
IEEE/ EG Symposium on Volume and Point-Based Graphics (2008)
H.-C. Hege, D. Laidlaw, R. Pajarola, O. Staadt (Editors)

© The Eurographics Association 2008.

A Graph-Based Approach to Symmetry Detection

A. Berner1, M. Bokeloh1, M. Wand2,3, A. Schilling1, H.-P. Seidel3

 1 University of Tübingen 2Saarland University 3Max-Panck-Institut Informatik

Abstract
Symmetry detection aims at discovering redundancy in the form of reoccurring structures in geometric
objects. In this paper, we present a new symmetry detection algorithm for geometry represented as point
clouds that is based on analyzing a graph of surface features. We combine a general feature detection
scheme with a RANSAC-based randomized subgraph searching algorithm in order to reliably detect reoc-
curring patterns of locally unique structures. A subsequent segmentation step based on a simultaneous re-
gion growing variant of the ICP algorithm is applied to verify that the actual point cloud data supports the
pattern detected in the feature graphs. We apply our algorithm to synthetic and real-world 3D scanner da-
ta sets, demonstrating robust symmetry detection results in the presence of scanning artifacts and noise.
The modular and flexible nature of the graph-based detection scheme allows for easy generalizations of
the algorithm, which we demonstrate by applying the same technique to other data modalities such as im-
ages or triangle meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics] Computational
Geometry and Object Modeling, I.5.3 [Pattern Recognition] Clustering, I.2.10 [Artificial Intelligence] Vi-
sion and Scene Understanding

1. Introduction

Many real-world objects consist of parts that are approxi-
mately similar to each other. For example, a façade of a
building might contain a number of windows with compa-
rable geometry. The automatic detection of such redundan-
cies is a recent, very interesting research direction [TW05,
PSG*06, MGP06, MSH*06, SKS06, MGP07]. Information
about similarities within one and the same shape is useful
for a variety of applications, such as compression, pattern
recognition, shape completion, and statistical noise re-
moval.

In this paper, we propose a new method for detecting re-
occurring parts (from now on just called “symmetries”) in
point clouds from 3D scanning devices. Our paper makes
two main contributions: First, we present a novel approach
to solving this problem based on building graphs of salient
features and an efficient subgraph matching technique. We
introduce a new randomized geometric graph matching
algorithm, which is combined with a generalized feature
detector. We expect that this algorithmic approach might
be useful for solving other geometric correspondence
problems as well. Second, we explicitly design our algo-
rithm for detection of symmetries in scanned point cloud
data sets. Our method handles real-world raw 3D scanner
point clouds with noise artifacts robustly.

We evaluate our algorithm on multiple synthetic and
real-world 3D scanner data sets. In addition, we also con-

sider generalizations to image data and clean triangle
meshes, demonstrating the generality of the novel ap-
proach.

2. Related Work

Symmetry detection in 3D shapes has recently gained a lot
of interest. The probably most successful techniques so far
are based on transformation voting: A set of candidate
correspondences between surface points is estimated and a
transformation between the according local neighborhoods
is established. Similar to a Hough transform, a voting
procedure in transformation space is used to identify well-
supported transformations. Having extracted such clusters
of transformations, the according correspondences between
surface patches can be easily determined. Mitra et al.
[MGP06] propose this type of algorithm, using principal
curvature directions to create votes in a transformation
space of rotation, translation and scaling. A mean-shift
algorithm is used to extract dominant transformation clus-
ters. The technique can be extended to an optimization
technique that makes approximately symmetric objects
more symmetric [MGP07]. Another voting approach has
been proposed concurrently by [PSG*06], who use voting
on reflective planes to detect planar reflective symmetries.
Gal and Cohen-Or [GC06] form clusters of quadratic sur-
face patches and use geometric hashing [LW88] to find
symmetries in objects. In image data, a Hough transform of

1

http://www.eg.org
http://diglib.eg.org

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

salient feature points has been used by Loy and Eklundh
[LE06] to find symmetric configurations. Martinet et al.
[MSH*06] propose a technique that uses a transformation
to generalized moment functions in order to compute glob-
al symmetries of 3D shapes. Localized symmetries are
detected by applying the algorithm hierarchically to de-
tected parts. A related strategy is proposed by [SKS06]:
Planar reflective symmetries are detected by computing an
auto-alignment of parts of a shape with itself. The iterative
alignment process is initialized by a PCA-based split of the
object in halves; afterwards, an iteratively reweighted least-
squares alignment is computed, where the reweighting cuts
off outliers that correspond to non-symmetric parts of the
object. Hubo et al. [HMH*07] detect symmetries based on
local descriptors and perform a compression by aligning
matching heightfields and performing a PCA analysis of
the resulting space of example shapes. Kazhdan et al.
[KCD03] analyze objects for central symmetry and use this
as a descriptor for shape retrieval. Another very interesting
application of symmetry detection is shape completion:
Thrun and Wegbreit [TW05] compute symmetries of par-
tially scanned objects using a brute force search and local
descent algorithm and use this information to complement
the partially acquired shape, taking occlusion constraints of
the acquisition process into account.

