
Volume Graphics (2005) 
E. Gröller, I. Fujishiro (Editors) 
 

 
© The Eurographics Association 2005. 

 
iSBVR: Isosurface-aided Hardware Acceleration Techniques  

for Slice-Based Volume Rendering 

 
Daqing Xue, Caixia Zhang, Roger Crawfis† 

Department of Computer Science and Engineering 

The Ohio State University, Columbus, OH 43210, USA 

 

 

Abstract 
In this paper, we examine the performance of the early z-culling feature on current high-end commodity 
graphics cards and present an isosurface-aided hardware acceleration algorithm for slice-based volume 
rendering (iSBVR) to maximize its utilization. We analyze the computational models for early z-culling of the 
texture based volume rendering. We demonstrate that the performance improves with two to four times 
speedup against an original straightforward SBVR on an ATI 9800 pro display board. As volumetric shaders 
become increasingly complex, the advantages of fast z-culling will become even more pronounced. 

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation – Display 
Algorithms, Viewing Algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques – Interaction 
techniques. 

Keywords: slice-based volume rendering, hardware acceleration, isosurface, early z-culling. 

 
 

1. Introduction 

Real-time direct volume rendering (DVR) of fairly large 
volumetric dataset (2563 or more), due to its intrinsic huge 
number of sampling points, is still a challenge in computer 
graphics community. Using graphics hardware to accelerate 
volume rendering is continuously exploited by researchers 
with the advancing of new hardware techniques. Cullip and 
Neumann [2] first addressed the capability to render a 
volume on the 3D texture hardware. Akeley [1] and Cabral 
et al. [3] described a slice-based volume rendering (SBVR).  
SBVR is a direct mimic of ray-casting, but samples the 
volume for all rays at once. The original SBVR slices the 
whole volume. Engel et al. [4] developed a pre-integrated 
volume rendering technique for high quality images using 
multi-texturing. This improves the quality, but not the 
performance, unless a lower sampling rate can be applied to 
the volume integration. To improve rendering performance 
for fairly large dataset, Li et al. [5] split the volume into 
small bricks. The bricks in empty space are removed and 
only the non-empty bricks are rendered with SBVR. With 
the powerful programmability of graphical processing units 

(GPU) today, many software-based acceleration techniques 
like empty space skipping and early ray termination [8, 9, 
10, 11] can be implemented on the GPU directly.  Krüger 
and Westermann [6] and Roettger et al. [7] develop their 
algorithms to perform ray-casting using a pixel shader 2.0 
program [12] on the GPU with early ray termination and 
space-leaping. Krüger and Westermann propose an 
ingenious encoding of the ray direction and length into 
floating point render targets. These textures are then used to 

Image 
plane

eye 

Figure 1: The proxy geometries of image-aligned slicing 
planes. (a) 2D diagram of slice planes. (b) The slicing 
planes intersecting with the volume box. 

†
Email: {xue | zhangc | crawfis}@cse.ohio-state.edu 

http://www.eg.org
http://diglib.eg.org


D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

determine where to sample the 3D texture (volume).  The 
early z-culling feature on the latest graphics hardware with 
pixel shader2.0 makes early ray termination possible in 
their algorithms.  

