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Abstract 
Symmetry detection aims at discovering redundancy in the form of reoccurring structures in geometric 
objects. In this paper, we present a new symmetry detection algorithm for geometry represented as point 
clouds that is based on analyzing a graph of surface features. We combine a general feature detection 
scheme with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect reoc-
curring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous re-
gion growing variant of the ICP algorithm is applied to verify that the actual point cloud data supports the 
pattern detected in the feature graphs. We apply our algorithm to synthetic and real-world 3D scanner da-
ta sets, demonstrating robust symmetry detection results in the presence of scanning artifacts and noise. 
The modular and flexible nature of the graph-based detection scheme allows for easy generalizations of 
the algorithm, which we demonstrate by applying the same technique to other data modalities such as im-
ages or triangle meshes. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics] Computational 
Geometry and Object Modeling, I.5.3 [Pattern Recognition] Clustering, I.2.10 [Artificial Intelligence] Vi-
sion and Scene Understanding 

 

1. Introduction 

Many real-world objects consist of parts that are approxi-
mately similar to each other. For example, a façade of a 
building might contain a number of windows with compa-
rable geometry. The automatic detection of such redundan-
cies is a recent, very interesting research direction [TW05, 
PSG*06, MGP06, MSH*06, SKS06, MGP07]. Information 
about similarities within one and the same shape is useful 
for a variety of applications, such as compression, pattern 
recognition, shape completion, and statistical noise re-
moval. 

In this paper, we propose a new method for detecting re-
occurring parts (from now on just called “symmetries”) in 
point clouds from 3D scanning devices. Our paper makes 
two main contributions: First, we present a novel approach 
to solving this problem based on building graphs of salient 
features and an efficient subgraph matching technique. We 
introduce a new randomized geometric graph matching 
algorithm, which is combined with a generalized feature 
detector. We expect that this algorithmic approach might 
be useful for solving other geometric correspondence 
problems as well. Second, we explicitly design our algo-
rithm for detection of symmetries in scanned point cloud 
data sets. Our method handles real-world raw 3D scanner 
point clouds with noise artifacts robustly. 

We evaluate our algorithm on multiple synthetic and 
real-world 3D scanner data sets. In addition, we also con-

sider generalizations to image data and clean triangle 
meshes, demonstrating the generality of the novel ap-
proach. 

2.  Related Work 

Symmetry detection in 3D shapes has recently gained a lot 
of interest. The probably most successful techniques so far 
are based on transformation voting: A set of candidate 
correspondences between surface points is estimated and a 
transformation between the according local neighborhoods 
is established. Similar to a Hough transform, a voting 
procedure in transformation space is used to identify well-
supported transformations. Having extracted such clusters 
of transformations, the according correspondences between 
surface patches can be easily determined. Mitra et al. 
[MGP06] propose this type of algorithm, using principal 
curvature directions to create votes in a transformation 
space of rotation, translation and scaling. A mean-shift 
algorithm is used to extract dominant transformation clus-
ters. The technique can be extended to an optimization 
technique that makes approximately symmetric objects 
more symmetric [MGP07]. Another voting approach has 
been proposed concurrently by [PSG*06], who use voting 
on reflective planes to detect planar reflective symmetries. 
Gal and Cohen-Or [GC06] form clusters of quadratic sur-
face patches and use geometric hashing [LW88] to find 
symmetries in objects. In image data, a Hough transform of 
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salient feature points has been used by Loy and Eklundh 
[LE06] to find symmetric configurations. Martinet et al. 
[MSH*06] propose a technique that uses a transformation 
to generalized moment functions in order to compute glob-
al symmetries of 3D shapes. Localized symmetries are 
detected by applying the algorithm hierarchically to de-
tected parts. A related strategy is proposed by [SKS06]: 
Planar reflective symmetries are detected by computing an 
auto-alignment of parts of a shape with itself. The iterative 
alignment process is initialized by a PCA-based split of the 
object in halves; afterwards, an iteratively reweighted least-
squares alignment is computed, where the reweighting cuts 
off outliers that correspond to non-symmetric parts of the 
object. Hubo et al. [HMH*07] detect symmetries based on 
local descriptors and perform a compression by aligning 
matching heightfields and performing a PCA analysis of 
the resulting space of example shapes. Kazhdan et al. 
[KCD03] analyze objects for central symmetry and use this 
as a descriptor for shape retrieval. Another very interesting 
application of symmetry detection is shape completion: 
Thrun and Wegbreit [TW05] compute symmetries of par-
tially scanned objects using a brute force search and local 
descent algorithm and use this information to complement 
the partially acquired shape, taking occlusion constraints of 
the acquisition process into account. 

