
 ©The Eurographics Association 2006.

1. Introduction

Volumetric datasets can have many origins. They can be
the output of numerical simulations, such as CFD, finite ele-
ments, finite difference, and other calculations of this
nature. They may also be generated by inverse Fourier
transform, which is the case for MRI imaging. And they can
be the product of the voxelization of analytical functions or
polygonal objects. Finally, they can result from tomographic
reconstruction (CT), which is a process invoked whenever
an object is scanned with a transmissive radiation, such as
X-ray, ultrasound, or infrared light. In CT, an object is irra-
diated with a transmissive source on one side and a projec-
tion is acquired on the other side. This process is repeated at
a sufficient range of viewing angles, and the resulting pro-
jection set is processed in the CT reconstruction procedure.
Major applications are in medical imaging and also in
industrial CT and security. The well-known engine dataset,
for example, was obtained via industrial CT. Medical imag-
ing with CT is ubiquitous. It is a relatively inexpensive
scanning technology, when compared to MRI, and has many
diagnostic applications in medicine. Almost all parts of the
human body can be imaged and diagnosed with CT imag-
ing. This paper is dedicated to the large body of datasets
obtained with CT reconstruction methods.

There are a number of different scanning geometries:
parallel beam, fan-beam, cone-beam, and spiral (helical)

CT. Reconstruction algorithms for the former two geome-
tries are referred to as slice-based CT, while the latter are
referred to as volumetric CT. In fact, spiral CT has become a
multi-slice acquisition method, that is, a stacked (multi-
slice) array of detector arrays rotates about the patient, with
a cone-beam source irradiating the patient. Nowadays, spi-
ral CT scanners with up to 64-slices are employed in clinical
practice. For fan and spiral beam geometries, there exists
the ability to rebin the projection data into parallel-beam
data. If a sufficient amount of projection (ray) data have
been collected, then one may sort these rays into equivalent
bins of parallel beam rays, which can then be used in con-
junction with conventional parallel-beam CT reconstruction
methods. However, there are also reconstruction methods
for fan-beam, cone-beam, and spiral CT which do not use
rebinning. This is the domain of the exact reconstruction
methods, as described in [KS88, Kat04, KND00, TSS98,
TD00, Gra91] and others. Finally, there are also approxi-
mate methods that work well in practice and are very popu-
lar, under certain conditions. For example, Feldkamp’s
algorithm [FDK84] is often used in cone-beam reconstruc-
tion and produces good results for sufficiently small cone-
angles < 20°.

The original volume rendering framework of D2VR
[RCG*06] assumes that the CT reconstruction resulting in
the volume dataset is (or better, would have been) obtained
with parallel beam data and algorithms. However, direct fan

GPU-Accelerated D2VR

Fang Xu Klaus Mueller

Center for Visual Computing, Computer Science, Stony Brook University

Abstract

Traditional volume rendering approaches rely on obtaining values of sampled points in volumetric space, typically on a
cartesian grid. Often, this cartesian grid is not the original source of the data. For example, in tomographic imaging appli-
cations, such as used in diagnostic medical or industrial CT, the primary source of the data is the set of X-ray projections
taken around the object. To enable visualization with established volume rendering methods, the volume must first be
reconstructed from these projections. Since sampling is involved, this process introduces errors, adversely impacting
image quality. Recently a new rendering technique was proposed, named D2VR, which skips the intermediate reconstruc-
tion step entirely and samples the projections directly. It was shown that doing so can improve image quality significantly.
But despite its great promise, a shortcoming of the method was its comparatively slow rendering speed. Interactive or at
least near-interactive speed, however, is critical for clinical deployment of a visualization framework. To address this
shortcoming, our paper proposes a GPU-accelerated D2VR, with facilities for occlusion culling and empty space skipping
to achieve further speedups.

Categories and Subject Descriptors (according to ACM CSS): I.3.3 [Computer Graphics]: Display Algorithms.

Volume Graphics (2006)
T. Möller, R. Machiraju, T. Ertl, M. Chen (Editors) 23

http://www.eg.org
http://diglib.eg.org

©The Eurographics Association 2006.

and cone-beam reconstruction geometries would also be
feasible with D2VR. Finally, the more complicated recon-
struction techniques used in advanced spiral-CT algorithms
could be considered as well, but these would produce a
larger amount of overhead.

