IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.- C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

Accelerating Volume Raycasting using Occlusion Frustums

Jorg Mensmann Timo Ropinski Klaus Hinrichs

Department of Computer Science, University of Miinster, Germany

Abstract

GPU-based volume raycasting allows to produce high quality renderings on current graphics hardware. The use of
such raycasters is on the rise due to their inherent flexibility as well as the advances in hardware performance and
functionality. Although recent raycasting systems achieve interactive frame rates on high-end graphics hardware,
further improved performance would enable more complex rendering techniques, e. g., advanced illumination
models. In this paper we introduce a novel approach to empty space leaping in order to reduce the number of costly
volume texture fetches during ray traversal. We generate an optimized proxy geometry for raycasting which is
based on occlusion frustums obtained from previous frames. Our technique does not rely on any preprocessing,
introduces no image artifacts, and—in contrast to previous point-based methods—works also for non-continuous
view changes. Besides the technical realization and the performance results, we also discuss the potential problems
of ray coherence in relation to our approach and restrictions in current GPU architectures. The presented technique
has been implemented using fragment and geometry shaders and can be integrated easily into existing raycasting
systems.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation —

Viewing Algorithms; .3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism — Raytracing.

1. Introduction

GPU-based volume raycasting is on the rise. It allows to gen-
erate high quality volume renderings on high-end graphics
cards at interactive frame rates. Due to its flexibility, ray-
casting can be extended towards the integration of advanced
rendering effects. However, usually these rendering effects
consume valuable rendering time. Therefore, in order to make
the integration of additional effects possible without loosing
interactivity, it is important to get optimal rendering perfor-
mance from GPU-based raycasting.

The goal of this paper is to increase raycasting performance
by ignoring empty voxels which do not contribute to the final
image. This empty space leaping is realized by exploiting the
geometry processing capabilities of programmable graphics
hardware which are normally not utilized during raycasting.
The vertex and fragment processing units of earlier graph-
ics hardware were independent, resulting in the vertex units
being mostly idle when raycasting is implemented within a
fragment shader. More recent GPUs switched to a unified
architecture where processing units are dynamically assigned
to process either vertices or fragments, and thus ensure better

© The Eurographics Association 2008.

utilization of the available computing resources. Nonetheless,
raycasting still does not make use of the geometry processing
capabilities of the hardware. Therefore we have investigated
how a more complex proxy geometry can be used for sup-
porting the fragment shader, to save costly calculations.

Data exploration is an important application for volume
rendering. For this task it is especially important for the user
to be able to change all rendering parameters interactively.
Changes in some parameters like the transfer function can
have global effects on the empty space, depending on which
source data values are mapped to zero opacity. These param-
eter changes can therefore invalidate any prior knowledge
about the distribution of empty space and nullify any data
structures which rely on this information. Hence, optimiza-
tion techniques that rely on empty space information and
require expensive preprocessing to adapt the underlying data
structures to changes in the empty space are unsuitable for in-
teractive data exploration. We introduce occlusion frustums to
improve the rendering performance of GPU-based raycasting,
which require no preprocessing as they are constantly regen-
erated. Using occlusion frustums for space leaping introduces

147

delivered by
m— EURO

www.eg.org

GRAPHICS
DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

148 J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

A

start point\:‘._

center of projection

i 1
1 data set

ray\'\g /ﬁrst-hit point ! bounding box
Q

1

1

1

I

1

1
empty space\

° d
kY 1
i '
3 H

! %

i K

! o~ i

! : last-hit point
1

]

. 1
poendpont~ N i

Figure 1: Casting a ray through a volume data set.

no rendering artifacts and also works for non-continuous
viewpoint changes.

2. Related work

GPU-based raycasting was introduced by Rottger et
al. [RGW™03] and enhanced by Kriiger and Westermann
[KWO03]. The flexible single-pass technique is increasingly
popular and will very likely replace slice-rendering as the de
facto standard for volume rendering. It uses a proxy geometry
most often resembling the data set bounding box to specify
ray parameters, as shown in Figure 1.