In a typical slice-based volume rendering, the volume is 
sliced by the object-aligned or image-aligned planes (see in 
figure 1).  These planes are rendered in a back-to-front or 
front-to-back order, textured by the 3D texture (volumetric 
dataset) during rasterization, and finally composited into 
the frame buffer to generate the final image.  A main 
drawback of SBVR is that, for each slice during 
rasterization, all fragments are sampled from the 3D texture 
even though some fragments do not contribute to the final 
image at all.  This greatly reduces the rendering speed, 
especially when a complex fragment shader including 
lighting or high-order gradient computation is employed. 
This is very inefficient since the empty space usually 
occupies more than one-third of many volumetric datasets. 
In this paper we present an isosurface-aided hardware 
acceleration technique for slice-based volume rendering 
(iSBVR). The acceleration is based on the early z-culling 
feature provided by the latest consumer level graphics 
hardware. Given a transfer function, we can analyze it to 
determine values where the resulting opacity is completely 
opaque. Extracting iso-contours corresponding to these 
values provides a blocking surface, where any samples of 
the volume along the ray that are behind (or within) this 
surface are not visible. Isosurfaces can also be extracted 
corresponding to any minimal thresholds in the specified 
transfer function (i.e., where the transfer function goes to 
zero opacity). These surfaces do not block the rays as in 
early ray termination, but can provide a simple space-
leaping as we will show later in the paper. More 
importantly, the minimal isosurfaces can be used to flag 
areas on the screen where the ray passes entirely through 
volume without hitting any values that would contribute to 
the volume integral. We call these rays, empty rays and our 
algorithm provides an efficient solution for empty ray 
skipping. It should be noted, that these isosurfaces are 
rendered only to initialize the z-buffer. Nothing is ever 
skipped, but with early z-culling enabled, the hardware 
quickly processes these areas resulting in a substantial 
performance improvement. 

The remainder of this paper is organized as follows.  
Section 2 examines the computational model for early z-
culling in volume rendering. Section 3 describes our 
algorithm for an isosurface-aided acceleration technique 
and the implementation details of the rendering process.   In 
section 4, we address the isosurface extraction for our 
volume rendering. We present our results in section 5. In 
section 6, we draw conclusions from our study and propose 
future work. 

2. Early Z-culling for Volume Rendering 

A key observation of brute-force texture-based volume 
rendering is probably the sheer number of fragment and 

pixel operations which do not contribute to the final image. 
This problem becomes more serious with a complex 
fragment shader, which includes texture accesses for 
volume sampling, transfer function lookups, gradient and 
lighting calculations, and blending operations.  

Effective utilization of early z-culling feature on graphics 
hardware is the impetus for our isosurface-aided 
acceleration technique.  The key criterion here is that the z-
buffer must be set up properly such that only fragments on 
the slicing plane that contribute to the final image can pass 
the depth test. By means of early z-culling, the fragments 
that do not contribute to the final image will exit from the 
graphics processing pipeline immediately. As pointed out 
by Krüger and Westermann [6] and our own experiments, 
this early termination greatly reduces the rendering time, 
particularly when complex shaders are desired. 

Assume that for each pixel a z-value can be determined 
such that further samples will be occluded. Ideally, we 
would like to set our z-buffer to these values. Furthermore, 
if the ray passes entirely through empty space or air, then 
the processed fragments can be skipped. Our goal is to set 
the z-value to the front of the volume for these rays. By 
setting the z-buffer as such, the rendering speed can be 
benefited from the early z-culling feature of modern 
graphics hardware. 

A two pass rendering process is used in most games 
containing complex shaders. In the first pass, a simple 
shader is performed to set up the z-buffer.  If the color 
buffer is not being changed, newer hardware can actually 
render this pass twice as fast. In the second pass, a final 
complex shader is performed. Theoretically, this shader is 
performed for all fragments. Any fragments which fail the 
depth test, are then simply discarded. The early z-culling 
feature of the hardware performs the depth test first, and 
only if it passes does the resulting complex shader get 
processed. Hence, only the visible fragments are rendered 
in the second pass (note, the hardware is a little more 
complicated than this).  The remaining non-effective 
fragments are occluded and the shader on them is skipped.  

For direct volume rendering, things are much more 
complex, as opaque surfaces (or positions) are not clearly 
defined. Kruger and Westermann [6], developed a ray-
caster in the graphics hardware. An early ray termination 
was implemented using the early z-culling feature, by 
processing the rays in slabs. After each slab, a rendered 
texture from the opacity buffer would be examined in a 
fragment shader, and pixels which were fully opaque would 
have their z-values set to the current slab position. Roettger, 
et al [7], do a similar thing, with a slab width of 4 samples 
and an occlusion query test for region of entire image 
termination. Newer hardware, such as nVidia’s 6800 allows 
for better looping and branching [15] and a true 
implementation of ray-casting with early ray termination. 
This does not need, nor use the early z-culling feature of 
the hardware. 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