CT reconstruction is a data conversion process, and due
to associated sampling with imperfect filters, it is a lossy
data conversion process. CT reconstruction is needed to
convert the data into the format used by traditional volume
renderers. D2VR, on the other hand, is a non-traditional vol-
ume renderer, which does not require the data conversion
and instead produces volume renderings directly from the
raw projection data, eliminating the errors incurred in the
conversion process.

D2VR traverses the volume space as usual, but instead of
performing the sampling there, it maps the sample positions
into each projection image and interpolates the data in
those. A sample value is then composed by adding all con-
tributions so obtained. By finding the derivatives in each
projection image, one can reconstruct the sample gradient in
a similar fashion. Once the sample and gradient values have
been obtained, the usual transfer function lookup, shading,
and compositing can take place. In essence, the 3D array of
sample values that ensue from this process are those that
would be generated with a parallel-beam CT reconstruction,
had the volume grid been placed at this orientation. There-
fore, one may say that the result using an axis-aligned vol-
ume rendering with traditional techniques and D2VR are
identical (assuming the gradients were calculated in volume
space in both cases).

One should note, however, that the CT-based data con-
version process does not only produce data in a format that
is more convenient to render, it also reduces the overall data
complexity. Assuming fan-beam geometry and rendering at
no magnification, alias-free reconstruction requires π/2·N
projections to reconstruct a slice with N2 voxels [KS88].
Thus, with D2VR, each sample requires π/2·N bilinear inter-
polations, which is substantially more effort than the K3

neighbors needed for an interpolation in volume space (with
K being the 1D extent of the interpolation filter). Even with
acceleration techniques, such as empty space skipping and
early ray-termination, which reduce the number of samples
to be computed (at complexity π/2·N), GPU-assistance in
this task still seems necessary to overcome this great com-
putational burden. Our paper describes such a GPU-acceler-
ation approach.

The paper’s structure is as follows. First, in Section 2, we
briefly discuss related work on GPU-accelerated volume
rendering and CT. Then, in Section 3, we describe our basic
GPU CT reconstruction framework, which is followed by
Section 4 where we describe the GPU accelerated D2VR.
Finally, Sections 5 and 6 present results and conclusions.

2. Related Work

The combination of volume rendering and CT on graph-
ics hardware is not new. Already in 1995, Cabral et al.
[CCF94] utilized the inverse relationship of these two pro-
cedures to derive a common mathematical theory for both
plus a common framework that would accelerate them on
SGI texture mapping hardware. The capabilities of this
hardware were quite limited, and in this early work the
hardware was mainly used to accelerate the rasterization
effort. Much of the work, such as accumulation and filtering
in CT, had to be performed on the CPU. There was also no
direct connection of CT and volume rendering, such as the
one that was formulated for D2VR. The same hardware was
later used by Mueller and Yagel [MY00] to accelerate itera-
tive CT algorithms, such as SART (Simultaneous Algebraic
Reconstruction Technique). This approach showed how two
color channels with 8-bit precision could be combined to
reach higher precision for integer-arithmetic. With the evo-
lution of GPUs more sophisticated CT implementations
were possible. Xu and Mueller [XM05] described a general
framework for GPU-accelerated CT, spanning iterative and
analytical algorithms for transmission (CT) as well as emis-
sion tomography (PET, SPECT), fully accelerated on the
GPU. They achieved speedups of 1-2 orders of magnitude,
compared with CPU implementations of the same accuracy.
Chidlow and Möller [CM03] described a GPU-accelerated
implementation for SPECT imaging, but the accumulation
stage was exported to the CPU.

The GPU has been the source of many acceleration
efforts for volume rendering as well. As mentioned before,
the common ancestor for both domains is Cabral et al.
[CCF94], but the work that followed on the volume render-
ing track was much more prolific. While the implementa-
tions using the SGI rendering hardware were constrained by
the limited set of operations, the revolution of the more
recent PC-based graphics hardware took away most of these
restrictions. In the following, we shall just name a few of the
most prominent advancements, for regular grids. First, there
is the work by Rezk-Salama et al. [RSE*00], which used
multi-texturing to enable fully-hardware based volume ren-
dering, and there is the work by Engel et al. [EKE01], which
introduced pre-integrated volume rendering to eliminate the
stair-stepping artifacts caused by the common slice-based
rendering paradigm. A more recent work is that by Krüger
and Westermann [KW03] who describe a ray-casting imple-
mentation, fully GPU-accelerated. Their implementation
also includes mechanisms for early ray-termination and
empty-space skipping, the latter by using a low-resolution
occupancy octree. Neophytou and Mueller [NM05] showed
how the z-buffer’s early fragment-kill capabilities can be
exploited to skip over empty space and voxels that would
project into already opaque image regions. The latest devel-
opment is the system proposed by Stegmeier et al. [SSE05],
which completely eliminates the use of slice rasterization

24

©The Eurographics Association 2006.

and runs the entire ray advancement in a single fragment
shader loop. This bears some advantages for the implementa-
tion of non-linear ray effects, such as refractions.

