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Abstract
Very large irregular-grid volume data sets are typically represented as tetrahedral mesh and require substantial
disk I/O and rendering computation. One effective way to reduce this demanding resource requirement is com-
pression. Previous research showed how rendering and decompression of a losslessly compressed irregular-grid
data set can be integrated into a one-pass computation. This work advances the state of the art one step further by
showing that a losslessly compressed irregular volume data set can be simplified while it is being decompressed
and that simplification, decompression, and rendering can again be integrated into a pipeline that requires only a
single pass through the data sets. Since simplification is a form of lossy compression, the on-the-fly volume simpli-
fication algorithm provides a powerful mechanism to dynamically create versions of a tetrahedral mesh at multiple
resolution levels directly from its losslessly compressed representation, which also corresponds to the finest res-
olution level. In particular, an irregular-grid volume renderer can exploit this multi-resolution representation to
maintain interactivity on a given hardware/software platform by automatically adjusting the amount of rendering
computation that could be afforded, or performing so called time-critical rendering. The proposed tetrahedral
mesh simplification algorithm and its integration with volume decompression and rendering has been successfully
implemented in the Gatun system. Performance measurements on the Gatun prototype show that simplification
only adds less than 5% of performance overhead on an average and with multi-resolution pre-simplification the
end-to-end rendering delay indeed decreases in an approximately linear fashion with respect to the simplification
ratio.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Graphics UtilitiesGraphics
Packages I.3.6 [Computer Graphics]: Methodology and TechniquesInteraction Techniques

1. Introduction

An irregular-grid volumetric data set is typically represented
as a tetrahedral mesh, which consists of per-vertex geome-
try, data density information, and connectivity information
among the vertices. To reduce the storage requirement and
the run-time disk access overhead, lossless compression is
an effective technique that is more acceptable to the user
community. A previous paper [YMC00] showed that it is
possible to pipeline the decompression of a losslessly com-
pressed tetrahedral mesh and the rendering of the result-
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ing tetrahedra, thus significantly reducing the memory foot-
print requirements of rendering tasks whose target data sets
are close to or larger than the rendering machine’s physical
memory. This performance advantage comes from the fact
that volume decompression and volume rendering are inte-
grated into a one-pass computation.

To further reduce the rendering delay associated with very
large irregular volume data sets, one needs to trade accu-
racy for performance. Given a rendering hardware and a pre-
defined level of interactivity, the goal is to develop a render-
ing algorithm that can meet the performance requirements
while maintaining the highest rendering image quality. The
enabling technology that allows making such a trade-off
is tetrahedral mesh simplification, or lossy compression of
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tetrahedral mesh. Unfortunately, most existing mesh simpli-
fication algorithms are implemented as a stand-alone tool
rather than as a tightly integrated component of an irregular-
grid volume renderer, thus limiting their utility as a dynamic
performance adaptation mechanism.

This paper describes a novel mesh simplification algo-
rithm that fits nicely into a decompression-driven volume
renderer, thus making it possible to integrate volume de-
compression, simplification, and rendering into a seamless
pipeline that requires only one pass through the compressed
input data set. Because of this streamlined structure, the vol-
ume renderer can dynamically adjust the rendering accu-
racy to match user-specified interactivity requirement and/or
computation resource availability. Furthermore, simplifica-
tion and lossless compression together make it possible to
represent a tetrahedral mesh as a multi-resolution hierarchy,
with the losslessly compressed version corresponding to the
finest resolution. Finally, as in the integrated volume decom-
presser/renderer [YMC00], the proposed integrated decom-
pression/simplification/rendering engine greatly reduces the
run-time disk access overhead and peak memory usage for
the rendering of very large tetrahedral meshes.

We have successfully implemented the integrated decom-
pression/simplification/rendering pipeline in the Gatun sys-
tem. Performance measurements on the Gatun prototype
show that the proposed mesh simplification algorithm only
adds less than 5% overhead on an average compared to an in-
tegrated volume decompresser/renderer, thus demonstrating
the efficiency of the proposal’s implementation simplicity.
On the other hand, the proposed mesh simplification can ef-
fectively reduce the total rendering time by a factor of up to
2 with a RMSE (root mean square error) as small as 1.32 (on
a scale of 0–255) when 90% of the input mesh is simplified
away.