Our first step in solving this problem for slice-based 
volume rendering is to analyze the performance 
characteristics of the graphics hardware with respect to the 
early z-culling. We classify all fragments, F, into either 
affecting the volume integral or not. Those affecting the 
integral will need to execute their corresponding fragment 
shader. Thus, we have Fa fragments for which a complete 
and potentially complex shader needs to execute, taking on 
average Tc time per fragment. Our goal is not to remove or 
ignore any superfluous fragments, but to reduce their 
shader time to the minimal execution time Tz by the early z-
culling. Essentially, there are three main computational 
parts for a two pass volume rendering: 

• Time to set up the z-buffer in the first pass: Fs*Ts; 
• Rendering fragments that are discarded by early z-

culling in the second pass: (F-Fc)*Tz; 
• Fragments rendered with the complex shader in the 

second pass: Fc*Tc. 
The above three parts lead to Equation 1 as a computational 
model for the 2-pass volume rendering time, T2-pass, with a 
maximal potential speedup, δ, given in equation 2. This is 
provided we can control the hardware to only execute the 
complex shader on the affective fragments.  

cczcsspass TFTFFTFT **)(*2 +−+=−   (1) 

cczcss

c

TFTFFTF

TF

**)(*

*

+−+
=δ  (2) 

Where, 

F: the total number of fragments generated from the 
volume; 

Fs: the number of fragments to set up the z-buffer in 
the first pass;  

Fc: the number of fragments fed into the complex 
shader in the second pass;  

Ts: the operation time of a simple shader to set up the 
z-buffer in the first pass; 

Tz: the operation time for a fragment discarded by 
the early z-culling (with no fragment program at 
all) in the second pass; 

Tc: the operation time of a complex shader to render 
the final image in the second pass. 

For slice-based volume rendering, each slice is rendered 
twice.  In the first pass, a simple shader is applied to 
modify the z-buffer if a pixel reaches opaque in the opacity 
buffer. This slice is rendered again by a complex shader 
with early z-culling enabled.  In this case, the number of 
fragments, Fs, in the first pass to set up the z-buffer equals 
to the total number of fragments, F. In general, the simple 
shader time, Ts, is close to Tz and we will use Ts to 
approximate Tz in our later discussion.  Equation 1 and 2 
can thus be approximated by: 

ccscspass TFTFFTFT **)(*2 +−+=−  (3) 

ccscs

c

TFTFFTF

TF

**)(*

*

+−+
=δ  (4) 

The simple shader time Ts is fixed for a given graphics 
hardware, and the complex shader time Tc varies upon 

different shaders. Let the fragment culling rate 
be FFF c /)( −=α and the simple shader speed-up 

be cs TT /=γ . Equation 4 can then be simplified as: 

γααγ
δ

+−+
=

1

1
 (5) 

Two pass rendering is beneficial when the speedup, δ, is 
greater than 1.  Substituting 1>δ into equation 5, we 
achieve our desired property: 

1)1)(1( >+− αγ  (6) 

Inequality 6 describes for a given shader (γ is fixed), how 
many fragments must be occluded to gain a speedup in any 
two pass SBVR of the volume. For example, if a complex 
shader has γ = 0.2, the fragment culling rate, α, must be 
greater than 25% to gain a speedup. The goal of the next 
section is to provide a fast and efficient scheme for setting 
the z-buffer such that Fc is as close to the number of 
affecting fragments, Fa, as possible. 

3. Isosurface-aided Hardware Acceleration 

While our algorithm will work with any opacity-based 
volume shader, it relies on the mapping from function 
values to opacities (i.e., the transfer function), to have 
certain characteristics. Early ray-termination will only 
occur when the transfer function reaches a maximum 
opacity of one. Space-leaping and empty ray removal, 
provide greater benefits when the transfer function contains 
regions with zero opacity. In other words, if  there is no any 
empty space, we can not remove it. If the transfer function 
does not have either of these properties, then it should be 
noted that there is no overhead associated in the volume 
rendering due to this technique. 