The approach presented here builds on our GPU-acceler-
ated CT framework for filtered backprojection [MX06],
which we call RapidCT (http://www.rapidCT.com) but gener-
alizes it substantially. First, it allows the reconstruction of
arbitrary oriented volumes, which is not needed for CT, but is
necessary for D2VR since we must generate a matrix of sam-
ples exactly aligned with the image plane, whose orientation
is completely arbitrary. Second, we incorporate various accel-
eration techniques to limit the reconstruction effort to only the
visible and non-occluded (the relevant) matrix samples. Our
system enables framerates of 2 frames/s and more for realistic
dataset sizes.

3. GPU Accelerated Filtered Backprojection

In this section, we will first briefly discuss the theory of
CT reconstruction with filtered backprojection, generalized to
the cone-beam projection geometry. Then we will outline two
different methods that are well suited for its acceleration on
the GPU. These methods make ample use of the fast built-in
circuitry on GPUs.

3.1. Theory and Algorithm

Filtered backprojection is the most popular algorithm for
computed tomography. Feldkamp’s (FDK) algorithm
[FDK84] is a popular method used for cone-beam CT, but
when executed in orthographic mode it is essentially a 3D
extension of a series of 2D filtered backprojections, one for
each row of the 2D projection. By assuming a circular trajec-
tory with the object under reconstruction placed in the center,
we can model and discretize the equation of transmissive
tomography of a volumetric model on a grid size of as
(see also Fig. 1):

(1)

Here, t is the parametric variable defined along the ray, and
L is the distance between the source and the detector bin. The
μ are the attenuation factors of voxels while the p are the pixel
values recorded on the detector. The wij are the weights with
which the values of the μj contribute to the pixels pi. The
backprojector is the inverse of (1). It is written as:

(2)

where the vj can be any quantity to be reconstructed (here, μ)
and the wij are as before.

The FDK algorithm first filters the acquired images along
their columns, using a ramp filter such as Shepp-Logan, Ram-
Lak, etc. [KS88], before backprojecting them into the volume.
The filtering is efficiently done in the frequency domain,
since the filter is usually large in the spatial domain. The fre-
quency transform can be performed using FFTW (http://
www.fftw.org) or on the GPU directly [JRH*04].

For a cone-beam geometry, during backprojection, the wij
must be multiplied by a depth correction factor:

(3)

Here, Y and Z return a voxel’s y and z coordinate, a is the
source-axis distance, ϕr is the principal orientation angle of
the r-th projection (), and wij(d) is
the depth-weighted wij in (2).

3.2. GPU Implementation

A straightforward method to implement backprojection on
the GPU is to simulate the procedure of projecting a volume
slice onto the image plane, which is done by using projective
textures [SKv*92]. It computes the transformation matrix
between the projection and the volume slice to be back-
projected, and then uses it as the texture matrix to guide the
“reverse” texture mapping. An FDK implementation using
projective textures requires two volume slice stacks, one for
each major direction, X and Z (Y is the axis about which the
projection rotates, see Fig. 2). Projections are divided into two
sets accordingly, depending on which axis (X or Z) they are
more perpendicular to. Each volume slice then receives back-
projection from all projection images that belong to the corre-
sponding set. With this implementation, two copies of the
volume slices need to remain in the GPU memory at any time,
occupying precious video memory. In addition, two stacks of
volume slice must be merged at the end of the reconstruction
to produce the final result.

Alternatively, we can sample the volume into a horizontal
stack whose axis is aligned with the rotation axis. Then under
orthographic settings, each row of the projection is bound as a

Figure 1: Principle of computed tomography

N3

pi μ t() td

0

L

∫ μjwij
j 0=

N3 1–

∑= =

vj piwij
pi Pϕ∈
∑=

wij d() wij
a2

a Y vj() Z vj()+ ϕ ϕr–()cos+()
2---=

ϕ arc Y vj()() Z vj()()⁄()tan=

25

©The Eurographics Association 2006.