Many acceleration techniques have been proposed for ray-
casting, most trying to reduce the large number of sampling
operations in the volumetric data. Avila et al. [ASK92] in-
troduced polygon assisted raycasting (PARC) which approx-
imates the volume object by a polygon mesh and restricts
raycasting to those parts of the rays lying inside the geome-
try. This was implemented by Leung et al. [LNMO06] using
Marching Cubes for extracting the object surface. Similarly,
Westermann and Sevenich [WSO01] utilize hardware-based
texture slicing to speed up software-based raycasting. They
render the data set with a slice-based approach and use the
resulting depth image to get an optimal ray setup for the
raycasting performed in a second rendering pass.

A coarser but also faster approximation of the volume ob-
ject can be generated by partitioning the volume into uniform
blocks and not rendering those consisting only of empty vox-
els, for example, shown by Hadwiger et al [HSS*05] and
Scharsach et al. [SHN*06]. Li et al. [LMKO03] use adaptively
partitioned subvolumes to add empty space skipping to slice
rendering, grouping similar voxels into subvolumes. These
object-order techniques can adapt to limited changes in the
transfer function by storing minimum and maximum voxel
intensities for each block. But for larger changes these meth-
ods generally require to rebuild the data structure, for which
every voxel in the data set has to be considered. This makes
these techniques rather unsuitable for data exploration where
the opacity mapping is changed frequently. Also the more
complex approaches are often difficult—if not impossible—
to adapt efficiently to the GPU programming paradigm and
into existing rendering frameworks.

The idea of skipping empty voxels around a volume ob-
ject by exploiting temporal and spatial coherence between
consecutive frames was introduced by Gudmundsson and
Randén [GR90] for parallel projection and later generalized
by Yagel and Shi [YS93] under the name space leaping. They
approximate optimal ray start points by extracting first-hit
points from the depth image of previous frames and repro-
jecting them to the current view using point splatting. Due to
discretization of screen-space positions to integer pixel loca-
tions, some pixels will not be covered by the reprojection and
therefore a hole filling is required, triggering a full raycasting
for such pixels. The reprojection is only possible for small
view changes, for larger changes a full raycasting of virtually
all pixels is necessary.

Several extensions of the reprojection approach have been
presented. Yoon et al. [YDKN97] transform rays instead of
points to accelerate isosurface rendering. Wan et al. [WSKO02]
presented a cell-based reprojection scheme which they com-
bined with a spatial data structure based on distance fields
for hole filling. Besides high memory requirements for the
data structure, their technique will fail to detect suddenly
appearing objects when large viewpoint changes are per-
formed. Instead of frame-to-frame coherence, Lakare and
Kaufman [LKO04] exploit ray coherence by casting detector
rays to get empty space information for multiple adjacent rays
at the same time. While independent of the transfer function,
their technique can only give accurate results when single
voxels are projected over multiple pixels on the screen, as it is
the case in virtual endoscopy applications where the camera
is placed close to the object surface.

All of the previously described space leaping methods
that make use of temporal and spatial coherence were im-
plemented on the CPU. Many of them cannot be directly
ported to the GPU, and are therefore not useful in a GPU-
based raycasting system. Only few solutions were presented
that directly use graphics hardware for acceleration. Klein
et al. [KSSEO5] implemented Yagel and Shi’s space leaping
with point reprojection on programmable graphics hardware
using vertex shaders. For larger view changes artifacts are
described as “unavoidable” with their technique. The repro-
jection technique was also applied to time-varying data by
Grau and Tost [GTO07].