For simplicity in the discussion, we will assume we have 
only two isosurfaces, Φt and Φp, given by a boundary 
threshold where the opacity goes from zero to a non-zero 

Φt 

z=0 

z-buffer 

Φp 

ray 

Figure 2:The back faces of isosurfaces Φt and the front 
faces of isosurface Φp are rendered with parallel projection 
and their corresponding z-buffer (right).  Only the slices in 
bold pass the depth test and contribute to the final image. 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

value and an opaque threshold where the opacity reaches 
one. A very simple example is given in Figure 9e.  In 
general, several iso-values can be used, albeit at a potential 
rendering cost. The resulting isosurfaces are extracted in 
either a pre-processing stage, or whenever the transfer 
function is changed. Figure 2 illustrates a cross-section of 
the volume rendering process containing an opaque iso-
contour in red, and the boundary iso-contour in blue 
(dashed line). For discussion, we will also assume that all 
isosurfaces are closed for now, and that the opaque iso-
value surfaces are contained within the minimal 
isosurfaces. This former assumption will be discussed and 
removed in later sections. If the later assumption is 
violated, then only an opaque surface will be visible. Note, 
these assumptions are on the opacity values, not the actual 
function values. 

3.1 Pseudo Early Ray-Termination 

Clearly, any fragments which lie behind another fragment 
which is opaque, will not contribute to the volume integral. 
A fragment which is opaque will be contained with the 
isosurface, Φp. If we set the z-buffer to the front-faces of 
this isosurface, we will enable early z-culling on the 
remaining fragments. This is not true early ray-termination, 
in that the ray could reach maximal opacity long before 
reaching an opaque isosurface. This region is depicted by 
the depth buffer between the two red rays in Figure 2. The 
main steps to initialize the z-buffer for early ray-
termination are thus: 

• z-Buffer Initialization: for early ray termination. 

1. Disable the output to the color buffer; 
2. Set the depth function to GL_LESS (the default); 
3. Render the front faces of Φp. 

This simple process provides a speed-up from 30% to 50% 
in our tests. 

3.2 Space-Leaping 

A typical volume will have many pockets of empty space, 
some between the eye and the volume material, some 
within the volume and some between the volume and the 
background. Culling away all of these fragments is a 
challenging research question. Space-leaping typically 
concentrates on removing the material between the eye and 
volume. This corresponds to the first crossing of the ray 
with the minimal iso-contour value or Φt surface. We can 
set the z-buffer to these crossing, by rendering the front 
faces of the isosurface. Early z-culling can then be achieved 
by using a GL_GREATER depth test on the fragments. The 
main steps to initialize the z-buffer for space-leaping are 
thus: 

• z-Buffer Initialization: for space-leaping. 

1. Disable the output to the color buffer; 
2. Render the front faces of Φt. 
3. Set the depth function to GL_GREATER; 

3.3 Combined Space-Leaping and Early Ray-
Termination  

Early ray-termination requires a GL_LESS test, while 
space-leaping, a GL_GREATER test, seeming to preclude 
the use of both accelerations in the same rendering. Space-
leaping is usually associated with setting the initial sample 
location for a ray. We can reverse the ray direction, and test 
if the current sample location is the last contributing sample 
along the ray. Here, we remove the material between the 
volume and the background, and call this exit-based space-
leaping. This corresponds to the last crossing of the ray 
with the minimal iso-contour value or Φt surface. This is 
the region between the two blue rays in Figure 2. The main 
steps to initialize the z-buffer for exit-based space-leaping 
are thus: 

• z-Buffer Initialization: for exit-based space-leaping. 

1. Disable the output to the color buffer; 
2. Render the front faces of the volume’s bounding 

box. 
3. Set the depth function to GL_GREATER; 
4. Render the back faces of Φt. 
5. Set the depth function back to GL_LESS; 

Now, to combine this with the early ray-termination, we 
simply need to perform the initialization for exit-based 
space-leaping before the initialization for early ray-
termination. After the exit-based space-leaping 
initialization, the z-buffer will either have values 
corresponding to the front faces of the bounding box, or the 
last surface of the minimal iso-value. For our assumptions 
with closed iso-contours, the early ray-termination surfaces, 
Φp, will project only to areas already covered by the 
isosurface, Φt. Since the z-buffer was pushed away from 
the cube faces in these regions, the early ray-termination 
initialization will pull these back towards the viewer. 