The rest of this paper is organized as follows. We review
previous related work on tetrahedral mesh compression, sim-
plification, and rendering in Section 2. Section 3 briefly de-
scribes the previously proposed integrated tetrahedral mesh
decompression and rendering pipeline to set the stage for the
discussion of fitting mesh simplification into such a pipeline.
In Section 4, we describe the on-the-fly mesh simplifica-
tion algorithm that is tightly integrated with the mesh de-
compresser and renderer. In Section 5, we demonstrate how
to apply the simplification-capable integrated renderer to
time-critical rendering. Section 6 reports the performance
measurements of the proposed integrated mesh decompres-
sion/simplification/rendering pipeline on the Gatun proto-
type for six irregular-grid data sets with the number of tetra-
hedra ranging from 1.3K to 1.2M. Section 7 concludes this
paper by summarizing the main research contribution of this
work.

2. Related Work

Compared to surface simplification, volume simplifica-
tion attracts relatively less research effort. Cignoni et
al. [CFM∗97] proposed decimating vertices iteratively and
the resultant holes are re-tetrahedralized locally. Later they
proposed another method which estimates the quality of
simplification by utilizing two types of error, domain er-
ror and field error, with the first one referring to the devi-
ation from the the original geometry while the second one
the difference with the scalar fields defined over the origi-
nal mesh [CCM∗00]. Renze et al. [RO96] generalized the
idea of progressive meshes to perform volume decimation
for unstructured grids. Staadt et al. [OGS98] proposed tech-
niques for progressive tetrahedralization that tries to avoid
some artifacts such as self-intersections due to an improper
simplification. Trotts et al. [THJ99] applied a piece-wise lin-
ear spline function that is defined over the scalar values over
the input tetrahedral mesh as the basis of the error metric for
volume simplification. The algorithm associates each tetra-
hedron with such an error metric and favors the removal of
those tetrahedra that causes the least change in the spline
function. Removing a tetrahedron is carried out by a se-
quence of edge collapses. The TetFusion approach, proposed
by Chopra et al. [CM02], performs the simplification by
shrinking a central tetrahedron towards its geometric cen-
ter, and one such central tetrahedron’s collapse will cause
the degeneration of at least eleven tetrahedra. The reduc-
tion rate is fast, however, the dealing with boundary tetrahe-
dra is tedious and thus is avoided, leading to low compres-
sion ratio. Furthermore, the error estimation scheme is not
yet established. Co et al. [CHH03] proposed a method that
treats unstructured grids as point cloud and represents such
grids by hierarchical clustering. The hierarchy is generated
by applying the PCA (principle component analysis) for
cluster generation and a simplified RBF (radial basis func-
tions) for fitting the scalar fields. At the run time, the traver-
sal of the cluster hierarchy could be level-based, or error-
based. Gelder et al. [GVW99] proposed a less computation-
intensive approach for simplification, which aims to mini-
mize the density or “mass” change due to an edge collapse.
Boundary vertices come with extra geometry-related error
metric, in addition to the so called “data-based” error met-
ric required of internal vertices. The on-the-fly simplification
scheme presented in this paper is based on this work.

In the area of lossless tetrahedral mesh compression, there
are at least two existing methods. The first one was proposed
by Szymczak et al. [SR99]. Their representation consists of
a tetrahedron spanning tree string, which is obtained by re-
cursively attaching tetrahedra to external faces starting from
an arbitrary tetrahedron, and a folding string, which defines
the incidence relations among the remaining external faces.
Their method requires 7 bits per tetrahedron on an average
to represent the topology. The second method, proposed by
Gumhold [GGS99] achieves by far the best compression
efficiency for tetrahedral meshes. Their cut-border engine
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starts with the faces of an arbitrary tetrahedron and attempts
to add tetrahedra to the external faces through different op-
erations. They require 2.04 bits per tetrahedron on an aver-
age. One of the variants of the compression algorithm used
in Gatun is similar in spirit to this approach. However, the
number of possible cases to consider are much less (4 cases
instead of 10), which therefore leads to an easier implemen-
tation.