1D texture and spread across the buffer to form its contribu-
tion to that volume slice. This method was also used, for
parallel-beam projection by [CM03], and then extended to
cone-beam by us [MX06]. Here, we group the spreading
operations from all projection angles with respect to a cer-
tain volume slice, accumulate all spreading results, and then
move forward to the next slice. During the accumulation,
we create a large texture sheet containing sub-textures of
individual contribution from each projection angle. Then a
multi-pass accumulation step is performed in the fragment
shader to sum the tiles up, which completes the reconstruc-
tion of a volume slice. An alternative way to implement this
is to compute the transformation matrices for each voxel,
which designates its sampling locations on the projections.
We iterate through a loop for all projection angles in the
fragment shader to fetch and sum all sample values to every
voxel on a slice. With the spreading setup, only one slice
stack is needed to represent the volume and therefore no
merge operation needs to be executed in the end. But the
drawback for this algorithm is that all projections need to
remain in memory until the whole volume is reconstructed.

3.3. Acceleration by Precision Tuning

Computed tomography applications involve the process-
ing of large amounts of data which can easily introduce
memory traffic congestions due to pipeline stalls on limited
bandwidth. So it is natural to reduce the size of the input
dataset by using integer representations. This strategy can
partially alleviate the bandwidth problem, since now more
projections can be streamed through the GPU within the
same amount of time, which yields real speedup. Since pro-
jection datasets acquired from commercial CT scanners are
usually in 8-bit or 16-bit precision format, it is justifiable to
conduct the backprojection operations in 8-bit through the
fixed-function pipeline (although sometimes the pre-filter-
ing operation may produce higher precision depth). Note,
however, that the accumulation still has to be done in float-
ing point precision to avoid overflow.

To test these theories we have conducted various experi-
ments using the 3D Shepp-Logan brain phantom, the indus-

try standard for CT. It has features of extremely low contrast
(less than 0.5%), which is about one intensity level in the
typical range used in volume rendering, [0, 255]. There, we
have seen that narrowing down the dynamic range from 32
to 8 bits during the backprojection procedure will result a
loss of detail, which subsequently leads to streak artifacts.
These artifacts are much reduced on datasets whose contrast
constraint is slightly weakened (1%). Thus, while this will
not be quite sufficient for high-precision volume rendering,
it may serve as a previewing mode. As a compromise, a
“pseudo 16-bit” scheme was proposed to enhance the recon-
struction quality of the 8-bit rasterization pipeline without
losing its faster processing ability. For this, we first com-
press the dynamic range of the 32-bit data into 16-bit integer
words. We then separate each 16-bit word into higher and
lower 8-bit bytes. Two backprojection passes are performed
individually to generate two accumulation sheets from both
bytes. During the accumulation stage, the sheet computed
from the higher 8-bit byte is shifted to the left and added to
the other one. Note this method loses the information of the
lower 8-bit of the higher 8-bit texture during the interpola-
tion, but in practice, for the Shepp-Logan phantom, we were
able to achieve excellent reconstruction results [MX06].
The two-pass strategy takes twice as long as the one-pass 8-
bit reconstruction, but it is still 5 times faster than the full
floating point reconstruction.

4. GPU D2VR Implementation

In this section, we first describe the basic GPU D2VR
framework and then the various techniques which can be
used to accelerate it further.

4.1 Basic GPU D2VR Framework

Let us assume an arrangement in which all projections
are distributed around a circular orbit. In order to achieve a
maximal volume resolution N3, which we would like to
reconstruct without aliasing, we need to have M=π/2·N pro-
jections distributed around a half circle, assuming parallel
beam data. It is our goal to be able to reconstruct image-
aligned volume slices in front-to-back order, since this will
enable us to perform occlusion culling. Let us assume that

Figure 2: Two alternative backprojection methods: (left) projective texture, (right) texture spreading

26

©The Eurographics Association 2006.

the projections are perpendicular to the x-z plane. Then we
can use the projective texture method to reconstruct volume
slices given that the viewing vector is tilted within a range of
±45° perpendicular to the x-z plane. If the vector exceeds this
range, we must either provide another orthogonal set of pro-
jection images arranged in a circular orbit around the x-y
plane, or we switch to the texture spreading method. In the
latter case, we will be able to make do with just one set of pro-
jections. But if we only want to use one type of method for all
viewpoints, then we need to provide two orthogonal half-
orbits of projections, equally spaced in angle. This, in fact, is
in line with Tuy’s condition [Tuy83] for exact 3D reconstruc-
tion from projection data.