In contrast to methods based on voting [MGP06, GC06, 
PSG*06, LE06], our algorithm is based on a graph match-
ing strategy. The main advantage of this approach is that it 
can be potentially generalized to more general matching 
criteria. With voting methods, the dimensionality of the 
transformation space increases with additional degrees of 
freedom which makes the detection problem harder to 
solve and computationally less efficient. In addition, our 
algorithm can handle both local and global symmetries, the 
scale being only determined by the level of detail that is 
used in the feature detector. In contrast, global methods 
[KCD03, MSH*06, SKS06] have to detect symmetries in a 
top-down fashion, relying on an initial symmetric decom-
position. Voting methods are also affected by this problem, 
as all votes are cast into the same transformation space. 
Without some kind of partition, the transformation space 
might become cluttered so that detailed symmetries are 
hard to detect. Graph-based pattern matching techniques 
have been explored in computer vision: Felzenszwalb and 
Huttenlocher [FH05] use tree-shaped graphs of object parts 
with an appearance model to infer deformable shape con-
figurations in images. A graph-based algorithm for 3D 
object retrieval has been proposed by Schnabel et al. 

[SWW*08]: First, shape primitives are fitted to a point 
cloud, then the structure of the incidence graph is learned 
and used to retrieve the object within a larger collection 
using a subgraph matching algorithm. To the best of our 
knowledge, no previous technique has applied graph-based 
matching techniques to detecting symmetries in geometric 
objects. 

3. Overview 

The pipeline of our symmetry detection algorithm is out-
lined in Figure 1: We start by detecting locally unique 
features on the geometry. For this step, we use the recently 
proposed slippage feature algorithm [BBW*08], which is 
capable of detecting features in very general settings. From 
these features, we build a neighborhood graph that de-
scribes the coarse scale similarity structure of the object. 
Details on this step are given in Section 4. Given this 
graph, we employ a randomized subgraph search algorithm 
in order to detect reoccurring patterns in this graph (Section 
5). Mapping the search for similarities to a subgraph 
matching problem reduces the amount of information that 
needs to be processed dramatically, which allows for an 
efficient solution to this problem. In order to make sure that 
the reduced, discretized solution matches the continuously 
defined geometry, we perform a final validation using a 
variant of an iterative-closest-points (ICP) registration 
algorithm [BM92, CM92] that performs simultaneous 
matching and region growing over all detected patterns 
(Section 6). Generalizations of this basic strategy are dis-
cussed in Section 7. Finally, we evaluate our algorithm on 
various test data sets (Section 8) and conclude with some 
ideas for further generalizations that the graph-based ap-
proach allows for in Section 9. 

4. Building the Feature Graph 

4.1 Feature Detection 

Our whole approach is based on matching graphs of feature 
points. Therefore, the feature detection step is decisive for 
the attainable quality of the results. A big problem with 
feature detection techniques is that they typically restrict 
themselves to a certain class of geometric features (such as 
bumps, i.e. points on the surface where both principal 
curvatures are large). Such a restriction is meant to make 
the detection more reliable; however, it strongly restricts 

input
geometry

feature
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graph

ICP region
growing

rnd. subgraph
search  

Figure 1: Processing pipeline – first a set of locally unique features is detected, which then form a graph on the object 
surface. Next, subgraphs with matching topology and approximately matching geometric embedding are extracted. From 
these discrete candidate matches, data points are assigned to symmetric regions using an ICP-based simultaneous region 

growing algorithm, which yields the final result. 
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the class of feature points that can be detected. As a conse-
quence, many regularities in objects might remain unno-
ticed by a feature-based symmetry detector, as no features 
might be available in many regions of the object. 

We deal with this problem by employing the recently 
proposed “slippage features” detection algorithm that can 
detect features of arbitrary type with the same reliability as 
previous state of the art techniques (such as [LG05]). In the 
following, we give a brief overview of this algorithm; for 
further details and a quantitative evaluation, see 
[BBW*08]. 