There were several early works on rendering of irregu-
lar grids. Wilhelms et. al. [WCA∗90] applied a re-sampling
technique to reduce the problem to rendering of traditional
simpler regular rectilinear grids. However, when accommo-
dating the finest details, the re-sampling overhead may be
exceedingly high. Another attempt from Fruhauf [Fru94]
tried to apply the traditional algorithm, originally designed
for rectilinear grids, to curvilinear grids by casting rays in the
computation domain, or equivalently casting “curved” rays
the spatial domain of the data set. However this approach
can not be readily applied to the unstructured grids. The al-
gorithm proposed by Bunyk et. al. [BKS97] is a simpler and
sometimes faster approach based on the work from Garrity,
Uselton and Hong [Gar90, Use91, HK99]. This algorithm,
although still requires a great deal of memory for good per-
formance, does provide a good starting point to derive the
rendering algorithm used in Gatun.

In terms of integrated work, besides Gatun, volume com-
pression and rendering have also been integrated in the work
by Schneider et al. [SW03]. Through the use of vector quan-
tization, their work has the elegance of trading fidelity for
performance in a more unified framework, their work is de-
signed only for dealing with regular grids and cannot be
readily applied to unstructured grids. Probably the work
from Farias et al. [RMSW00] is by far the most similar one
to us. However, in their work, they applied basically the ver-
tex clustering idea from [RB93] where the topology of a
mesh may be changed. Gatun applies a simplification ap-
proach which can not only preserve the topology of a mesh
but also makes it easier to be pipelined with the decompres-
sion process. In addition, Gatun uses an object space-based
ray casting approach. Because of ray casting, the resulting
rendered image quality is high. Because of the object space
architecture, rendering can also be done incrementally and
thus can be nicely tied with the mesh decompression pro-
cess.

3. Integrated Tetrahedral Mesh Compression and
Rendering

3.1. Lossless Mesh Compression

Given a tetrahedral mesh, Gatun’s tetrahedral mesh com-
pression algorithm starts with the boundary surface as the
current surface, and then grows the current surface inwards
by enumerating each tetrahedron that is paired with one of
the current surface’s faces. After all the tetrahedra that can

Figure 1: A 2D example of the original rays versus the mod-
ified rays. In (a), all the rays are shooting in one direction,
while in (b), for the same data set, rays are duplicated in the
opposite directions; (c) represents a more general case where
the data set has multiple segments for some rays, while (d)
shows our modified version of rays for the same data set.

be paired with the current surface are visited, the set of faces
of these tetrahedra, that are not parts of the current surface,
form the current surface for the next iteration. The algorithm
then continues with this new surface to visit more tetrahedra,
iteration by iteration, until it visits every tetrahedron in the
input mesh. For a more detailed explanation, please refer to
our previous work [YMC00].

3.2. Decompression-Driven Mesh Rendering

The goal of decompresser-driven mesh rendering is to in-
corporate the contribution of each tetrahedron into the final
image as soon as it is output from the decompresser. This
way there is no need to wait for the entire decompression
process to complete before rendering starts and the memory
allocated to the tetrahedra can be freed as early as possible.
Gatun uses an object-space ray-casting algorithm to achieve
this goal. The rendering algorithm is basically a ray casting
algorithm that first attaches all the rays cast from the image
plane to the input tetrahedral mesh’s boundary surface, and
attempts to advance each ray inward as the decompresser
enumerates additional tetrahedra. The fundamental design
issue is how to identify the set of cast rays that intersect with
a given tetrahedron.

Gatun exploits the explicit representation of a tetrahedral
mesh’s boundary surface to calculate the intersections be-
tween the boundary faces and the cast rays. Then a ray is
decomposed into a set of one or multiple segments, each cor-
responding to a contiguous section of the ray that intersects
with the input data volume, as shown in Figure 1. Note that
there are two instances for each ray with one for each direc-
tion. In addition, each segment is further decomposed into
two subsegments, one starting with the end closer to the im-
age plane and having the original ray-cast direction, while
the other starting with the end that is further away from the
image plane and having the opposite of the original ray-cast
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direction. Due to the spirally-inward decompression order, a
bi-directional rendering could help to render a decompressed
tetrahedron as soon as possible. where the color and opac-
ity compositing formulas should be modified accordingly.
For a more detailed explanation, please refer to our previous
work [YMC00].