3. Impact of hardware restrictions on raycasting

Although the highly parallel architecture of modern graphics
processors makes volume raycasting usable for interactive
applications, it must be kept in mind that this architecture
has some restrictions. One hardware restriction significant
for raycasting is branch coherence. Fragment processors on
modern GPUs process fragments in groups rather than in-
dividually, and the fragment with the most time-consuming
calculations limits the progress of the entire group, as the
group can only finish when all of its fragments are completed.
Houston [HouO7] demonstrated this for different GPUs by

© The Eurographics Association 2008.

J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

distribution fps overhead
constant 251.3 -

linear 249.2 0.8%
random 149.7 67.9%

Table 1: Influence of ray length distribution on casting 51 22
rays with an average ray length of 128 samples.

data set block size
4 82 16
head +2.3% +4.9% +10.2%
engine +4.7% +103% +19.9%
aneurysm | +3.4% +7.1% +13.8%

Table 2: Overhead resulting from block grouping.

distributing pixels that cause “slow” or “fast” calculations ei-
ther randomly or in groups on the screen. Coherence regions
with the same calculation time for 4 x 4 to 16 x 16 pixels
give nearly optimal results, depending on the actual graphics
hardware, while a random distribution results in the worst
performance.

For GPU-based raycasting, calculation time for each frag-
ment is mainly influenced by the ray length as this controls
the number of texture fetches. Empty space leaping and early
ray termination can disturb coherence between calculations
for adjacent rays, as they modify the initially equal ray lengths
depending on the volume data. To examine this matter, we
have implemented a simplified GPU raycaster which can set
the lengths of the rays to be either constant, linearly increas-
ing, or randomly distributed over the screen. The sum of all
ray lengths (and therefore the total number of texture fetches)
is the same in either case. As shown in Table 1, there is no
significant performance difference between constant and lin-
ear increasing lengths, but a random distribution of lengths
increases rendering time by about 68%.

However, experimental results show that ray length distri-
bution is not that random for non-synthetic data. This can
be quantified by comparing the original unmodified volume
raycasting to one where we group adjacent rays in blocks,
and apply the longest ray length within each block to all rays
in the block. Implementing this scheme in a full volume ray-
caster, we do not directly consider the lengths of the rays but
instead count the number of texture fetches which also covers
gradient calculation with six additional texture fetches for
each non-empty voxel. Since the computation time for a block
is determined by its longest ray, the shorter rays in the block
result in idling fragment units. Table 2 shows the overhead
introduced by the block grouping, i. e., the total idle time, for
semi-transparent, dense, and sparse data sets. This overhead
ranges from 2% to 20% compared to when no block grouping
is applied. This is much less than what would be expected
for a purely random distribution. Visualizing ray lengths as
in Figure 2 shows that they are distributed quite uniformly,
so we expect the penalty to pay for a block having to wait for
the calculation of its longest ray to be comparatively small.

© The Eurographics Association 2008.

(a) vmhead (b)

(c) engine (d)

(e) aneurysm
[1

Figure 2: Analyzing the distribution of ray calculation costs.
The number of texture fetches per ray (including gradient
calculations) is normalized and quantized for each data set.

Thus we could show that although in theory branch coher-
ence could be a potential problem for raycasting optimiza-
tions, the effects are most visible with synthetic worst-case
data, while with real-world data the resulting ray lengths are
much more coherent, which will not be changed dramatically
by optimizations.

4. Optimizing the proxy geometry for space leaping

GPU-based raycasting usually utilizes a cube as its proxy ge-
ometry for generating the ray start and end points, illustrated
in Figure 1. As the colors on the cube surface encode the ex-
act position in space (compare Figure 3a), any other geometry
can be used instead, as long as it encloses all relevant voxels.

149

150 J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

occlusion
frustum

non-empty
center of voxels
projection

definite miss

definite hit

possible hit

(a) (b)

Figure 3: (a) Proxy geometry and first-hit point image for the
vmhead dataset. (b) Visibility information retrieved from a
first-hit image, used for constructing the occlusion frustums.