Feature detection: The feature detector works directly 
on point clouds. For each input point pi, it analyses a spher-
ical neighborhood )()(

i
iN pε . The key idea is: in order for pi 

to be a good feature point, the auto-alignment problem of 
)()(

i
iN pε  with itself should be uniquely defined. This 

means, if we register this piece of geometry with itself, a 
unique position and orientation should result. A necessary 
requirement for this property is that the “slippage” of the 
piece of geometry is small [GG04]: We set up an ICP 
alignment objective function that measures the squared 
point-to-plane distance for this patch with itself at the given 
location. Obviously, the error itself will be zero but the 
Hessian matrix of the error function with respect to rota-
tions and translation will reveal how well conditioned the 
auto-alignment problem is [GG04]. We compute a slippage 
value for all surface points and perform mean shift cluster-
ing in order to extract local extrema of this measure. These 
extrema become the final feature points. To deal with 
features at various scale levels, we extend this algorithm by 
performing the extraction for several neighborhood sizes 
ε1, …, εk, doubling in each step: εi+1 = 2ε i. The correct 
scale for the features is determined automatically by run-
ning mean shift clustering on the 3-dimensional manifold 
of surfaces in scale space. We denote the resulting feature 
points as ki, i = 1…n. The scale is given by ε (ki) and the 
associated neighborhood of input points by N(ki). 

Feature matching: In order to detect matching features, 
we use a descriptor based on curvature histograms in con-
centric rings within each N(ki). We consider all pairs of 
feature points (ki, kj); correspondence pairs for which the 
descriptors do not match are discarded. The remaining 
pairs of features are candidate matches where the local 
neighborhood of the feature point is approximately similar. 

4.1.1 Graph Generation 

Given the computed feature points, we construct a graph 
that connects feature points with each other in a local 
neighborhood. From a theoretical point of view, a complete 
graph of all connections would provide the richest pool of 
subgraphs to examine for reoccurring patterns. However, 
the solution to the matching problem in such a densely 
connected graph becomes too expensive in practice. There-
fore, we build only a k-nearest neighbor graph of features 
(typically: k = 20). The underlying assumption for this 

simplification is that first, reoccurring patterns related to 
symmetries we want to detect are locally coherent: If fea-
tures far away correlate with each other, there will be other 
features in between that belong to the same symmetry. 
Second, we assume that we might miss a few feature points 
that drop out of our detection scheme but it is unlikely to 
miss a large number (such as 20 neighbors) at the same 
time. Therefore, the restriction to a k-nearest features graph 
is sufficient for our problem setting. We denote the feature 
graph by G = (K, E), K = {k1,…,kn}, E ⊆ {1, n} × {1, n}. 

We also store the set of matching feature pairs along with 
the matching residuals as a quality measure. Please note 
that no edges are added to the graph at this stage; the fea-
ture graph encodes only the spatial relation of surface 
features. 

5. Sub-Graph Matching 

5.1 Problem Statement 

Given a graph of features, we want to determine corre-
sponding subgraphs. This means, we want to identify dis-
joint subsets )(ijS  ⊆ K that are symmetric. The index i refers 
to the class of symmetric subgraphs, ranging from 1 to nS, 
and j to the instance index within each class: All instance 
sets S(i) := },...,{ )(

#
)(

1 )(
i
S

i iSS  describe parts of the graph that 
are similar to each other. We refer to the whole collection 
of instance sets as a symmetry set S. Similarity within an 
instance means that the corresponding subgraphs are close 
to each other according to a distance function distG: 

 ε≤∈∀∈∀ ),(:}..#1{,:}..1{ )()()(
21 21

i
j

i
jG

i
S SSdistSjjni  

A set of subgraphs where all pairs of elements are similar 
to each other form an instance set S(i). We allow for multi-
ple instance sets, describing different classes of similarities 
(such as windows, doors, bricks), but these instances have 
to consist of disjoint features ki. Please note that we use a 
distance function to define subgraph similarity, not an 
equivalence relation. In particular, our similarity is not 
transitive; it is possible that subgraphs g1 and g2 are similar, 
as well as g2 and g3, but not g1 and g3, because the distance 
between these two is larger than the permitted threshold. 
Therefore, we demand pairwise similarity of all subgraphs 
within each instance set. We might also compute different 
maximal instance sets that contain common subgraphs but 
which are not the same. Thus, in practice, the result might 
depend on the subgraph at which the search has been initi-
ated. This is an inherent problem; in general, a strict 
equivalence relation cannot be defined without making 
arbitrary decisions (think of two shapes morphing into each 
other). We address this problem by resorting to a pairwise 
matching criterion and use a Random Sample Consensus 
(RANSAC) algorithm [FB87] to maximize the descriptive 
power of the extracted instances. 
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5.2 The Subgraph Distance Function 

As distance function, we currently use a simple rigid 
matching function. We consider this a first step in explor-
ing graph-based symmetry detection. It is at least concep-
tually straightforward to apply more general matching 
criteria such as a graph matching with isometric rather than 
Euclidian embedding or a fault tolerant comparison of 
subgraph topologies. 