4. On-the-Fly Tetrahedral Mesh Simplification

To incorporate mesh simplification in the integrated render-
ing/decompression pipeline described in the previous sec-
tion, Gatun first statically computes a priority list of volume
simplification operations, and at run time performs a selec-
tive subset of these vertex merge operations based on user
requirements and/or available computation resources. The
simplification step is inserted between decompression and
rendering in a way that is largely independent of the internal
working of the renderer and decompresser.

4.1. Static Simplification Algorithm

Gatun makes the following assumptions on the volume sim-
plification algorithm:

• Vertex merge (in this paper, the term vertex merge is inter-
changeable with edge collapsing) is the only tetrahedral
mesh simplification primitive used in the algorithm, and
each vertex merge operation is denoted as Vi →V j , which
means that Vi is merged into V j , and

• The algorithm can statically compute an error metric for
all possible vertex merge operations, and derive a priority
order among them based on this error metric.

At run time, Gatun simply uses the global priority to deter-
mine which vertices and thus which tetrahedral no longer
exist after a certain amount of simplification. The volume
decimation algorithm [GVW99] described in this subsec-
tion is one example of such volume simplification algorithm.
Gatun can inter-operate with any other simplification algo-
rithms as long as they satisfy the above assumptions. We
re-implement [GVW99]’s algorithm for our testing volume
simplification algorithm.

This volume decimation algorithm considers two types
of errors introduced by simplification: Density-related
(Errordensity) and Geometry-related (Errorgeometry). Each
vertex of a tetrahedral mesh-based volume data set has an
associated data density value. One can compute an average
data density value for a tetrahedron based on the data den-
sities associated with its four vertices. Multiplying a tetra-
hedron’s average density by its volume results in its mass.
The Density error associated with merging two vertices is
the sum of all changes in the mass of all tetrahedra that are
affected by this merge operation. As a constraint, a vertex
merge operation that causes any affected tetrahedron’s vol-
ume to become negative after merging is disallowed.

When at least one of the vertices to be merged is a bound-
ary vertex, the volume decimation algorithm considers an

additional Geometry error. Each new face that is generated
as a result of a vertex merge operation is first paired with
all the old faces that share at least one edge with the new
face. Then the difference in area between a new face and
each of its paired old faces is computed. Each such area dif-
ference is then weighted by the ratio between the associated
old face’s area and the area sum of all affected old faces. The
sum of these weighted area differences between new faces
and their paired old faces is the Geometry error. In addition
to the negative volume constraint, there is a similar negative
area constraint. Moreover, boundary vertices can be merged
only into boundary vertices to preserve the surface shape of
the tetrahedral mesh.

The final error metric associated with a vertex merge op-
eration is Wdensity ∗Errordensity +Wgeometry ∗Errorgeometry,
where Wdensity and Wgeometry are weighting parameters that
are tailored to the needs of individual application.

After computing the error metric for all neighboring ver-
tex pairs, the volume decimation algorithm selects the vertex
merge operation with the smallest error metric, say Vn →Vm,
eliminate all vertex merge operations of the form Vn → Vk
for some k from further consideration, re-computes the error
metric of those vertex merge operations that are affected by
the application of Vn →Vm, and repeats the cycle by picking
the one with the smallest error metric from the remaining
vertex merge operations, etc. After a vertex merge opera-
tion, the geometry of the affected region of tetrahedral mesh
is changed. Consequently, the error metric of those vertex
merge operations associated with the affected region needs
to be recomputed. More specifically, after the application of
a vertex merge operation Vi →V j , the error metric of all ver-
tex merge operations of the form Vk →Vi needs to be recom-
puted based on the new geometry. Eventually the algorithm
ends when all vertex merge operations have been eliminated.
The list of selected vertex merge operations are ranked in
an ascending order according to their error metric value, the
smaller the error metric value is, the earlier an merge oper-
ation is performed. The rank value associated with a merge
operation represents the order this operation is performed.
For example, a operation with rank value 3 means it is the
third operation.