A straight-forward approach to minimize the sampling of
empty voxels would therefore be to enclose all non-empty
voxels inside a closely-fitted proxy geometry, as proposed
with the PARC algorithm [ASK92]. The complexity of this
geometry is data-dependent, and some kind of simplification
would be needed to prevent the generation of excessively
complex geometries. While giving optimal results with re-
gard to preventing unnecessary sampling, generating such a
geometry would be quite costly and, even worse, it would
become invalid as soon as the transfer function is changed, a
common operation for data exploration. Hence, an on-the-fly
process with fast adaptation to changed viewing parameters
would be preferred, even when giving slightly less optimal
results. Therefore we refrain from any preprocessing and
choose to do a less costly proxy geometry construction for
each frame, using information obtained during the rendering
of the previous frame.

4.1. Occlusion frustums as proxy geometry

The concept of occlusion volumes is well-known for geomet-
ric visibility calculation and occlusion culling, see Schaufler
et al. [SDDSO00]. Objects directly visible from the camera
are considered as occluders that cast an occlusion volume
into the scene, similar to casting a shadow. All objects inside
this occlusion volume are then known to be invisible from
the camera and can be removed for occlusion culling. Our
approach is based on visibility information retrieved from
a first-hit image (Figure 3a). In this image, each pixel cor-
responds to a ray, and the pixel color specifies the position
of the first non-empty voxel on this ray. The alpha channel
is used to mark rays that only hit empty voxels. When we
consider these first-hit voxels as occluders, we can extract
regions where no non-empty voxels are located. These are
marked as definite miss in Figure 3b.

To prevent the raycaster from sampling in regions which
are known to contain only empty voxels, we can now build
a proxy geometry consisting of the first-hit voxels and their
occlusion volume. Not an exact geometry is necessary but
a simplification is sufficient as long as it contains all possi-
bly non-empty voxels. For each first-hit voxel a quadrilateral

data set
bounding box

top base

/

center of image plane
projection 9P

occlusion
frustum

Figure 4: Construction of a two-dimensional occlusion frus-
tum with a block size of three.

data set
bounding box

occlusion
frustum

new object

Figure 5: New incoming object problem: The new object is
outside the occlusion frustum constructed at ty and therefore
not considered for raycasting at t;.

pyramidal occlusion frustum is constructed, with its top base
located at the voxel position. The occlusion frustums are con-
structed by extruding the quad forming the top base along the
projectors extending from the center of projection through the
vertices of the quad (illustrated in Figure 4). The depth extent
of the frustum is chosen large enough so that its bottom base
lies outside the data set’s bounding box. The union of all these
constructed occlusion frustums gives the complete occlusion
volume. Unlike point-based space leaping, no reprojection is
necessary to adapt the generated proxy geometry to changed
viewing parameters. As the geometry is created in object
space, it is sufficient to apply the desired view transformation
and simply render the geometry from the new view point.

Special consideration is necessary for objects which are
initially located outside the view frustum. As the generation
of occlusion frustums is image-based, they can only contain
voxels lying inside the view frustum. Consequently, when the
view is changed so that previously hidden objects become
visible, they will be skipped by raycasting as they do not
lie within the proxy geometry that consists of all occlusion
frustums (see Figure 5). To handle this case, the proxy ge-
ometry must be enlarged to enclose all regions outside the
view frustum where non-empty voxels may be located. The
additional geometry can be generated by subtracting the view
frustum of the previous frame from the initial cube proxy
geometry, which is guaranteed to contain all voxels.

4.2. Clipping the occlusion volume

The occlusion frustums can be compared to shadow volumes
where the silhouette of occluders is often extruded into in-
finity. This can not be directly copied in our case, since ad-

© The Eurographics Association 2008.

