical pre-
object difference| |boundary flow computed
volume volume volume field seed list

=

VVR Fr k
[Load Data into the Framework }
Swap ¢
Bricks
[Create Geometry and Fill Volume]
—
User y
Interface [Volume Slicer]
and v
Visualization
Display [Slice Tesselator]
Y
[Horseshoe Bounding Box Renderer]
Abstract Y
Visual . [Horseshoe Flow Geometry Renderer]
Representation ¥
+—[Horseshoe Volume Renderer]

Figure 3: The technical pipeline for processing and visu-
alizing video data. Data files are shown in yellow, pre-
processing modules in grey, software modules in blue, and
GPU modules in green.

which, as suggested in [HS81], is set to 100 in our imple-
mentation. The velocity v = (u,v) is estimated by minimiz-
ing the above integral using an iteration process:

W =0=0
S gk L(Lak + L% + 1)
o2+ IF+ 17
SR gk L (L + 1,7 +1;)
o2 +IE+12

where k is the iteration number, ¥ and 7 are the averages of
uF and V¥, respectively, in a neighborhood domain. We use
60 iteration steps for the results reported in this paper, which
is sufficient for the low resolution videos considered.

4.2. Seed Point Generation

To facilitate the visualization of the optical flow, we need to
determine a set of seed points for particle tracing or for posi-
tioning flow glyphs. The filtering stage that generates seed
points is implemented as a CPU program outside the ac-

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

(a) object frame (b) optical flow (c) frame seeding

Figure 4: Image (a) shows the difference object in the scene,
computed from an empty reference frame. In (b), the optical
Sflow of the frame is shown with green lines. In (c), seeds are
generated based on the optical flow shown in image (b).

tual rendering framework in order to provide most flexibility
in designing the seeding algorithms. Typically, the seeding
stage uses the optical flow and the difference object to de-
termine the seed points. Figure 4 or Color Plate I show ex-
ample frames for seeding. In addition to this external filter,
some basic seeding functionality is also implemented in a
CPU module in the rendering framework for handling cases
where an externally generated seed list is not available.

As detailed in Section 4.1, the 2D vector fields
{v1,v2,...,v,} are computed based on the intensity object
fields {I1,0,...,I,}. Then, the filter stage generates a seed
list for every frame in the form of a sequence of text files
{81,52,...,S,}. We have designed the following 3-phase al-
gorithm for seeding:

1. The algorithm determines a list of all eligible points in v;,
with two control parameters: grid interval and magnitude
threshold. With the grid interval parameter, the user can
superimpose a grid on all the 2D vector fields and only
grid points are eligible to be selected as seed points. With
the magnitude threshold parameter, insignificant motion
with a magnitude less than the threshold is filtered out.

2. The algorithm sorts the list of eligible seed points accord-
ing to some criteria of visual importance, typically for in-
stance, the magnitude of the motion vector at each point.

3. Finally, the algorithm selects a set of seeds from the
sorted list. The user has the option to select all points, to
select the first N points, or to select randomly N points in
the list. As the first phase usually produces a large list of
seed points, which could lead to slow rendering as well as
cluttering the visualization, this selection process allows
the list to be trimmed down based on importance.

Figure 4(b) shows an optical flow field estimated for a typi-
cal video frame. Figure 4(c) shows an example of a created
seed list that was generated from the optical flow in Fig-
ure 4(b), using the above algorithm.

5. Rendering Framework

For real-time rendering of large video volumes, GPU meth-
ods are employed to achieve high frame rates. The visual-
ization framework is built upon an existing slice-based vol-
ume renderer [VWEOS]. An advantage of this framework is
its separation of different visualization aspects into differ-
ent software components. The framework is implemented in

Figure 5: Bounding boxes of the P-space (blue) and the ac-
tually rendered volume (yellow). The volume slice planes
(green) are mapped to C-space in the fragment shader:

C++, using the Direct3D graphics API and HLSL as shader
programming language.