A vertex that never needs to be merged into any other ver-
tex is called an independent vertex. After applying the above
volume decimation algorithm to a tetrahedral mesh, every
vertex is scheduled to be merged into some other vertex at
a certain priority except one or multiple independent ver-
tices. Gatun organizes the list of resulting vertex merge op-
erations into a forest of multiple trees (called a merge tree),
each of whose root is an independent vertex. In these trees,
each child vertex is to be merged to its parent vertex. In addi-
tion, every child vertex has a global rank that represents the
priority of the corresponding vertex merge operation. Fig-
ure 2 shows an example merge tree for a hypothetic tetra-
hedral mesh. Each node in the tree represents a vertex in
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Figure 2: An example merge tree that shows all the ver-
tex merge operations, as represented as edges, that are being
considered, and their relative priorities, as indicated by the
weights on the edges.

the mesh, and each edge represents a vertex merge opera-
tion. The weight on an edge represents the global rank of the
edge’s associated vertex operation. For example, the opera-
tion of merging Vertex 1 into Vertex 6 has a rank of 10, or
equivalently, this is the 10th operation. At run time, if users
ask the system to perform a simplification step that includes
only the first 5 vertex merge operations, this operation will
be ignored.

4.2. Run-Time Simplification Algorithm

Because the volume decimation algorithm already computes
a global rank for all selected vertex merge operations, at run
time Gatun only needs to perform the first N of these op-
erations, where N is determined either by users or by the
system based on available computation resource. Therefore
whether a vertex merge operation needs to be performed
for a given N is a local decision. This localness property
makes it possible to perform on-the-fly simplification on the
resulting tetrahedra stream that the decompresser produces.
The only question left is how to effect each eligible vertex
merge operation as a compressed tetrahedral mesh is be-
ing decompressed. The key insight behind inserting an on-
the-fly volume simplification step between decompression
and rendering is that all the renderer wants is that all the
tetrahedra it uses during the rendering computation are valid
tetrahedra that exist in the final mesh after all the selected
simplification operations have been applied to the original
mesh. That is, as long as every tetrahedron the simplifica-
tion step passes to the renderer is a valid tetrahedron in the
final mesh the rendering result of this integrated decom-
pression/simplification/rendering pipeline is guaranteed to
be correct.

Whenever a tetrahedron is enumerated, the renderer in
the integrated decompression/rendering engine described in
Section 3 advances each cast ray that intersects with the
tetrahedron as much as possible, and then stops to wait for
more tetrahedra to come so that these rays can move further
ahead. As far as the renderer is concerned, it does not care
about where and how the tetrahedra are generated. Without

simplification, the decompresser outputs all the tetrahedra in
the input mesh; With simplification, the simplification mod-
ule outputs only those tetrahedra that exist in the simplified
mesh. Therefore, whenever a tetrahedron from the decom-
presser arrives, the simplification module needs to check
whether the tetrahedron is collapsed after simplification and,
if it is not, whether the tetrahedron’s vertices change because
of vertex merging. Only when a tetrahedron is not going to
be collapsed, and the ultimate target vertices of the tetrahe-
dron after application of all vertex merge operations already
appear in the decompresser’s output stream can the simplifi-
cation module forward this tetrahedron to the renderer. Be-
cause such tetrahedra are valid in the simplified mesh and
their data density and coordinate are known, the renderer
can safely perform rendering computation based on them
and produce provably correct simplified results.

Because what is needed is the set of tetrahedra in the final
simplified mesh, one needs an efficient algorithm to summa-
rize the accumulative effect of a set of chosen vertex merge
operations. More concretely, one needs to compute the ulti-
mate target vertex into which each vertex is to be merged,
based on the input mesh’s merge tree data structure and a
selective set of verge merge operations. With this per-vertex
information, one can easily check whether a given tetrahe-
dron from the decompresser is valid in the final mesh or not,
or if the decompresser has traversed all its ultimate target
vertices.