J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

ditional information is carried by the geometry. All proxy
geometry has to be placed inside a bounding box of [0, 1]>
because of the way ray parameters are encoded as colors.
Those are clamped to [0,1] by the graphics hardware and
therefore geometry reaching outside this unit cube would
lead to a wrong ray direction. Additionally the frustum must
be closed from all sides to give correct results for all possi-
ble view directions. Therefore the initial frustum has to be
clipped against the data set bounding box to construct the
final frustum.

With this approach, only the empty space between the ray
start and the first-hit point is considered. Especially for sparse
data sets, however, much more empty space can remain be-
tween the first-hit point and the ray end. The empty space
inside an object can get too complex to be handled efficiently,
but the empty space behind it is much simpler. Instead of
first-hit points, now information about lasz-hit points would
be necessary, i. e., the position of the last non-empty voxel
between first-hit point and ray end. The last-hit image could
be used to construct the back of the occlusion frustums, in-
stead of building them by clipping against the bounding box.
Though initially reasonable, we have not implemented this
extension for two reasons: First, it can not be combined with
early ray termination, as this might stop the ray traversal
before reaching the last-hit point and therefore not provide
the necessary last-hit point information. Second, while about
doubling the costs for creating the occlusion frustum, for
the typical use case of a slowly rotating object the amount
of traversed empty voxels which could be saved with this
extension is relatively small.

5. GPU implementation

As described before, the starting point of our approach is the
first-hit image. It can be generated in the raycasting fragment
shader by detecting the first-hit voxel and writing its position
into an additional rendering buffer. By exploiting multiple
render targets, this is done during normal ray traversal without
the need for a second pass, so the first-hit image is extracted
with minimal overhead. The steps described in the following
subsections are inserted into the volume rendering pipeline
just before the actual raycasting operation, where normally a
cube proxy geometry is rendered. The only additional change
is instructing the raycaster to also output the first-hit image,
as described above. Thus, the proposed optimization can be
easily integrated into existing volume raycasting frameworks
that use the Kriiger-Westermann approach [KWO03].

5.1. Analyzing first-hit points

Instead of generating an occlusion frustum for every pixel
in the first-hit image, which would result in a prohibitively
large amount of geometry for high viewport resolutions, we
group adjacent pixels as square occlusion blocks. We then
analyze all voxels corresponding to pixels in each block to

© The Eurographics Association 2008.

find the voxel with minimum distance to the view point. This
voxel’s position is used for constructing a frustum that en-
closes all non-empty voxels hit by rays associated with the
occlusion block. The proxy geometry is enlarged by this sim-
plification, which leads to sampling of some empty voxels,
and thus reduces efficiency of space leaping. But as discussed
in Section 3, the hardware processes fragments block-wise,
and the slowest fragment limits the processing speed for all
fragments in a block. Hence, the block simplification suits the
hardware limitations, and an unsimplified solution would not
result in significantly better performance results. The simpli-
fication can be implemented efficiently as a fragment shader
and results in the occlusion block texture.

5.2. Generating occlusion frustums

The generation of the occlusion frustum geometry is espe-
cially suitable for implementation with the recently intro-
duced geometry shaders. They allow to generate new graph-
ics primitives from input primitives sent by previous stages of
the graphics pipeline. While they can theoretically generate
arbitrary amounts of output primitives from one input primi-
tive, current implementations require to specify the maximum
number of output primitives in advance and are most efficient
when this number is not too large.

In our algorithm, an occlusion frustum which consists of
twelve triangles has to be generated for each non-empty oc-
clusion block. These input blocks can easily be modeled as
point primitives, with the x- and y-coordinates set to the tex-
ture coordinates of the corresponding texel in the occlusion
block texture. These points are sent to the geometry shader
which either outputs the clipped frustum or zero triangles,
depending on whether the block corresponding to the input
point is empty or not. In the geometry shader the frustum is
constructed and clipped against the data set’s bounding box.
To ensure that it contains all relevant voxels, it is slightly
enlarged and moved towards the camera. The resulting ge-
ometry is rendered using a fragment shader that assigns the
vertex position as fragment color, while the z-buffer handles
overlapping frustums.