When the projective texture method is used, we first rotate
the volume proxy polygons so that one slice set is perpendicu-
lar and the other is orthogonal to the viewing vector. We
define these slices as viewing (V) and support (S) stacks,
respectively. Accordingly, we divide the projections into one
V-set and one S-set, based on which stack they are more per-
pendicular to. The S-stack is first reconstructed from projec-
tions from the S-set. Then we shuffle the partially
reconstructed volume into the V-stack, which is used for ren-
dering. The data transfer can be implemented on the GPU by
repeatedly rendering different columns of a source texture
from one stack to the same column on all target textures from
the other stack (see Fig. 3). This operation is quite fast. We
then use the V-stack to fully accumulate/reconstruct the vol-
ume, at which time we can shade and composite.

4.2 Gradient Estimation

In D2VR, we have two choices. We can either reconstruct
only the densities and then compute the gradients in volume
space directly by central-differencing adjacent samples in all
three orthogonal directions, or we can estimate the gradients
in projection space and reconstruct the gradients as well. Note
that when computed in projection space, the two gradient
components more parallel to the viewing direction should be
scaled with cosθ and sinθ, where θ is the projection angle
with respect to the image. We call this approach gradient-
from-reconstruction (GFR). The projection space gradient is
stored into the RGB color channels with the alpha channel
carrying the filtered density values and both properties are

reconstructed at the same time. The other approach, called
gradient-from-samples (GFS), reconstructs only the density
values and performs the gradient estimation from these sam-
ples in volume space. This reduces the memory bandwidth in
the accumulator. It benefits the reconstruction stage but slows
down the rendering procedure, but since memory bandwidth
is usually the GPU-bottleneck, this tradeoff is advantageous.
The computation of gradients in this approach will require 6
neighborhood samples when the central-difference operator is
used, and each such sample should be a direct neighbor.

The GFS also tends to produce images of higher perceived
definition (or visual sharpness and acuity) than the GFR. As a
justification, consider the following. Let us first compare the
D2VR with regular DVR in terms of their filter pipelines:

(4)

In this equation, p are the projection data, hp and hv are the
interpolation filters in projection and volume space, respec-
tively, and R is the reconstruction operator with N being the
number of projections. This is a formal way to show that
D2VR’s filter pipeline only involves one interpolation filter,
and thus produces lesser artifacts.

Most gradient filters, in particular the central difference fil-
ter, fall off towards the highest frequencies and mostly accen-
tuate the midrange frequencies (see e.g. [BBT96]). This is a
good feature in some respect since it reduces the effect of
noise, which typically resides in the higher bands. But on the
other hand, the sharpness of the gradients also suffers, since
the desirable (signal) portions of the higher bands are now
missing. The difference of GFP and GFS are most prominent
when upsampling during the D2VR, that is, when the view-
port has a higher resolution than the reconstructed volume
slices. We shall explain this now. Consider the following pair
of filter pipelines for gradient computation, assuming D2VR
is used for both:

(5)

We observe that with the GFP method the gradient filter gp is
applied first, in projection space (followed by filtering with
the ramp-filter), and then, within the reconstruction R, the
upsampling of the above-mentioned band-passed frequency
spectrum is performed, using interpolation filter hp. On the
other hand, for GFS the unlimited (ramp-filtered) frequency
spectrum is interpolated first, using hp in reconstruction R,
which then undergoes the band-passing of the gradient filter,
in volume space. Here, the upsampling plays an important
role. It stretches the most-active (mid-range) frequency win-
dow of the gradient filter into the higher frequency bands of
the reconstructed slices (that is, it better approximates the

Figure 3: Shuffling operation to swap texture stacks

CT DVR+ R p hp⊗{ }N hv⊗→

D2VR R p hp⊗{ }N→

GFP R p gp⊗() hp⊗{ }N→

GFS R p hp⊗{ }N gv⊗→

27

©The Eurographics Association 2006.

ideal ramp filter), and thus accentuates these higher fre-
quencies more than GFP. This leads to stronger gradients,
and therefore sharper object features, but also possibly to
enhanced noise.

For D2VR there is a special advantage that comes with
the texture-spreading method. If projections are spread onto
the slice stack orthogonal to the view point, we can immedi-
ately start shading and compositing the reconstructed slice
as soon as the accumulation process from all projections is
finished. This assumes that the gradients are reconstructed.
Just like in the projective texture method, when only the
density values are reconstructed, we need to wait until the
slice behind it is generated, in order to compute the gradi-
ents using the central difference operator.