In this section, we discuss technical details of video vol-
ume rendering and optical flow visualization. The starting
point for visualization is volume rendering that shows a
scalar field associated with the 3D spacetime video volume.
In combination with appropriate transfer functions, relevant
information of the video volume can be emphasized and un-
interesting regions can be made transparent. A challenge
for video volume visualization is the interactive rendering
of large datasets (see Sections 6), possibly using a distorted
horseshoe geometry (see Section 5.1).

The second part of the visualization system provides a
representation of optical flow by glyphs or streamlines con-
structed by particle tracing (see Section 5.2).

5.1. Distorted Video Volumes

The visible video volume might need to be distorted dur-
ing rendering. Our primary example is the bending into a
horseshoe shape [DCO03], as shown in Figure 5. We use a
backward-mapping approach for rendering such deformed
volumes: instead of deforming the geometry of the volume,
we distort the associated texture coordinates to obtain the
same result [RSSSGO1]. Therefore, planar and view-aligned
slices are rendered with modified 3D texture coordinates.

We describe texture coordinates in a computation space
(C) by (x¢,ye,tc) in the range [0,1]3. Here, x and y denote
the spatial dimensions of a video slice and ¢ denotes the tem-
poral dimension. In contrast, the coordinates in the physical
space (P) — the object space of the distorted volume — are
given by (xp,yp.2p).

For the case of the horseshoe volume, we assume a trans-
formation according to cylindrical coordinates,

(vayPaZP) = (7rCOS(TEZC)7yS yC7rSin(”tC))) (1)
with 7 ="rmin +Arxc and Ar = rmax — "min -
Here, rmax and ryn describe the inner and outer radius of the

horseshoe, respectively. The parameter y; provides a scaling

(© The Eurographics Association 2006.

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

factor for the y dimension. Figure 6 illustrates the different
coordinate systems.

The inverse mapping of Eq. (1) is used to transform
the physical coordinates of the slices to texture coordinates
(xc,yc,tc) that address the video volume. The inverted map-
ping involves inverse trigonometric functions, which are
available in GPU fragment programs. Therefore, the volume
deformation can be implemented by computing texture co-
ordinates in a fragment program during texture slicing. An
example of such a fragment program is provided in Sec-
tion 6. Since the video volume is not illuminated, we can
omit the transformation of volume gradients for appropri-
ate volume shading (see [RSSSGO1] for a description of this
type of transformation).

5.2. Integrating Optical Flow in Volume Visualization

To combine an optical flow field with the distorted scalar
field for the horseshoe video volume, the VVR system al-
lows opaque flow geometry to be added into the scene. The
geometry, in the form of arrow glyphs or traced lines, is cre-
ated on-the-fly by the module FlowGeometryRenderer and
stored in the according geometry buffers before the actual
rendering takes place.

Building the arrow geometry requires two pieces of in-
formation: a point p and a direction v, which are given by
the pre-computed seed points S; and the optical flow vec-
tors v;, as described in Sections 4.1 and 4.2. In fact, we ex-
tend the original optical flow field from a 2D spatial vec-
tor field described by (u,v) to a 3D spacetime vector field
with an additional component along the temporal dimension:
v = (u,v,v). The temporal vector component v, describes
the “velocity” along the time axis of the video volume. So
far, we only use a temporally equidistant sampling of the
video volume. Therefore, v; is constant for the whole vol-
ume and represents the relative speed along the time axis.
We allow the user to define the relative speed v;. The ex-
ample images of this paper use v; = 0 in order to focus on
the motion within individual frames. Based on this 3D opti-
cal flow, for each seed point a reference geometry for glyphs
can be copied to the geometry buffer, and shifted and rotated
into the proper position and orientation.