For supporting older hardware, the algorithm can also be
adapted to vertex shaders since the maximum number of
generated vertices for each occlusion block is known before-
hand. However, this might result in a significant performance
penalty, as the texture fetch will have to be made per-vertex
instead of per-frustum. For empty occlusion blocks a degen-
erate geometry with all vertices of the corresponding frustum
set to zero would be built, effectively removing it from the
output.

Finally, we add the bounding box cube subtracted by the
view frustum of the previous frame for detecting appearing
objects (see Subsection 4.1). The resulting geometry can
be used for ray setup, by rendering the front faces to get
ray start points, while the ray end points are still retrieved

151

152 J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

by rendering the back faces of the data set bounding box.
When the empty space information is invalidated by changing
rendering parameters like the transfer function, a single frame
has to be rendered using the data set bounding box as its
proxy geometry, while subsequent frames can again use the
occlusion frustums.

6. Results and discussion

The presented optimization techniques were implemented
using OpenGL/GLSL and integrated into the Voreen volume
rendering framework. All tests were conducted with an Intel
Core 2 Duo E6300 CPU and an NVIDIA GeForce 8800 GT
graphics board with 512 MB of onboard memory. We have
tested our algorithm with different sparse and dense data sets,
with the results shown in Table 4 and Figure 6. Rendering
was performed using on-the-fly gradient calculation, Phong
lighting, and early ray termination. The objects were con-
stantly rotated and visualized using direct volume rendering.
Occlusion frustum optimization was applied with a block size
of 4 x 4, a compromise between accuracy and complexity of
the generated proxy geometry. In our tests we did not observe
artifacts caused by the optimization. As it is an image-based
technique, undersampling could be problematic, since vox-
els missed due to undersampling might lead to incorrectly
identifying parts of the volume as empty and permanently re-
moving them from the proxy geometry. In practice this poses
no problem because of the constant refreshing of the occlu-
sion frustum geometry. Also the occlusion blocks lower the
chance of this happening, as all voxels in a block would have
to be missed due to undersampling to remove the associated
frustum.

As expected, the greatest speed-ups were found with large
but sparse data sets like vertebra. For dense objects with little
empty space like vimhead (skin), hardly any optimization is
possible. The amount of empty space depends on the transfer
function, and so does the speed-up, as shown with the hand
and vmhead data set, where different transfer functions for
showing skin and bone structures are applied. Since the opti-
mization introduces an additional overhead, our approach can
only result in a significant speed-up if the costs of sampling
empty voxels are higher than those for generating the occlu-
sion frustums. Fortunately, optimization is most useful for
high-resolution data sets and high-quality rendering, where
the costs for sampling empty voxels will also be high. As
the runtime of our approach is mainly dependent on the re-
sulting 2D image resolution, not 3D data set resolution, it
will produce good results in this case. The costs for optimiza-
tion increase with the viewport size, but the amount of saved
sampling operations increases proportionally. Therefore the
technique scales well even to the quite large viewport size of
10242, for some data sets even producing greater speed-ups
than for 5122,

Besides with rotations, we also tested the performance
when the point of view is moved to a random position after

data set cube opt. s
vertebra 16.8 229 1.36
vmhead (bone) 19.1 19.5 1.02
engine 256 198 0.77

Table 3: Frame rates and speed-up factor for random view-
point selection on a 512* viewport.

each frame. While reprojection methods cannot give valid
results in this case, our approach can even then produce an
acceleration compared to the cube proxy geometry, as indi-
cated in Table 3. Random viewpoint changes destroy frame-
to-frame-coherence and therefore reduce the optimization
efficiency. For some data sets like engine the optimization
overhead then gets larger than the costs of sampling empty
voxels, leading to a performance decrease. But nonetheless a
correct image is rendered in any case, and an optimization is
still reached for some data sets. Comparing our results with
those of similar previous methods, Klein et al. [KSSEO5] re-
port a speed-up of up to 1.7 for semi-transparent volume ren-
dering with small view changes. Our results on similar data
sets are comparable if not better than their semi-transparent
rendering, possibly because no hole-filling is required. Hence,
our technique is competitive with point-based reprojection,
with the additional benefit that it allows also large viewpoint
changes without introducing artifacts.