4.3 Viewport vs. Volume Resolution

When determining the resolution of the volume slices to
be reconstructed from the projection data to obtain an image
at a certain viewport resolution, one should realize that CT
projection data of a certain resolution, say N2, will not be
able to yield a volume of higher resolution than N3 (assum-
ing there are a sufficient number of them, theoretically π/
2·N, as mentioned before). This is due to the frequency
spectrum as derived from the Fourier Projection Slice Theo-
rem. Therefore, reconstructing density volume slices at the
resolution of the projection data, with subsequent upsam-
pling of these to the viewport resolution will produce simi-
lar results, provided a decent interpolation filter is used to
sufficiently suppress aliasing. An obvious consequence is
faster rendering speed, since in-slice density upsampling is
less expensive than density reconstruction on a finer grid.
Classification and shading is performed on the high-resolu-
tion grid in both such pipelines.

4.4 GPU D2VR Acceleration Methods

According to the theory of computed tomography, recon-
structed voxel values are valid only for those voxels that fall
into the “effective” reconstruction area, which is a (trun-
cated) circle for a 2D (rectangle) square volume slice, or a
(truncated) cylinder for a 3D cubic (rectangular solid) vol-
ume, assuming parallel beam reconstruction. Hence we can
calculate the initial bounding volume and slice it according
to the viewing direction. We then use these bounding vol-
ume slices as our depth buffer to guide the reconstruction,
which essentially restricts the computation within the effec-
tive area throughout the whole reconstruction pipeline. A
more sophisticated scheme would, as a preprocess, recon-
struct a volume mask that would label all voxels that are in
the shadow of all non-zero projection data. This occupancy
mask could then be sliced, for each visualization frame,
with the present slice configuration to drive the reconstruc-
tion more accurately than the bounding sphere. This is
equivalent to empty space skipping, with the former method
being a good approximation for many cases.

We shall now turn to early ray termination acceleration,
aka occlusion culling (the mechanism for GPU-D2VR is
illustrated in Fig. 4). For this, we must reconstruct the slice
stack in front-to-back order. When a new slice is computed
from all projections, we composite it with the current frame
buffer. We then examine every fragment’s opacity value and
compare it to the preset threshold, which usually varies
between 0.0 to 1.0, depending on the rendering mode (iso-
surface or full volume rendering). All those fragments
whose opacity values exceed the threshold will be recorded
to update the depth buffer. The updated depth buffer will
then be used for the reconstruction of the next slice to pre-
vent the GPU from generating fragments at those marked
positions (which is the early z-buffer kill mechanism). The
technique effectively eliminates the need for reconstructing
voxels that do not contribute to rendering, hence it greatly
reduces the effort consumed on the computational intensive
component. For iso-surface rendering, where emitted rays
are generally terminated early, this rendering-driven tech-
nique can achieve good speed-ups. Implementation-wise,
the effect of early z-culling largely relies on how long the
rendering of a fragment would take. Low computational
effort ratio with respect to a single fragment could offset the
advantage brought by early z-cull mechanism. Therefore,
the spreading method that incorporates a longer fragment
shader tends to benefit more from the above acceleration
strategies, compared to the projective texture method, where
texture mapping imposes relatively light rendering efforts
on individual fragments.

5. Results

We experimented with the GPU-D2VR framework on an
AMD Athlon 2.2GHz dual core PC with 1GB RAM and a
GeForce 6800 GT. Shaded images were rendered into either
a 1282 or a 2562 viewport.

Timings for the different strategies described, using vari-
ous CT datasets, are presented in Table 1. We observe a
speedup of a factor 1.5 for density-only D2VR over den-
sity+gradient D2VR. The 2563 size of volume could not be
reconstructed with both density and gradients since it
exceeds the current maximum size of the GPU memory. The

Figure 4: Rendering-driven occlusion culling

28

©The Eurographics Association 2006.

acceleration techniques mentioned in Section 4.4 also yielded
a factor of 1.5 speedup, as compared to their respective basic
GPU D2VR counterparts.

A near interactive performance (2.5 fps) is obtained for
volumes of size 1283 when rendered into a 1282 viewport.
Rendering into a larger viewport of 2562 with in-slice interpo-
lation of 1283 reconstructions (as described above) only
decreases performance by a small amount (1.7 fps). On the
other hand, rendering from a 2563 reconstruction volume
takes 4 times as much (0.6 fps).