3.4 Empty Ray Removal 

For sparse values, many rays do not intersect any 
meaningful data in the volume. The rays end up being set to 
the background color. This implies that a ray never crosses 
through the minimal isosurface, Φt, (and by the closed 
assumption the opaque isosurface, Φp, as well). Early z-
culling for the fragments in these areas will work if the z-
buffer is set to a minimal value (zero or the front faces of 
the volume). The exit-based space-leaping algorithm above 
actually accomplishes this already. The region in yellow in 
Figure 2 represents the empty rays, and the resulting z-
buffer is set to zero in this case. Combining the empty ray 
removal and the exit-based space-leaping provides a 
substantial speed-up between 200%-300%. 

3.5 Culling Efficiency 

Our final, and significant, result is that only the fragments 
on the bold portion of the slices in Figure 2 will pass the 
depth test and execute any complex shader associated with 
them.  The performance improvements from both empty 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

Figure 3: Isosurfaces and their reduced form in cube 
faces. Left: isocontouring, Φt and Φp. Right: Φt is 
inflated to the outer faces of the cubes containing it. Φp 
is shrunk to the outer faces of the inter cubes.  

A 

B 

Φt 

Φp 

Φt 

Φp 

space skipping and early ray termination, achievable with 
most software-based ray-casting algorithms [8, 9, 10, 11], 
are now accomplished in the context of slice-based volume 
rendering by leveraging the early z-culling feature of 
modern graphics hardware. We still have some fragments 
which do not contribute to the final image, but pass through 
the z-cull operation. Hopefully this set is greatly reduced. 
The actual results will be data set and transfer function 
dependent. To render the volume, we simply need to turn 
on depth testing as usual and process the volume slices. The 
algorithm works equally well using a back-to-front or a 
front-to-back slicing order. The volume is rendered as 
usual: 

• Volume pass: render the proxy geometries. 

1. Enable the output to color buffer; 
2. Set the depth function to GL_LESS; 
3. Enable the fragment or volume shader; 
4. Render the proxy geometry. 

Figure 9 shows the isosurfaces and the resulting z-buffer 
after the initialization passes. A black or darker value 
indicates 0=z while a white value indicates 1=z . Darker 
values are closer to the eye. 

In order to characterize our algorithm, we need to 
consider the rendering time, Ta, from the two initialization 
passes (equation 7) and the rendering time, Tm, for the 
volume shader (equation 8).  Any resulting speedup is 
characterized by equation 9. 

spsta TFTFT ** +=  (7) 

ccscm TFTFFT **)( ′+′−=  (8) 

ccscspst

c

ma

c

TFTFFTFTF

TF

TT

TF

**)(**

*

*

′+′−++
=

+
=δ

 (9) 

Where, 

Ft: the total fragments generated from the back faces 
of Φt ; 

Fp: the total fragments generated from the front faces 
of Φp; 

F: the total fragments generated from the volume; 
F’c: the number of fragments fed into the complex 

shader in iSBVR.  
Obviously, if the time it takes to render the isosurfaces 
approaches the volume rendering time, and potential speed-
ups in the volume rendering are lost. The next examines the 
issues associated in generating and rendering the 
isosurfaces. 

4. Isosurface Extraction 

For a typical dataset of 2563, there could be more than a 
million triangles on the isosurface (see figure 6a) for a 
reasonable transfer function. The rendering time for this 
large number of triangles offsets any speedup from early z-
culling. To reduce the isosurface rendering time, an octree 
is generated from the underlying volume to extract the 
isosurface. Each octree node contains a min-max value pair 
representing the minimal and maximal voxel values it 
includes.   