As an alternative, particle tracing is used to visualize the
trajectory of particles along the flow and to provide informa-
tion of longer moving structures inside a frame. These lines
not only emphasize the distance of a movement but also can
indicate a change in direction. Particle tracing needs more
processing steps and is implemented using Euler integration,

Pit1 = pi +Av(p;) ,)

where p; are positions along the particle trace, v is the op-
tical flow field, and Ar the integration step size. The tracing
procedure can be described as follows. From a given start-
ing point pg, which is chosen out of the seed point list S;, a

(© The Eurographics Association 2006.

1

V =<|- - - visible video segment
global
video f=|- -|- - - single brick of frames
space
0o 7 !
1 geometry 1
1 mapping P
C ol - " physical
computational - horseshoe
Spac volume
space mapping space
0 | 1 —1(hw) 1
, ! 0 (sw)
14 | single volume
B brick mappmg P’

local napping physical
brick/texture texture brick
space lookup space

0 1

Figure 6: Mapping between coordinate systems.

forward integration is applied according to Eq. (2). Here, we
use trilinear interpolation as reconstruction filter for the vec-
tor field. The number of computed integration steps is cho-
sen by the user, manipulating the length of the traced lines.
The rendering of those lines with dynamic texture mapping
is detailed in Section 6.2.1.

One additional issue occurs when the video volume is dis-
torted. In this case, the original vector field data, which is
given in C space, needs to be transformed into the physical
space P in order to obtain correct particle traces or glyph
orientations. Similar to the coordinate transformation for the
scalar field as discussed in Section 5.1, we also need a trans-
formation rule for vector fields. In general, vectors can be
defined as differentials according to

2 ay 2
dy = —dx; = idx; .
Y l;() axi l l;)e’ l

Here, the e; serve as basis for the vectors in the space asso-
ciated with x;. In the case of the horseshoe, we have

ey = oxp = Ar(—cos(mt¢),0,sin(mic))
axc
aXp

e, = e (0,y5,0)
d

e = Sl 7 Ar(sin(mic),0,cos(mec))
aZC

with xp = (xp,yp,zp). With these basis vectors, a vector field
ve = (vx,vy, ;) given in the coordinate system C is trans-
formed to the coordinate system P by

vp = Z €V .

=Xy,

6. Scalable Multi-field Bricking

To visualize a large video dataset that cannot be loaded to
GPU memory en bloc, it is necessary to subdivide the whole
domain into smaller sections that can be handled and pro-
cessed by the GPU. We introduce a generic implementa-
tion that combines volume visualization and the rendering
of flow geometry in scalable user-defined bricks.

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

N,
4 &
S LA i Rt e)
.’\'f\" '*.p?-. Y f
W \:<2;f :Nﬁg?r N '2 |
P '
AR ey T SUE B

Figure 7: Directional textured tracelines in combination
with arrow glyphs.

Let the video V be a set of consecutive 2D image frames
I;,i € {1,..,N}, where N is the total number of frames. We
divide the volume into K > 1 video bricks, where 1 <k <K
bricks are rendered at a time. Each brick, B; C V, contains m
image frames, with B; N B; = 0, where j,l € {1,..,k} Aj#1
and the condition k- m = n, with n < N.

When the GPU memory cannot handle the data size of N
frames, we have the condition n < N. Thus, dynamic brick-
ing needs to be applied to process the data. Each logical
brick is described by two integer values: the number of the
starting frame and the number of frames in the brick. Fur-
thermore, we have a brick-based filter for seed generation,
which is a modified version of that described in Section 4.2.
It enable frames in different bricks to share a pre-processed
seed point list. The input of this shared list is used by all
bricks and a flag indicates for each point whether this seed
point is used for constructing geometry for that brick or not.
Starting from this logical entity, we build the whole dynamic
bricking structure that consists of k£ 3D volume textures that
are shifted through the horseshoe.