7. Conclusion

After examining architectural limitations of graphics hard-
ware with respect to raycasting optimization, we have pre-
sented a purely GPU-based method for accelerating volume
raycasting using empty space leaping. By exploiting the tem-
poral coherence between consecutive frames we achieve a
speed-up of up to a factor of two. Artifacts could be caused
by undersampling, but as the created geometry is constantly
refreshed, they will be removed immediately. As it requires
no preprocessing, the technique is also suitable for data ex-
ploration applications. Best results are expected when large
parts of the data set are removed by the transfer function, a
typical operation for data exploration. Compared to point-
based reprojection methods, our approach results in a proxy
geometry which can be used for any point of view, though op-
timal space leaping is expected for small view changes. Holes
can never appear, consequently no hole filling is necessary
which would trigger full raycasting for unknown regions and
reduce optimization efficiency. The technique can be easily
integrated into an existing GPU-based raycasting infrastruc-
ture, as it requires only minimal changes within the raycaster
and has no external dependencies. Hence, our approach could
be suitable as a general acceleration technique to speed up
volume rendering and thereby make more complex visual-
izations possible. As future work we might examine how to
do incremental optimization of the proxy geometry by refin-
ing the previous occlusion frustums after each view change,
instead of recreating them from scratch. This would further

© The Eurographics Association 2008.

J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

viewport 5122 viewport 10242

data set size cube opt. s triangles | cube opt. s triangles
vertebra 5123 19.1 431 226 33,876 7.6 189 249 167,904
aneurysm 2563 29.7 551 1.86 47,688 85 156 1.84 182208
hand (skin) 2563 194 251 1.29 65,772 5.6 7.1 127 250,056
hand (bone) 2563 257 488 190 53,676 76 129 170 217,524
backpack 5122373 | 240 446 1.86 31,608 84 168 2.00 128,724
vmhead (skin) 2563 369 39.1 1.06 81,576 4.0 39 098 327,624
vmhead (bone) 2563 27.0 367 1.36 54,888 7.1 9.2 130 216,060
engine 256°x128 | 242 277 1.14 47,664 7.4 83 1.12 189,672
engine (interior) | 2562x128 | 37.5 64.6 1.72 24300 | 11.3 219 194 93,132
stagbeetle 416>x247 85 153 1.80 37,464 3.1 6.6 213 135,108

Table 4: Results for different data sets, with average frame rates for a full rotation of the object using a cube proxy geometry and
our occlusion frustum optimization, resulting speed-up factor s, and triangle count of the optimized proxy geometry.

improve optimization, but might also increase the geometry
calculation costs.

Acknowledgments

The authors wish to thank the anonymous reviewers for their
helpful comments. Additional implementation work was done
by Stefan Diepenbrock. This work was partly supported by
grants from Deutsche Forschungsgemeinschaft, SFB 656
MoBil Miinster (project Z1). The presented concepts have
been integrated into the Voreen volume rendering engine
(http://www.voreen.org).

References

[ASK92] AVILA R., SOBIERAJSKI L., KAUFMAN A.: To-
wards a comprehensive volume visualization system. In
Proc. of IEEE Visualization (1992), pp. 13-20.

[GR90] GUDMUNDSSON B., RANDEN M.: Incremental
generation of projections of CT-volumes. In Proc. of the
First Conference on Visualization in Biomedical Comput-
ing (1990), pp. 27-34.