However, when generating the isosurface from the octree 
using the maximal value in the octree node, the iso-suface, 
Φt, may occlude some voxels even though their values are 
greater than the iso-value since the voxel with the maximal 
value is not necessarily the vertex in the node for iso-
contouring.  The voxel labelled B in figure 3(left) shows 
this case.  Similarly, the isosurface, Φp, may contain the 
non-opaque area as A in figure 3(left).  The holes in Φp will 
produce serious aliases since the rays will stop at the Φp 
due to early z-culling.  To solve these problems, the 
isosurface, Φt, is inflated to fill the outmost cubes that 
containing it and the Φp is shrunk to the maximal set of the 
cubes completely included inside Φp. Figure 3(right) shows 
the reduced isosurfaces for Φt and Φp. Figure 4 show the 
bonsai dataset rendered by the original isosurface and its 
reduced isosurface.  The holes in the original one (figure 
4a) have been removed in figure 4b.  

  
           
Figure 4: (a) Generated from the original isosurface. 
There are holes in the image due to the incorrect 
occlustion.  (b) Generated from the reduced isosurface 
with holes removed. 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

Input: the cube set E containing Φp 
Output: the shrinking cube set T  
1) Set the cube set T = ∅; 
2) Repeat each cube d in E 
3)     E = E - {d}; 
4)     For all d’s neighbour nj along shrinking direction 
5)          If nj is completely inside Φp and nj∉T 
6)              T = T ∪ { nj }; 
7)          Else  
8)             E = E ∪ { nj }; 
9)          Endif 
10)      Endfor 
11) Until E = ∅ 
12) Return T. 
 

Figure 8: algorithm to generate the cube set for Φp. 

4.1 Isosurface for Empty Space Skipping 

As shown in figure 2, only the back faces of Φt are used to 
set up the z-buffer for empty space skipping. Thus, we can 
generate a set of cubes which contain the manifold of the 
isosurface, and render these cubes with back faces and with 
GL_GREATER for depth testing. 

The isosurface must be closed to correctly set up the z-
buffer in the two initialization rendering passes in section 
3.1 and 3.3. Otherwise, there are the undesired z-values 
from the front faces for the open area in the z-buffer that 
will incorrectly occlude the fragments in the final image. 
However, if the value of the voxel on the volume boundary 
is greater than the input isovalue, the final output surface 
will be open around such voxels.  To create the close 
isosurface, the cube on the volume boundary is also added 
to the cube set if it is inside of the isosurface. The algorithm 
to create the cube set is listed in figure 5. 

4.2 Isosurface for Early Ray-Termination 

To create isosurface, Φp, for the opaque values, we use the 
minimal value in each octree node.  When the octree node 
size is big (accordingly low resolution with respect to the 
original volume), some parts of the isosurface could be 
missing.  This is not desired since we want more fragments 
can be rendered to set up the z-buffer for early ray 
termination.  This problem becomes more serious, 
especially for medical datasets in which the skull or thin 
bones cannot contain a complete cube from the octree node.  
Figure 6 shows a 2D diagram where the iso-contour shrinks 
when iso-contouring using the minimal value from the min-
max pair in the octree node.  Figure 7 shows the isosurface 
of Φp from a Siemens’ head dataset. It shrinks drastically 
when octree node size increases from 1 to 8. There are 
almost no pixels to be set with the z-values for early ray 
termination in the initialization pass if using octree node of 
8x8x8.  In our experiments, the octree node of 2x2x2 for Φp 
provides the good balance between the overhead to 
rendering the triangles on Φp and the benefit from the early 
ray termination.  

To shrink the isosurface as shown in the figure 3(right), 
we shrink the cube set containing isosurface, Φp, until it 

only includes the cubes which are completely inside Φp. 
The algorithm for creating such cube set, T, is in figure 8. 

5. Results and Discussion 

All performance data were obtained on a PC equipped 
with an ATI 9800 pro graphics card with 128 MB video 
memory.  The slice spacing was set as same as the voxel 
interval. The results are listed in table 1. The resulting 
imagery from a gradient-based shader is shown in figure 
10. Our results show that we obtain on average a 2 to 4 
times speedup.  The performance of empty space skipping 
(ESS) and early ray termination (ERT) for goldenlady 
dataset is greatly reduced due to the large fuzzy area in the 
volume (figure 10c). 