6.1. Bricked Video Spans

The video bricks are represented as a pointer structure that
contains k 3D texture objects. Based on the information
given by the logical brick structure, the memory for k tex-
ture objects is allocated and each single volume brick is filled
with its corresponding video frames. Dynamic bricking is re-
alized by reassigning the pointers in a cyclic way, forming a
ring-buffer data structure. Thus, the last texture object con-
tains information that can be overwritten and filled with the
frames that newly enter the horseshoe.

The fragment program that renders a single volume brick
is given in Figure 8. The first line of code scales the tex-
ture coordinates to a range of [—1, 1], because this permits
us to map the cylindrical horseshoe coordinates between —7
and 7. This mapping leads to a half circle in the xz plane, as
required by the bent horseshoe (see Figure 6). The follow-
ing four lines realize the inverse of the mapping in Eq. (1),

float volData, tmpZ; float2 rp;

horseshoe coordinates
float3 lkup;

Cartesian coordinates
float3 txCrd = In.TextureCoord0;

transform to coordinates in P space
txCrd.x = ((txCrd.x*2.0) - 1.0f) * (-1.0f);

map from P to C; compute radius & angle

rp.x = sqgrt (pow (txCrd.x,2) + pow(txCrd.z, 2));
rp.y = atan2 (txCrd.z,txCrd.x);

lkup.x = (rp.x - g_fInRad) / (g_fOutRad - g_fInRad);
lkup.y = txCrd.y; tmpZ = rp.y/g_PI;

map from Cto B
lkup.z = (tmpZ - g_vScaleCrd.x) * g_vScaleCrd.y;

perform 3D texture lookup
volData = tex3D(VOLsmp, lkup);

apply color values and write to buffer
Output .RGBColor = texlD(TFsmp, volData.x);
return Output;

Figure 8: The complete code of an HLSL fragment program
for the bricked, dynamic video spans.

by first computing the radius and angle of the intermediate
cylindrical coordinate system, and then mapping them to the
coordinate system C, which represents the visible part of the
video volume. The final mapping takes the coordinates into
the local coordinate system of the brick B, which is a subset
of the visible video volume C. With these brick-related coor-
dinates, a 3D texture lookup is performed and a final RGB«
value is assigned according to the transfer function.

6.2. Flow Geometry Bricks

The geometry bricks are similarly to the volume bricks held
in a pointer structure that eases the swapping of the bricks
for the dynamic rendering of large video data. Unlike the
volume bricks, a geometry brick only consists of the logical
structure that holds the range information of the currently
visible region. The render geometry for arrows and stream-
lines is constructed for the whole visible horseshoe region
(Section 5.2) only when needed and directly mapped from C
to P (Figure 6). All points that result from particle tracing are
stored in a single vertex buffer and rendered as line strip. The
arrow geometry is stored in an indexed vertex buffer to avoid
redundant vertices. All buffers are rendered as opaque geom-
etry before the semi-transparent volume is displayed with
back to front blending. This rendering order allows us to ac-
curately mix geometry and volume information by means of
the depth test.

6.2.1. Directional Textured Tracelines

Lines are 1D primitives that convey information about the
orientation and extent of a trace along the flow, but fail to
indicate the flow direction. Therefore, we add animation to
highlight the direction of flow. The idea is to attach an ani-
mated 1D texture that moves into the direction of the flow.
The texture needs to have some kind of visual structure so
that its motion can be perceived. In this paper, we use a

(© The Eurographics Association 2006.

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

zebra-like texture, as shown in Figure 7. This image illus-
trates a spinning sphere lying in the xy-plane and rotating
around the z-axis. The arrow glyphs rendered at seed-point
locations show the flow direction at these certain locations.
In contrast, the traced lines provide flow information along
a longer distance, covering more locations of the domain.

For texture mapping, each vertex of a line is assigned a
texture coordinate, with a range between [0, 1] from the first
to the last vertex, respectively. By shifting the local texture
coordinate of each vertex with a global parameter Az, the
texture moves along the line, in direction of the underlying
flow field. The 1D texture does not need to be changed for
the animation and can thus be computed on the CPU and
downloaded to the GPU once.