Therefore Gatun’s on-the-fly simplification algorithm
consists of two steps: one before and one during the de-
compression/rendering process. First, given a threshold N,
the on-the-fly simplification algorithm performs a top-down
traversal of the input mesh’s merge tree and determine which
vertex merge operations are eligible by comparing the ver-
tices’ rank with N. For each eligible vertex merge operation,
which corresponds to an edge in the merge tree whose child
vertex’s rank is smaller than or equal to N, the child ver-
tex’s ancestor field is filled with its parent vertex’s ancestor
field. For each non-eligible vertex merge operation, which
corresponds to an edge in the merge tree whose child ver-
tex’s rank is larger than N, the child vertex’s ancestor field
is filled with its own ID. A root vertex’s ancestor field is al-
ways filled with its own ID. After this traversal, the ultimate
target of each vertex is going to be merged into is kept in the
vertex’s ancestor field. If the ancestor field points to itself,
the vertex does not get merged into anyone, and is present
in the final mesh. For example, if the simplification thresh-
old N is set to 8 for the merge tree in Figure 2, then after
simplification, or equivalently after the first 8 vertex merge
operations are done, Vertex 14’s ancestor is Vertex 8, Vertex
9’s ancestor is Vertex 3, etc., and Vertex 1, 2, 7, 3, 8, 12,
and 15 are present in the final simplified mesh, as shown in
Figure 3.
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Figure 3: The result mesh after the first 8 merges are carried
out.

5. Time-Critical Rendering

The original motivation for incorporating volume simplifi-
cation into an integrated pipeline is to apply it at run time to
trade quality for performance, or more specifically to time-
critical rendering, where the goal is to maximize the render-
ing quality for a fixed timing budget by simplifying the in-
put mesh appropriately. Although the integrated decompres-
sion/simplification/rendering pipeline described in the last
section makes a good starting point, it itself is not sufficient
to support time-critical rendering, because the decompres-
sion overhead dominates the end-to-end user-perceived de-
lay regardless of the extent of mesh simplification and thus
reduction in rendering time. In other words, while simplifi-
cation does decrease the rendering time, it does not affect the
end-to-end delay that much because the system still needs
to decompress the entire input data set and simplify it to a
chosen level. To address this issue, we pre-compute multiple
simplified versions of each input data set, each correspond-
ing to a particular simplification ratio, which is defined as the
number of vertices that are simplified away divided by the
number of all vertices. As shown in Figure 4, an input tetra-
hedral mesh is pre-simplified at the simplification ratios of
1−1/2i, and all these simplified versions are independently
compressed and stored to the disk. The maximal value of i
depends on the available system resource and performance
requirements.

At run time, given a rendering time budget, the system
first maps it to the corresponding simplification ratio, which
may be different for different data sets, and then applies
simplification to the pre-computed version of the input data
whose simplification ratio is the largest among those whose
simplification ratio is smaller than the target simplification
ratio. For example, in this Figure, the version with the sim-
plification ratio of 0.5 is selected as the starting mesh for
simplification if the target simplification ratio is p, whereas
the version with the simplification ratio of 0.75 is selected
if the target simplification ratio is q. The basic idea of this
approach is similar to mip-mapping used to speed up texture
mapping. Although the disk storage cost of this scheme is
doubled, the run-time performance is improved significantly
as shown in the next section, because both decompression
and rendering overheads are now about inversely propor-
tional to the simplification ratio.

p q

0 0.5 0.75 0.875
0.9375

...

Figure 4: Given a target simplification ratio, choose the most
simplified version of a multi-resolution input mesh that is
finer than the target as the starting mesh for simplification.

Data set # of P # of T # of F # of B

Spx 2896 12936 27252 2760

Fighter 13832 70125 143881 7262

Blunt. 40960 187395 381548 13516

Combust. 47025 215040 437888 15616

Liquid. 109744 513375 1040588 27676

Delta. 207970 1195839 2408702 34048

Table 1: Characteristics of input data sets used in this per-
formance study, where P, T, F and B represent Points, Tetra-
hedra, Faces and Boundary faces, respectively.