Input:  the cubes of the octree 
Output: the cube set S containing Φt.  
1) Set the cube set S = ∅; 
2) For each cube d in the octree of the volume 
3)     If d contains isosurface 
4)          S = S ∪ {d}; 
5)     Else if d is inside the isosurface and on the volume 

boundary 
6)          S = S ∪ {d}; 
7)    Endif 
8) Endfor 
9) Return S. 
Figure 5: algorithm to generate the cube set for Φt. 

 
           (a)                          (b)                    (c)                      (d) 
      original             2x2x2 node        4x4x4 node         8x8x8 node 

1,059,856 Tri       213,416 Tri         16,792 Tri             80 Tri        
   
Figure 7:  The isosurface shrinks drastically when using the 
minimal value to perform contour on different octree levels. 

Figure 6: Left: iso-contouring for 7x7 grid. Right: the 
grid is generated from left with quad-tree node of 2x2.  
The vertex value is determined by the minimal value of 
each 2x2 node from the left grid.  



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

 
                      (a) Φt                                                    (b) 

 
                      (c) Φp                                                  (d) 

 

Transfer 
function

Opaque  

Output 
alpha

Empty  

input  

   
                      (e)                                                        (f) 
 
Figure 9: (a) The back faces of isosurface Φt; (b) The z-
buffer after rendering the isofurace in (a); (c) The front 
faces of isosurface Φp; (d) The z-buffer after rendering the 
isosurface in (c); (e) the transfer function for two 
isosurfaces; (f) The z-buffer is rendering after the two 
initialization passes. Note: the values in the z-buffer images 
(right column) are rescaled to highlight the difference. 

The slices in front of any front face of Φt are still fully 
rasterized and executed by the fragment program (see in 
figure 2) since their depths are always less than the pre-
rendered depth value in the z-buffer.  This problem can be 
solved by rendering each slice with one more pass as in [4], 
in which a simple shader is performed to modify the z-
buffer to occlude pixels reaching opaque. On the other hand, 
considering the large number of slices, the overhead of the 
additional rendering passes for all the slices partly offsets 
the performance improvement. If OpenGL would support a 
depth band-test with dual z-buffers, this would further 
improve the current frame-rates by culling all fragments 
outside of the two z-buffers without additional overhead 
(assuming the additional depth test is free).   The newly 
introduced GL_DEPTH_BOUNDS_TEST_EXT provides 
such a similar but much simplified function, in which a user 
specified depth range test between [0..1] is applied to 
fragments in addition to the  normal depth test.  This 
extension can help the performance improvement of the 
iSBVR if all the affecting voxels of the underlying volume 
fall in a small range. 

The iso-contouring is performed in either a pre-
processing stage, or whenever the transfer function is 
changed. Since we only apply iso-contouring to volume 
octrees (8x8x8 and 2x2x2 nodes for Φt and Φp, 
respectively), this greatly reduces the number of cells for 
iso-contouring. We can still obtain interactive rendering 
speed when changing transfer functions. In our experiments, 
the timings for isosurface extraction are 10 ms and 210 ms 
for Φt and Φp, respectively. The other well-studied 
accelerated isosurface extraction techniques [16, 17] can be 
used to further enhance the performance.  

6. Conclusion and Future Work 

By means of the early z-culling feature, we have developed 
an isosurface-aided hardware acceleration technique for 
slice-based volume rendering to gain the improved frame-
rates of three to four times. The advantages of early z-
culling become more pronounced for hardware accelerated 
volume rendering. 

This isosurface-aided acceleration can be easily fit into 
the other existing GPU volume rendering pipeline like 
Krüger and Westermann’s GPU-based ray caster and the 
pre-integrated volume rendering [4]. 

7. Acknowledgement 

The Authors would like to thank the anonymous 
reviewers for their valuable comments.  The datasets of CT 
head and golden lady are courtesy to Siemens Medical 
Solutions, the bonsai datasets courtesy to S. Roettger at 
University of Stuttgart, and the aneurism dataset courtesy to 
Philips Research, Germany. 