The rigid matching criterion needs correspondences to 
be established between feature points in all subgraphs of an 
instance. This will be done automatically during the graph 
matching algorithm (see Section 5.5). From these corre-
spondences, a least-square optimal transformation matrix is 
computed that maps corresponding points to each other. 
We then form a score based on the average distance of 
feature points to their transformed corresponding points 
and average distortion of length of edges in the graph. Two 
subgraphs are similar, if the rigid mapping leads to a score 
below a user defined threshold ε. 

5.3 Graph Matching Objectives 

Our symmetry detection criterion is capable of detecting a 
large variety of valid symmetries S = {S(1), …, S(N)}. There-
fore, we proceed in two steps: First, we want to compute 
maximal symmetries. However, usually even a large num-
ber of such maximal solutions exist. Therefore, in a second 
step, we look for well-supported solutions; we regard a 
solution as more convincing if a large number of corre-
sponding features and instances give evidence that it is not 
spurious. 

Maximal symmetries: A symmetry set S is maximal, if 
no more similar subgraph can be added to the solution 
without violating the previously defined conditions. Be-
cause of the disjointness requirement, we can optimize an 
existing symmetry set in multiple, possibly competing, 
directions: On the one hand, we can add additional sub-
graphs to an instance set, which means one and the same 
pattern has been found at more places than previously. We 
refer to such an operation as instance expansion. A second 
operation is adding more features to an instance. This 
means, we retain the same number of patterns that are 

similar, but make each subgraph larger by adding another 
feature that is reoccurring in all subgraphs of an instance. 
We call such an operation a feature expansion. A third 
operation is adding a new instance set to the symmetry set. 
This means, we detect a new pattern, not matching previ-
ously known ones that appears multiple times in our feature 
graph G. We call such an operation a pattern expansion. As 
all subgraphs in a symmetry set are forced to be disjoint, all 
of these moves are competing, leading to different, mutu-
ally exclusive ways of creating maximal symmetry sets. It 
is easy to see that enumerating all valid, maximal possibili-
ties might lead to an exponential number of solutions. 

In the following, we will develop an expansion strategy 
that creates maximal sets according to heuristic regularity 
rules that yield “reasonable” maximal sets. By restarting 
the search algorithm on different random initializations 
following the RANSAC paradigm, we compute an estimate 
of an optimal solution in the sense of being the best-
supported of all regular, maximal solutions. 

5.4 Inherent Ambiguities 

A fundamental problem in symmetry detection is the phe-
nomenon of inherent ambiguities. This can be understood 
by looking at typical regular patterns that occur in particu-
lar in geometries of man-made objects. For example, con-
sider a wall consisting of an array of bricks, laid out on a 
simple regular grid (Figure 2). We could consider instances 
of bricks, covering the whole wall. Alternatively, we could 
also form instance sets consisting of subsets of bricks, such 
as sets of adjacent bricks or even irregular subsets that 
reoccur one or more times. Such regular structures can be 
described using group theory [MGP06]: We consider the 
group of rigid transformations. The transformations T that 
map regular patterns to a symmetric configuration such as 
depicted in Figure 2 can be described by repeated applica-
tion of generator transformations Gi: 

 k
k

i
k

ii
ii GGGT ooo ...21

1 21,..., =  

where the range of exponents ij is subject to additional 
index constraints (in our example, the instance is only valid 
for i1, i2 ∈ {0,..,3} if T1 moves a brick to the left, and T2 
downwards by one). Given a product that satisfies the 
index constraints, any multiplication with products of 
generators will again form a valid instance if the overall 
product still satisfies the constraints. 

In order to get reasonable results, we need to resolve 
these ambiguities. For our algorithm, we have decided to 
impose an additional regularity constraint to make the 
algorithm find the simplest and most frequently occurring 
instantiation patterns. This will yield the smallest possible 
subgraphs that are instantiated as much as possible. In 
terms of the group of rigid motion, it will try to find solu-
tions with transformations that have no more common 
divisor. 