The timings reported in [Rau05] always match the recon-
struction volume resolution with the viewport resolution.
Their CPU and GPU implementations take about 1453 s and
0.25 fps, respectively, for 128 1282 projections and a 2562

viewport. Our framework offers a fairly large speedup over
these. The timings presented in Table 1 use the floating point
pipeline. If we use the dual-channel 16-bit pipeline, as men-
tioned in Section 3, we can obtain another speedup of 2.

Rendering results are presented in Fig. 5. We produced
images with the GPU D2VR projection-based volume render-
ing with density only as well as with density+gradient render-
ings. The images are similar in quality than those reported in
[RCG*06]. We show images rendered with all methods dis-
cussed in the paper, including one rendered with the 16-bit
pipeline. We observe that the images rendered with D2VR
reconstructing the gradients in volume space seem to have
higher feature definition on zooms than those where the gradi-
ents were backprojected. A theoretical justification for this
was presented in Section 4.2. At the same time, the method is
also more computationally efficient.

We also observe that reconstruction into a larger viewport
indeed does not require a reconstruction into a volume grid of
identical resolution. Fig. 5(i)(k) show that an upsampling on a
slice-basis, followed by classification and shading produces
very similar results (compare with Fig. 5(h)(j)). Finally, we

also observe (in Fig. 5(g)) that the 16-bit pipeline produces
high-quality images as well.

6. Conclusions

We have described an efficient GPU-based method to
accelerate the D2VR method. For this we have built on our
GPU-accelerated CT framework and extended it in the fol-
lowing ways. First, we allowed the reconstruction of arbitrary
oriented volumes, which is not needed for CT, but is neces-
sary for D2VR since we must generate a matrix of samples
exactly aligned with the image plane, whose orientation is
completely arbitrary. Second, we incorporated various accel-
eration techniques to limit the reconstruction effort to only the
visible and non-occluded (the relevant) matrix samples. Our
system enables framerates of up to 2 frames/s for realistic
dataset sizes, which is 1-2 orders of magnitudes faster than the
software solution. Next, we plan to extend the method to
functional CT data, which reconstructs an emission volume,
not a density volume, in which voxels “glow” on their own.
We also plan to apply more accurate reconstruction schemes,
such as the inverse Radon transform, and the D2VR rendering
directly from spiral CT data. Finally, in the spirit of D2VR we
also plan to volume-render MRI k-space data directly from
the frequency domain.

Acknowledgements

This research was supported, in part, by NSF CAREER
grant ACI-0093157 and NIH grant 5R21EB004099-02.

Table 1: Rendering performance in seconds for various datasets under different strategies: D2VR is projection-based volume
rendering with reconstruction of density only (GFS); D2VR-G is the projection-based volume rendering with reconstruction of
both density and gradient properties (GFP); B uses the bounding volume empty-space culling strategy, and OC uses occlusion
culling. All of the above timings are measured with shading.

Dataset Projections Volume Viewport D2VR D2VR-G D2VR+B D2VR+B+OC
Rasterized
Voxels (%) in Fig. 5

Foot (iso 1) 128 × 1282 1283 1282 0.62 0.85 0.54 0.41 (2.4 fps) 37% N/A

Foot (iso 1) 128 × 1282 1283 2562 0.8 0.95 0.72 0.59 (1.7 fps) 37% (e)(f)

Foot (iso 2) 128 × 1282 1283 2562 0.8 1.0 0.72 0.66 (1.5 fps) 36.1% (k)

Foot (iso 2) 128 × 1282 2563 2562 2.3 N/A 2.0 1.67 (0.6 fps) 36.0% (j)

Chapel Hill Head 128 × 1282 1283 2562 0.8 1.1 0.94 0.7 (1.4 fps) 24.2% (c)(d)

Toes 256 × 2562 2563 2562 4.93 N/A 4.26 3.5 (0.3 fps) 31.6% (l)

29

©The Eurographics Association 2006.

References

[BBT96] M. Bentum, B. Lichtenbelt, and T. Malzbender,
“Frequency analysis of gradient estimators in volume ren-
dering,” IEEE Transactions on Visualization and Com-
puter Graphics, 2(3):242-254, 1996.