[GTO7] GRAU S., ToST D.: Frame-to-frame coherent
GPU ray-casting for time-varying volume data. In VMV
2007: Proc. of the Vision, Modeling, and Visualization
Conference (2007), pp. 61-70.

[HouO07] HousTON M.: Understanding GPUs through
benchmarking. In SIGGRAPH 07 courses (2007).

[HSS*05] HADWIGER M., SIGG C., SCHARSACH H.,
BUHLER K., GROSS M.: Real-time ray-casting and ad-
vanced shading of discrete isosurfaces. In Proc. of Euro-
graphics (2005), pp. 303-312.

[KSSEO5] KLEIN T., STRENGERT M., STEGMAIER S.,
ERTL T.: Exploiting frame-to-frame coherence for acceler-
ating high-quality volume raycasting on graphics hardware.
In Proc. of IEEE Visualization (2005), pp. 223-230.

[KW03] KRUGER J., WESTERMANN R.: Acceleration

techniques for GPU-based volume rendering. In Proc. of
IEEFE Visualization (2003), pp. 287-292.

© The Eurographics Association 2008.

[LKO4] LAKARE S., KAUFMAN A.: Light weight space
leaping using ray coherence. In Proc. of IEEE Visualization
(2004), pp. 19-26.

[LMKO3] L1 W., MUELLER K., KAUFMAN A.: Empty
space skipping and occlusion clipping for texture-based
volume rendering. In Proc. of IEEE Visualization (2003),
pp- 317-324.

[LNMO06] LEUNG W., NEOPHYTOU N., MUELLER K.:
SIMD-aware ray-casting. In Proc. of Volume Graphics
(2006), pp. 59-62.

[RGW*03] ROTTGER S., GUTHE S., WEISKOPF D.,
ERTL T., STRASSER W.: Smart hardware-accelerated
volume rendering. In VISSYM ’03: Proc. of the Sympo-
sium on Data Visualization (2003), pp. 231-238.

[SDDS00] SCHAUFLER G., DORSEY J., DECORET X.,
SiLLION F. X.: Conservative volumetric visibility with
occluder fusion. In Proc. of SSIGGRAPH (2000), pp. 229—
238.

[SHN*06] SCHARSACH H., HADWIGER M., NEUBAUER
A., WOLFSBERGER S., BUHLER K.: Perspective isosur-
face and direct volume rendering for virtual endoscopy
applications. In EUROVIS — Eurographics/IEEE VGTC
Symposium on Visualization (2006), pp. 315-322.

[WS01] WESTERMANN R., SEVENICH B.: Accelerated
volume ray-casting using texture mapping. In Proc. of
IEEE Visualization (2001), pp. 271-278.

[WSKO02] WAN M., SADIQ A., KAUFMAN A.: Fast and
reliable space leaping for interactive volume rendering. In
Proc. of IEEE Visualization (2002), pp. 195-202.

[YDKN97] YooN I, DEMERS J., KIM T., NEUMANN U.:
Accelerating volume visualization by exploiting temporal
coherence. In Proc. of IEEE Visualization (1997), pp. 21—
24.

[YS93] YAGELR., SHIZ.: Accelerating volume animation
by space-leaping. In Proc. of IEEE Visualization (1993),
pp. 62-69.

153

http://www.voreen.org

154 J. Mensmann, T. Ropinski, K. Hinrichs / Accelerating Volume Raycasting using Occlusion Frustums

(a) vertebra (b) aneurysm (c) hand (skin) (d) hand (bone) (e) backpack

‘\

K {
QY
B>

= L
|

(f) vmhead (skin) (g) vmhead (bone) (h) engine (i) engine (interior) (j) stagbeetle

Figure 6: Results of applying our space leaping technique to different dense and sparse data sets. Shown are the resulting final
image, first-hit image, and the constructed occlusion frustum geometry which is an approximation of the first-hit image.

© The Eurographics Association 2008.