 
(a) regular pattern 

 
(b) canonical symmetry 

 
(c) alternative symmetry 

 
(d) complex symmetry 

Figure 2: A simple regular pattern can exhibit a large 
number of maximal symmetries. 
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5.5 Matching algorithm 

With these considerations at hand, we can design a sub-
graph matching algorithm. Our algorithm is based on a 
RANSAC approach: We start with small seed symmetry 
sets and extend these to maximal sets using the previously 
described expansion moves. 

Initialization: The outer loop of the RANSAC graph 
matching algorithm creates the smallest possible non-trivial 
subgraphs, which are edges from the graph, with candidate 
correspondences. For this, we compare all edges to all 
other edges according to our subgraph distance measure 
distG. This means, we select all pairs (ei, ej) of edges where 
the features at both end points match between the two 
edges and the edge length is within the defined threshold ε. 
We assign an importance value of (ε  – dist(ei, ej)) to each 
edge correspondence and add up the score for all reoccur-
rences of each edge, thus favoring edges that reoccur more 
frequently. We then use importance sampling according to 
this importance value to randomly create an initial symme-
try set that contains only one instance of one single edge 
reoccurring several times in our model. 

Expansion: In order to compute the most regular, i.e. 
the simplest possible, building blocks for our symmetry set, 
we chose to always first perform instance expansion to 
maximize our current candidate symmetry set, followed by 
feature expansion. This means, we first find all edge corre-
spondences to the selected initial edge. Afterwards, we add 
more features to these initial subgraphs until no more 
expansion is possible. This second step considers all edges 
incident to nodes in the current subgraphs. If length and 
angles of these outgoing edges match our error threshold in 
all subgraphs of the instance, the outgoing edge is added to 
the model. This step is repeated until no more expansion is 
possible. Once an instance is completed, additional, dis-
joint instances are computed by iterating this random sam-
pling algorithm until no more solutions are found (pattern 
expansion). 

Outer loop: The outer loop of the RANSAC algorithm 
evaluates the symmetry sets obtained this way. We perform 
a number of iterations (typically 10 are sufficient) of the 
instance search, and then compute a score for each solu-
tion. The score is given by the number of instances, multi-
plied by the number of subgraphs in each instance, which 
again is weighted by the number of features involved in 
each of these. In this way, we compute the most complex 
solution, where symmetries are best supported in the sense 
of supported by the largest number of features and reoccur-
ring subgraphs found. 

Robustness to noise: Our method relies on distinguish-
able descriptors. If a dataset is very noisy and incomplete, 
this is not the case. To avoid incorrect symmetries we add 
an ICP verification step in the pattern expansion: When we 
have decided to take an edge, we use the transformation 
matrix to copy a small piece of geometry to the target edge. 
Only if ICP converges there, the edge is taken. Too much 

noise also causes the algorithm to detect multiple classes of 
the same geometry due to slight variations in feature cover-
age, but it still retrieves symmetries for most objects. To 
solve this, we can apply a second stage after a class is 
completed: We take random edges of the found class mem-
bers and search for them in the remaining data. This step 
reveals all instances in the noisy data experiments (Figure 
3a right). 