7. Results and Analysis

The VVR system is capable of visualizing video streams
in real time. With the bricking mechanism, a video stream
can be segmented into small time spans, each of which is
processed in the video processing sub-system and pushed
to the rendering sub-system. The processed multi-field data
are then used to update the visualization. In this way, a con-
tinuous video stream can be visualized as either a series of
horseshoe images, or one dynamically updated image.

The three images in the bottom row of Figure 9 show the
snapshots of three time steps of the ‘LeftBag’ video. From
the upper to the middle image, the horseshoe has been up-
dated four times, i.e., moved by four bricks. From the visu-
alization, we can see a moving object (i.e., a person) that
entered the scene and then left an object (i.e., a bag) in
the scene before exiting. By observing the glyphs associated
with the two objects, we can recognize that the object being
left in the scene remained stationary until a moving object
(in fact the same person) returned and took it away.

Let us consider the visualization of another video clip
shown in the bottom row of Figure 10. In both upper horse-

Table 1: Performance results, in fps, for the ’LeftBag’
dataset with a resolution of 384 x 288 x 1600 pixels. All
timings were measured on a PC with 3.4 GHz Pentium 4
and NVIDIA GeForce 7800 GTX (256MB). The table shows
six different types of rendering styles: volume without video
span (V-S), volume with video span (V+S), volume with
video span and geometry (V+S+G), volume with dynamic
video span (V+DS), and all rendering features combined.

Viewport 800 x 600 1024 x 768 1280 x 1024
V-S 11.04 10.20 8.64
V+S 9.63 7.83 5.47
V+S+G 9.63 7.83 5.47
V+DS 7.40 6.80 5.13
All 7.20 6.65 4.56

(© The Eurographics Association 2006.

frame 820 frame 920 frame 1020

Figure 9: The two upper images show the ‘LeftBag’ video
rendered as bricked volume horseshoe. The three frames in
the lower row present the stages entering, depositing, and
leaving. Ensuing reentering and picking up the box can only
be seen in the horseshoe visualization, or the color plate.

shoe images, a moving object entered the scene and then re-
mained almost motionless for a while before moving again.
In comparison with the ‘LeftBag’ video clip, we can clearly
recognize that there was only one object. In fact, this partic-
ular video shows a drunken man falling on the floor.

In both video clips, each brick covers a time span of
about 3 seconds. With the GPU-assisted techniques de-
scribed above, VVR can update the dynamic image for
each new brick well below one second. The exact timing
for different rendering features is given in Table 1. The ta-
ble demonstrates that flow visualization does not reduce the
overall rendering performance: the video span (i.e., volume)
with geometry (i.e., flow) is rendered at the same speed as
video span only. This behavior can be explained by the fact
that the rendering pipeline of VVR renders the opaque ge-
ometry prior to the translucent volume. With depth testing
activated, the system makes up for the lost speed for render-
ing geometry by neglecting parts of the volume occluded by
the opaque geometry. The results in Table 1 also indicate that
the rendering costs are proportional to the viewport size.

R. P. Botchen, M. Chen, D. Weiskopf, T. Ertl / GPU-assisted Multi-field Video Volume Visualization

frames 100 to 600

frame 615 frame 780 frame 995

Figure 10: Visualization of the ‘Rest_FallOnFloor’ video.
The three frames in the lower row show the stages entering,
lying, and leaving, which can be clearly seen in the upper
horseshoe images.

8. Conclusion and Future Work

In this paper, we have described a system designed specifi-
cally for real-time video volume visualization. In fact, most
of CCTV cameras provide a video stream with an average
of 10 fps or less. Therefore, our basic system is appropriate
for pre-processing and visualizing such a data stream in real
time. Furthermore, our system is capable of handling multi-
field datasets and rendering combined volume and flow vi-
sualization. Our bricking approach has been found to play
a critical role in delivering this technology. Not only does
it enable large multi-field datasets to be accommodated in
memory-restricted graphics hardware, but it also provides a
practical mechanism for visualizing real-time video streams.