6. Performance Evaluation

The input data sets used for the performance evaluation of
Gatun are listed in Table 1, as ordered by the number of tetra-
hedra. While the first two data sets are unstructured grids, the
remaining four are curvilinear grids converted into tetrahe-
dral grids. The first two grids are included to demonstrate
that the proposed integrated pipeline is applicable to gen-
eral unstructured-grid data sets. Notice the Delta Wing data
set has different characteristics than before because we have
found that due to its degeneracy in some cells, our previ-
ous approach of partitioning each of its curvilinear grid cell
into five tetrahedra will result in an inconsistent tetrahedral
mesh, therefore we have partitioned each of its curvilinear
grid cell into six tetrahedra to resolve the inconsistency, thus
increasing the number of tetrahedra therein.

The compression efficiency (2.5 bits/tetrahedron, connec-
tivity only) remains the same as reported previously, be-
cause we use the same tetrahedral compression algorithm.
In addition, the peak memory usage saving (50% to 70%)
also carries over when simplification is integrated into the
pipeline, because the additional memory space requirement
introduced by simplification is minimal, especially when
compared with the rendering stage, whose memory footprint
requirement is always dominant. The overall reduction of
memory footprint in Gatun not only speeds up the render-
ing process by one to two orders of magnitude when input
data sets are too large to fit into physical memory, but also
shortens the perceived rendering delay when input data sets
are completely memory-resident.
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6.1. Rendering Performance Improvement

A major performance advantage of the proposed integrated
pipeline is that each piece of volume data is brought into the
main memory exactly once. In contrast, a baseline (Generic)
implementation of the same three steps may involve read-
ing the input tetrahedral mesh from the disk, simplifying it,
and rendering the simplified mesh. The whole decompressed
data is generated first before any simplification step can be
applied. Similarly simplification must be completed before
rendering can start. Figure 5 shows the end-to-end render-
ing time comparison between the baseline implementation
and Gatun for each of the six test data sets. For both im-
plementations, as the simplification ratio increases, the ren-
dering delay decreases as expected. The rendering perfor-
mance improvement due to simplification is only up to a fac-
tor of two (the Delta Wing data set and simplification ratio
0.99). The performance improvement is not linear with re-
spect to the simplification ratio because when the overhead
of “touching” the input data set once in order to simplify it
dominates the overall performance cost. This result clearly
demonstrates why simplification alone does not provide suf-
ficient flexibility for run-time adaptation.

Between Gatun and the baseline implementation, Gatun
always wins because Gatun’s pipelined structure signifi-
cantly reduces the amount of disk I/O due to “store and
compute,” especially for very large input data sets. Al-
though there is plenty of main memory in the test machine,
this performance difference is still quite noticeable. When
memory resource becomes less abundant, Gatun is expected
to be far even better than the baseline implementation in
the end-to-end rendering time, as shown in the previous
work [YMC00].

6.2. Time-Critical Rendering

Figure 5 shows that without pre-computing multiple simpli-
fied versions, even at the simplification ratio of 99%, the
end-to-end rendering performance is still far from being
interactive for most data sets. To demonstrate how multi-
resolution pre-simplification helps time-critical rendering,
we pre-simplified the Blunt-fin data set into 13 different ver-
sions at simplification ratios 1− 1/2i where i ranges from
1 to 13. As shown in Table 2, at the image resolution of
128×128, the end-to-end delay drops to below 0.17 seconds
(or 6 frames/sec), when the simplification ratio is greater
than 0.984. Figure 7 shows that with pre-computation, the
rendering time now indeed becomes approximately linear
with respect to the target simplification ratio. It also demon-
strates that the proposed multi-resolution pre-computation
scheme can also benefit the baseline case as well, as their
performances are rather close to each other. The fact that
this performance vs. simplification ratio figure is highly lin-
ear also means that it could serve as the basis for data set-
specific adaptation for time critical rendering. That is, given
a desired frame rate, the system could automatically deter-

mine the most appropriate simplification ratio from such a
figure, retrieves the appropriate pre-computed version, and
initiates the simplification process from there. For example,
for the Blun-fin data set, if the target frame rate is two frames
per second, or equivalently 0.5 seconds per frame, one can
determine from Figure 5 that a simplification ratio of 0.905
could support such an interactivity requirement.