6. ICP-based Region Growing 

Having found symmetric features constellations as de-
scribed in the previous section, we now want to transfer 
these symmetries to the point cloud. We need this step to 
associate actual geometry with the discrete regularity pat-
terns we have computed so far. First, we consider the case 
of a single instance set: This means, we are given symmet-
ric subgraphs with sets of features F1, …, Fm, and rigid 
transformations Ti,j that maps every feature point in Fi to 
the corresponding feature point in Fj (as computed by the 
graph matching algorithm with the rigid distance measure). 
We initialize region growing by putting every feature point 
k ∈ F1 in a priority queue sorted by distance to the feature. 
We then iteratively pop the priority queue and add neigh-
boring points to the queue if they fit the surface around F1 
when being transformed by Ti,1 (neighborhood is deter-
mined by a precomputed k-nearest neighbor graph of the 
data point cloud; typically k = 12). At this point, we need a 
measure that defines the distance from an arbitrary point to 
the surface. Due to noise in the data and differences in 
discretization we cannot use the trivial nearest neighbor 
approach. Instead we use a variant of an MLS projection to 
define the surface and to measure the distance between the 
projected points. To project a point x, we compute a local 
tangent coordinate system via principal component analysis 
(PCA), fit a bivariate quadratic polynomial to the data 
points in a least squares sense and move the point x onto 
the computed polynomial. We use a standard Gaussian 
window function ω = exp(–||x||2/σ2) to define the support 
for PCA and least-squares fitting. We adapt the parameter 
σ to the amount of noise and variation in sampling density. 
Using this surface representation, we also compute a nor-
mal for the projected point. In order to decide whether 
points x and y from two potentially symmetric pieces of 
geometry match, we project both points onto their local 
surface, then transform the result in one coordinate system 
using Ti,1, and measure the distance of the points and of the 
corresponding normals. If both differences are within a 
threshold, we have found a symmetric point on the geome-
try. For multiple instances, the test is executed for all pairs 
of points and considered successful if all pairs succeed. 
While we keep adding points to a region this way, we mark 
every visited point with an id according to the feature 
where the region growing has been started. If a point has 
been marked with another region id, we skip it so that we 
compute disjoint results, as in the discrete case. As we start 
from a discrete solution that maximizes the number of 
subgraphs in its instances first, and numbers of features 
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involved second, we expect to perform region growing on 
the simplest, most elementary building blocks. Disjoint 
growing according to smallest distance now again tries to 
compute the simplest decomposition into building blocks. 
As demonstrated in the result section, this heuristic is not 
perfect, but yields reasonable results in practice. In order to 
handle multiple instance sets S(i), we perform the same 
algorithm simultaneously on all instances. In particular, 
points are associated with at most one instance so that the 
resulting symmetry set for the points is still strictly disjoint. 

Improving the accuracy: The initial transformations 
Ti,j are not necessarily the best matching transformations 
between two symmetric patches. Especially smaller patches 
tend to have small errors in rotation. When a sufficient 
number of neighboring points are added to the region, we 
use ICP alignment to improve the transformations.  

7. Extensions 

The scheme can be easily extended to other data modalities 
than point clouds. As an example, we apply the algorithm 
to bitmap images and triangle meshes. In the latter case, we 
assume that we have a consistently triangulated mesh that 
has perfect symmetries up to numerical precision. Detect-
ing symmetric parts is useful in reverse engineering appli-
cations, where only a triangle soup of some original 
construction plan is known and the original instancing 
scheme has been lost and should be recomputed. 

Images: In the case of symmetry detection in images, 
we employ the standard OpenCV corner detector [HS88] in 
order to compute feature points. As feature descriptor, we 
compute a simple histogram of color values within a circu-
lar neighborhood of fixed size (radius: 6 pixels). We then 
run the same graph matching algorithm as in the point 
cloud case (we actually use the same code, with feature 
representation encapsulated accordingly). Region growing 
is performed similar to the point cloud case; however, MLS 
projections are not necessary and thus omitted. In order to 
define the neighborhood of the “data points”, we just em-
ploy the 4-neighborhood on the pixel grid. 

Triangle meshes: For reverse engineering “perfect” tri-
angle meshes, we place one feature point at the barycenter 
of each triangle and use the vector of sorted side length as 
descriptor. As an additional preprocessing step, we detect 
polygons formed by triangles and retriangulate these con-
sistently, as this tends to be the main source of inconsis-
tency even in “perfect” data. We use the triangle mesh 
connectivity to create an initial feature graph. Again, we 
then execute the same graph matching algorithm. Region 
growing is not necessary in the triangular case. 

8. Results and Applications 

We have implemented the proposed algorithm and applied 
it to a number of benchmark data sets. We have looked at 

three different cases: Synthetic data, real-world scanner 
data and data from other modalities.  

Synthetic data: We have constructed a data set consisting 
of a plane with about 50 sketched faces embossed in vari-
ous orientations (height fields constructed using image 
editing software). Figure 3(a) shows the result: Every 
instance of the face is recognized except for the face in the 
middle that is incomplete in the sense that it shares a dou-
ble feature with another face, which is not covered in our 
disjoint symmetries model. Please note that the borders of 
the detected region resulting from region growing are 
entirely defined by the contact with other instances and the 
border. Next, we have added Gaussian noise with standard 
deviation σ = ±10% of the height field amplitude, which is 
quite substantial. In this example we used ICP during 
pattern expansion, as described in chapter 5.5. 