[CCF94] B. Cabral, N. Cam and J. Foran. Accelerated vol-
ume rendering and tomographic reconstruction using tex-
ture mapping hardware. In Proceedings of the 1994
symposium on Volume visualization, pages 91–98. ACM
Press, 1994.

[CM03] K. Chidlow and T. Möller. Rapid emission tomogra-
phy reconstruction. In Proceedings of the 2003 Euro-
graphics/IEEE TVCG Workshop on Volume graphics,
pages 15–26. ACM Press, 2003.

[EKE01] K. Engel, M. Kraus and T. Ertl. High-quality pre-
integrated volume rendering using hardware-accelerated
pixel shading. In Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS workshop on on Graphics hardware,
pages 9–16. ACM Press, 2001.

[FDK84] L. A. Feldkamp, L. Davis and J. W. Kress. Practi-
cal cone beam algorithm. Journal of the Optical Society
of America, pages 612–619, 1984.

[Gra91] P. Grangeat. Mathematical framework of cone beam
3D reconstruction via the first derivative of the Radon
transform. Lecture notes in Mathematics, pages 66–97,
1991.

[JRH*04] T. Jansen, B. von Rymon-Lipinski, N. Hanssen
and E. Keeve. Fourier volume rendering on the GPU
using a Split-Stream-FFT. Proceedings of the Vision,
Modeling, and Visualization Conference 2004, pages
395–403, 2004.

[Kat04] A. I. Katsevich. An improved exact filtered back-
projection algorithm for spiral computed tomography.
Adv. Appl. Math., 32(4):681–697, 2004.

[KS88] A. C. Kak and M. Slaney. Principles of Computer-
ized Tomographic Imaging, IEEE Press, 1988.

[KW03] J. Krüeger and R. Westermann. Acceleration tech-
niques for GPU-based volume rendering. In Proceedings
of IEEE Visualization 2003, 2003.

[KND00] H. Kudo, F. Noo and M. Defrise. Quasi-exact fil-
tered backprojection algorithm for long-object problem in
helical cone-beam tomography. IEEE Transactions of
Medical Imaging, 19(9):902–921, 2000.

[MX06] K. Mueller and F. Xu. Practical considerations for
GPU-Accelerated CT. In IEEE International Symposium
on Biomedical Imaging, 2006.

[MY00] K. Mueller and R. Yagel. Rapid 3-D cone-beam
reconstruction with the simultaneous algebraic recon-
struction technique (SART) using 2-D texture mapping
hardware. IEEE Transactions on Medical Imaging,
19(12):1227–1237, 2000.

[NM05] N. Neophytou and K. Mueller. GPU accelerated
image aligned splatting. In Volume Graphics 2005, pages
197–205, 2005.

[Rau05] P. Rautek. D2VR high-quality volume rendering of
projection-based volumetric data. Master’s Thesis, 2005.

[RCG*06] P. Rautek, B. Csébfalvi, S. Grimm, S. Bruckner,
E. Groller. D2VR: High-quality volume rendering of pro-
jection-based volumetric data. In Joint Eurographics -
IEEE TCVG Symposium on Visualization, 2006.

[RSE*00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl. Interactive volume rendering on standard PC
graphics hardware using multi-textures and multi-stage
rasterization. In Proceedings of the Eurographics/SIG-
GRAPH Workshop on Graphics Hardware, pages 109–
118, 2000.

[SKv*92] M. Segal, C. Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadows and lighting
effects using texture mapping. In Proceedings of the 19th
annual conference on computer graphics and interactive
techniques, pages 249–252. ACM Press, 1992.

[SSE05] T. Klein S. Stegmaier, M. Strengert and T. Ertl. A
simple and flexible volume rendering framework for
graphics-hardware-based raycasting. In Volume Graphics
Workshop, pages 187–195, 2005.

[TSS98] K. C. Tam, S. Samarasekera and F. Sauer. Exact
cone beam CT with a spiral scan. Physics in Medicine and
Biology, 43:1015–1024, 1998.

[TD00] H. Turbell and P.-E. Danielsson. Helical cone beam
tomography. International Journal of Imaging Systems
and Technology, 11:91–100, 2000.

[Tuy83] H. K. Tuy. An inversion formula for cone-beam
reconstruction. SIAM Journal on Applied Mathematics,
43:546–552, 1983.

[XM05] F. Xu and K. Mueller. Accelerating popular tomo-
graphic reconstruction algorithms on commodity PC
graphics hardware. IEEE Transactions on Nuclear Sci-
ence, 52(3):654–663, 2005.

30