A restriction of the system is the size of the streamable
video volume, which is limited by GPU memory. Further-
more, all filters underly the typical problems of image pro-
cessing algorithms, such as effects of changing lighting con-
ditions or background noise produced by the recording de-
vice. One area for future work is to provide a close coupling
between video processing filters and the rendering frame-
work for realizing a full pipeline at an interactive rate. In
addition, direct streaming should be supported; at this stage

of development the video data was streamed from disk, not
from a camera.

Acknowledgements

This work was partly supported by Royal Society UK for
collaboration between Swansea and Stuttgart, and by an
NSERC Discovery Grant to the third author.

References

[BFB94] BARRON J. L., FLEET D. J., BEAUCHEMIN S. S.: Performance of optical
flow techniques. International Journal of Computer Vision 12, 1 (1994), 43-77. 3

[CBH*05] CHEN M., BOTCHEN R. P., HASHIM R. R., WEISKOPF D., ERTL T.,
THORNTON. I.: Visual Signatures in Video Visualization. Technical Report CSR—
19-2005, Department of Computer Science, University of Wales Swansea, November
2005. 3

[CBH*OG] CHEN M., BOTCHEN R. P., HASHIM R. R., WEISKOPF D., ERTL T.,
THORNTON I. M.: Visual signatures in video visualization. In Proc. IEEE Visual-
ization (2006). 2

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume rendering and tomo-
graphic reconstruction using texture mapping hardware. In Proc. IEEE Symposium on
Volume Visualization (1994), pp. 91-98. 2

[DCO3] DANIEL G. W., CHEN M.: Video visualization. In Proc. IEEE Visualization
(2003), pp. 409-416. 1,2,4

[Dov95] DOVEY D.: Vector plots for irregular grids. In IEEE Visualization (1995),
pp. 248-253. 2

[Fis0O4] FISHER R. B.: The PETS04 surveillance ground-truth data sets. In Proc. 6th
IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
(2004), pp. 1-5. 1

[GGS02] GUTHE S., GUMHOLD S., STRASSER W.: Interactive visualization of vol-
umetric vector fields using texture based particles. In WSCG 2002 Conference Proc.
(2002), pp. 33-41. 2

[HS81] HORN B. K. P., SCHUNK B. G.: Determining optical flow. Artificial Intelli-
gence 17 (1981), 185-201. 3

[IG98] INTERRANTE V., GROSCH C.: Visualizing 3D flow. IEEE Computer Graphics
& Applications 18,4 (1998), 49-53. 2

[KH91] KLASSEN R. V., HARRINGTON S. J.: Shadowed hedgehogs: A technique for
visualizing 2D slices of 3D vector fields. In IEEE Visualization (1991), pp. 148-153.
2

[KY97] KURZION Y., YAGEL R.: Interactive space deformation with hardware-assisted
rendering. IEEE Computer Graphics & Applications 17,5 (1997), 66-77. 2

[RSSSGO1] REZK-SALAMA C., SCHEUERING M., SOZA G., GREINER G.: Fast vol-
umetric deformation on general purpose hardware. In Proc. SIGGRAPH/Eurographics
Workshop on Graphics Hardware (2001), pp. 17-24. 2,4, 5

[VWEO5] VOLLRATH J. E., WEISKOPF D., ERTL T.: A generic software framework
for the GPU volume rendering pipeline. In Proc. Vision, Modeling, and Visualization
(2005), pp. 391-398. 4

[WEO5] WEISKOPF D., ERLEBACHER G.: Overview of flow visualization. In The
Visualization Handbook, Hansen C. D., Johnson C. R., (Eds.). Elsevier, Amsterdam,
2005, pp. 261-278. 2

(© The Eurographics Association 2006.