Actual 3D scanner data: We have tested the approach 
on three different real-world 3D scanner data sets. The first 
example shows a historical artifact with multiple engraved 
figures of equestrians (Figure 3b). Although the object is 
man-made and thus shows some shape variation, our algo-
rithm is able to recognize two instances almost completely, 
up to a small portion at the head of the horse, where the 
shape variation is to drastic. The third figure on the same 
piece is geometrically too different under our employed 
rigid matching criterion so that no correspondence is de-
tected. The second example shows a scan of the “Zwinger” 
in Dresden, a historical building from the 18th century 
Figure 3(c). Similar to the engraved horse, two out of three 
instances are detected. The third instance is missed due to 
noise and acquisition holes. Balconies and windows are 
detected separately. The third example is a scan of a small 
clay house model, which has been hand modeled, therefore 
showing only imperfect symmetries (Figure 3d). In this 
example, our algorithm detects all salient symmetries 
except from three small windows, where the feature detec-
tor was not able to provide sufficient coverage. For detect-
ing features on a smaller scale, such as roof tiles, the 
resolution of the 3D scan is not sufficient. 

Triangle meshes and bitmap images: We have tested 
the variant of our algorithm for reverse engineering perfect 
triangle meshes on parts of the well known “power plant” 
model, which contains a large amount of redundancy but 
does not provide the original building plan with the instan-
tiation structure. For this clean situation, we were able to 
get again practically perfect detection results, as shown in 
Figure 3(e). Application of our algorithm to bitmap images 
that show reoccurring subimages also leads to a very good 
recognition rate. For example, we were able to fully auto-
matically identify the symbols of a circuit diagram and 
identify reoccurring phrases in a Japanese translation of the 
traditional German poem “ode to joy” (Figure 3f). 

Computation time: Our algorithm consists of different 
steps with varying computational costs: The initial feature 
detection is rather expensive and takes about 10 minutes 
for the examples shown here. The computation times of the 
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graph matching and region growing steps were in the range 
of a few minutes in each example. It depends on the quality 
of the input. In the face example without noise, with well 
distinguishable descriptors, it takes only a few seconds per 
step. In the noisy example much more time is needed be-
cause many ICP tests during pattern expansion are neces-
sary. In our examples region growing on the point clouds 
takes also a few minutes, plus a couple of minutes to pre-
compute a k-nearest neighbor graph of the original sample 
points.  

9. Conclusion and Future Work 

We have presented a novel approach to symmetry detection 
in geometric data. Unlike previous approaches, the new 
technique is based on a subgraph matching algorithm. The 
different approach has some advantages over previous 
techniques: It does not require the detection of the global 
symmetry structure prior to handling small scale symme-
tries and can be potentially generalized to more general 
matching criteria that cannot be described by voting in 
transformation spaces. In this paper, we deliver a proof of 
concept that such an approach can actually perform reliable 
symmetry detection, by combining the novel randomized 
graph matching algorithm with a stable and general feature 
detection technique and a region growing geometric valida-
tion step. In future work, we would like to examine gener-
alizations to isometric matching (using geodesic lengths on 
surfaces instead of rigid Euclidian transformations) as 
validation criterion, as well as more general, topology-
based graph matching techniques. The graph-based ap-
proach might also be useful in more general shape match-
ing problems, such as multi-view deformable registration. 
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(a) Faces – synthetic data set: left: features, middle: detected subgraphs, right: symmetry detection result. The left image in each column 

shows the plain heightfield and the right image the version with σ = ±10% Gaussian noise. 

   

(b) Engraved horseman (historical artifact): Left: Slippage features, middle: symmetry detection result, right: matching residuals 
(blue = low, red = high). Data set courtesy of Allan Chalmers. 

   
(c) Zwinger at Dresden (3D scan of the actual building): left: features, middle: symmetry detection result, right: matching residual. Data 

set courtesy of Markus Wacker. 

   

(d) Clay house model: Left detected features, middle: symmetric parts (instances are color coded), right: matching residuals. 

  

(e) Application to triangle meshes: All instances of the same type are coded in the same color. For such clean data, we obtain a more or 
less perfect recognition performance. 

      
(g) Application to image data: Left – circuit diagram (from left to right: input, features, feature graph, detected subgraphs, final symme-

tries after growing; corresponding instance obtain the same color). Right – Japanese text; top: input image, bottom: Recognized subgraphs. 

Figure 3: Example data sets with symmetry detection results. 
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