6.3. Quality Degradation

To understand how much volume simplification degrades the
final rendered image quality we calculated the RMSE (root
mean square error) between the resulting images generated
from an original data set and from its simplified versions.
This RMSE computation excludes those black pixels where
there is no actual ray contribution. Figure 8 shows the qual-
ity degradation is minimal and noticeable only for very ag-
gressive simplification ratios. Images of Blunt-fin that cor-
respond to the simplification ratio of 0%, 95% and 99% are
shown in Figure 6. In this experiment, in addition to standard
volume-based rendering, where sample points are uniform
along the cast rays, we also tried the face-based rendering
method used by Bunyk et al. [BKS97], where sample points
on the cast ray are required to reside on the faces of tetrahe-
dra. Figure 6 shows that with volume-based rendering, no-
ticeable artifacts only appear when more than 99% of the
input tetrahedral mesh is simplified away. With face-based
rendering, the artifacts are still difficult to discern even when
the mesh is more than 99% simplified. Because the absolute
image quality of face-based rendering is worse than volume-
based rendering, face-based rendering is more “tolerant” of
additional errors introduced by simplification. Accordingly,
the quantitative difference in RMSE between rendered re-
sults of original and simplified sets is smaller for face-based
rendering than for volume-based rendering, as shown in Fig-
ure 8.

We want to emphasize again that this work does not claim
any new contribution to volumetric mesh simplification al-
gorithms per se. Rather, it focuses on how to integrate a
class of simplification algorithms that satisfy the assump-
tions listed in Section 4.1 into a decompression-driven ren-
derer. Therefore, the goal of this subsection is to show that
integrating a simplification algorithm with decompression
and rendering is as effective as the original simplification
algorithm when it is implemented separately.

7. Conclusion

Although lossless compression is an effective technique to
reduce the storage requirement and run-time disk access cost
for very large irregular volume data sets, it cannot reduce
the rendering computation overhead because the number of
tetrahedra that a renderer needs to process remains unaf-
fected with or without lossless compression. Lossy com-
pression of irregular volume data, or volume data simplifi-
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Figure 5: Comparisons between the generic renderer (the baseline) and Gatun for different simplification ratios. There is only
one version of the input data set stored on the disk. Image resolution is set at 256×256.

value of i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

time (sec) 3.06 1.80 1.05 0.62 0.39 0.25 0.17 0.12 0.10 0.08 0.07 0.05 0.04 0.03

Table 2: Rendering time required for the Blunt-fin data set for different simplification ratios, where the simplification ratio is
defined by 1−1/2i. Image resolution is set at 128×128.

cation, on the other hand, provides a volume rendering sys-
tem the additional flexibility to trade off rendering time and
quality. Unfortunately, most previous research on volume
data simplification focused on the development of stand-
alone simplification tools that are never integrated into the
renderer. As a result, unlike in surface rendering, where a

polygonal renderer uses simplification as an effective con-
trol tool to adjust rendering accuracy and performance at
run time, volume simplification has rarely been an integral
part of a volume renderer as a dynamic adaptation mech-
anism. This paper describes the first irregular-grid volume
rendering system that integrates not only volume simplifica-
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tion with rendering, but also volume decompression, into a
single seamless pipeline. With this integrated pipeline, sim-
plification becomes an active element of a volume render-
ing system, and each piece of volume data is brought into
the main memory only once as it travels through the decom-
pression, simplification, and rendering steps. We have suc-
cessfully implemented the proposed integrated decompres-
sion/simplification/rendering pipeline on the Gatun system.
Empirical measurements on the Gatun prototype show that
the additional performance overhead associated with run-
time simplification is less than 5% on an average compared
to the same pipeline without simplification. However, with
simplification in place, the rendering performance can be
improved only by a factor of up to 2 because the entire data
set still needs to be touched at least once regardless of the
simplification ratio. To address this problem, we propose a
multi-resolution pre-simplification scheme similar in spirit
to mip-mapping, which effectively reduces the end-to-end
rendering time to be about inversely proportional to the sim-
plification ratio, and makes a powerful building block for
time-critical rendering.

In the future, we plan to integrate not only view-
independent simplification, but also view-dependent simpli-
fication into our framework, given that the latter should pro-
vide more room for more aggressive simplification during
run-time data browsing. We are also investigating other sim-
plification primitives other than vertex merge or edge col-
lapse which can be integrated into our framework.
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