Dataset Basic ESS ERT ESS+ERT Speedup 

Aneurism 
(2563) 

7.3 21.8 9.2 24.8 3.4 

Head 
(2563) 

7.3 16.0 11.6 24.3 3.3 

Golden 
lady 

(2563) 
7.3 14.2 8.6 16.3 2.2 

Bonsai 
(2563) 

7.3 15.8 9.1 27.8 3.8 

Table 1: The rendering FPS for SBVR. ESS: empty space 
skipping; ERT: early ray termination. 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

References 

[1] Kurt Akeley. RealityEngine Graphics. Computer 
Graphics (SIGGRAPH ’93 Proceedings), 27:109–116, 
1993. 

[2] T. Cullip, and U. Neumann. Accelerating volume 
reconstruction with 3D texture hardware. Tech. Rep. 
TR93-027, University of North Carolina, Chapel Hill 
N.C. 

[3] B. Cabral, N. Cam, and J. Foran. Accelerated volume 
rendering and tomographic reconstruction using 
texture mapping hardware. In Proceedings ACM 
Symposium on Volume Visualization 94, 91–98. 

[4] K. Engel, M. Kraus, and Th. Ertl. High-Quality Pre-
Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading.  In Eurographics 
Workshop on Graphics Hardware ’01, pages 9–16. 
ACM SIGGRAPH, 2001. 

[5] W. Li, K. Mueller, and A. Kaufman. Empty Space 
Skipping and Occlusion Clipping for Texture-based 
Volume Rendering. In IEEE Visualization, Seattle, 
WA, 2003. 

[6] J. Krüger and R. Westermann. Acceleration 
Techniques for GPU-based Volume Rendering. In 
IEEE Visualization, Seattle, WA, 2003. 

[7] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. 
Strasser. Smart Hardware-Accelerated Volume 
Rendering. In Joint EUROGRAPHICS - IEEE TCVG 
Symposium on Visualization, 2003. 

[8] M. Levoy. Efficient Ray Tracing of Volume Data. 
ACM Transactions on Graphics 9, 3(July), 245-261. 

[9] K. Danskin, and P. Hanrahan. Fast Algorithms for 
Volume Ray Tracing. In ACM Workshop on Volume 
Visualization ’92, 91-98. 

[10] R. Yagel, and Z. Shi. Accelearted Volume Animation 
by Space-Leaping. In Proceedings IEEE Visualization 
’93, 62-69. 

[11] J. Freund, and K. Sloan. Accelerated Volume 
Rendering Using Homogeneous Region Encoding. In 
Proceedings IEEE Visualization ’97, 191-197. 

[12] Microsoft. DirectX9 SDK. 
http://www.microsoft.com/DirectX. 2002. 

[13] T.Y. Lee and C.H. Lin. Growing-cube isosurface 
extraction algorithm for medical volume data. Comput 
Med Imaging Graph. 2001 Sep-Oct;25(5):405-15. 

[14] W. Lorensen and H. Cline. Marching Cubes: A High 
Resolution 3D Surface Construction Algorithm. 
Computer Graphics, Vol. 21, No. 4, July, 1987. 

[15] NVIDIA. http://www.nvidia.com/page/geforce_6800.html. 

[16] H.-W. Shen, C. Hansen, Y. Livnat, and C. Johnson. 
Isosurfacing in span space with utmost efficiency 
(ISSUE). IEEE Visualization ’96, pages 287-294. 

[17] B. von Rymon-Lipinski, N. Hanssen, T. Jansen, L. 
Ritter, E. Keeve. Efficient Point-Based Isosurface 
Exploration Using the Span-Triangle, IEEE 
Visualization ’04, pages 441-448. 



D. Xue  & C. Zhang & R. Crawfis / iSBVR: Isosurface-aided Hardware Acceleration Techniques for Slice-Based Volume Rendering  
 

 
© The Eurographics Association 2005. 

 

    
                                                    (a)                                                                                                           (b)   

    
                                                    (c)                                                                                                           (d)           
Figure 10: All images are of resolution by 512x512. (a): head dataset (2563); (b): bonsai dataset (2563); (c):golden lady 
dataset (2563); (d): aneurism dataset (2563). 
 