In contrast to methods based on voting [MGP06, GC06,
PSG*06, LE06], our algorithm is based on a graph match-
ing strategy. The main advantage of this approach is that it
can be potentially generalized to more general matching
criteria. With voting methods, the dimensionality of the
transformation space increases with additional degrees of
freedom which makes the detection problem harder to
solve and computationally less efficient. In addition, our
algorithm can handle both local and global symmetries, the
scale being only determined by the level of detail that is
used in the feature detector. In contrast, global methods
[KCD03, MSH*06, SKS06] have to detect symmetries in a
top-down fashion, relying on an initial symmetric decom-
position. Voting methods are also affected by this problem,
as all votes are cast into the same transformation space.
Without some kind of partition, the transformation space
might become cluttered so that detailed symmetries are
hard to detect. Graph-based pattern matching techniques
have been explored in computer vision: Felzenszwalb and
Huttenlocher [FH05] use tree-shaped graphs of object parts
with an appearance model to infer deformable shape con-
figurations in images. A graph-based algorithm for 3D
object retrieval has been proposed by Schnabel et al.

[SWW*08]: First, shape primitives are fitted to a point
cloud, then the structure of the incidence graph is learned
and used to retrieve the object within a larger collection
using a subgraph matching algorithm. To the best of our
knowledge, no previous technique has applied graph-based
matching techniques to detecting symmetries in geometric
objects.

3. Overview

The pipeline of our symmetry detection algorithm is out-
lined in Figure 1: We start by detecting locally unique
features on the geometry. For this step, we use the recently
proposed slippage feature algorithm [BBW*08], which is
capable of detecting features in very general settings. From
these features, we build a neighborhood graph that de-
scribes the coarse scale similarity structure of the object.
Details on this step are given in Section 4. Given this
graph, we employ a randomized subgraph search algorithm
in order to detect reoccurring patterns in this graph (Section
5). Mapping the search for similarities to a subgraph
matching problem reduces the amount of information that
needs to be processed dramatically, which allows for an
efficient solution to this problem. In order to make sure that
the reduced, discretized solution matches the continuously
defined geometry, we perform a final validation using a
variant of an iterative-closest-points (ICP) registration
algorithm [BM92, CM92] that performs simultaneous
matching and region growing over all detected patterns
(Section 6). Generalizations of this basic strategy are dis-
cussed in Section 7. Finally, we evaluate our algorithm on
various test data sets (Section 8) and conclude with some
ideas for further generalizations that the graph-based ap-
proach allows for in Section 9.

4. Building the Feature Graph

4.1 Feature Detection

Our whole approach is based on matching graphs of feature
points. Therefore, the feature detection step is decisive for
the attainable quality of the results. A big problem with
feature detection techniques is that they typically restrict
themselves to a certain class of geometric features (such as
bumps, i.e. points on the surface where both principal
curvatures are large). Such a restriction is meant to make
the detection more reliable; however, it strongly restricts

input
geometry

feature
detection

feature
graph

ICP region
growing

rnd. subgraph
search

Figure 1: Processing pipeline – first a set of locally unique features is detected, which then form a graph on the object
surface. Next, subgraphs with matching topology and approximately matching geometric embedding are extracted. From
these discrete candidate matches, data points are assigned to symmetric regions using an ICP-based simultaneous region

growing algorithm, which yields the final result.

2

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

the class of feature points that can be detected. As a conse-
quence, many regularities in objects might remain unno-
ticed by a feature-based symmetry detector, as no features
might be available in many regions of the object.

We deal with this problem by employing the recently
proposed “slippage features” detection algorithm that can
detect features of arbitrary type with the same reliability as
previous state of the art techniques (such as [LG05]). In the
following, we give a brief overview of this algorithm; for
further details and a quantitative evaluation, see
[BBW*08].

Feature detection: The feature detector works directly
on point clouds. For each input point pi, it analyses a spher-
ical neighborhood)()(

i
iN pε . The key idea is: in order for pi

to be a good feature point, the auto-alignment problem of
)()(

i
iN pε with itself should be uniquely defined. This

means, if we register this piece of geometry with itself, a
unique position and orientation should result. A necessary
requirement for this property is that the “slippage” of the
piece of geometry is small [GG04]: We set up an ICP
alignment objective function that measures the squared
point-to-plane distance for this patch with itself at the given
location. Obviously, the error itself will be zero but the
Hessian matrix of the error function with respect to rota-
tions and translation will reveal how well conditioned the
auto-alignment problem is [GG04]. We compute a slippage
value for all surface points and perform mean shift cluster-
ing in order to extract local extrema of this measure. These
extrema become the final feature points. To deal with
features at various scale levels, we extend this algorithm by
performing the extraction for several neighborhood sizes
ε1, …, εk, doubling in each step: εi+1 = 2ε i. The correct
scale for the features is determined automatically by run-
ning mean shift clustering on the 3-dimensional manifold
of surfaces in scale space. We denote the resulting feature
points as ki, i = 1…n. The scale is given by ε (ki) and the
associated neighborhood of input points by N(ki).

Feature matching: In order to detect matching features,
we use a descriptor based on curvature histograms in con-
centric rings within each N(ki). We consider all pairs of
feature points (ki, kj); correspondence pairs for which the
descriptors do not match are discarded. The remaining
pairs of features are candidate matches where the local
neighborhood of the feature point is approximately similar.

4.1.1 Graph Generation

Given the computed feature points, we construct a graph
that connects feature points with each other in a local
neighborhood. From a theoretical point of view, a complete
graph of all connections would provide the richest pool of
subgraphs to examine for reoccurring patterns. However,
the solution to the matching problem in such a densely
connected graph becomes too expensive in practice. There-
fore, we build only a k-nearest neighbor graph of features
(typically: k = 20). The underlying assumption for this

simplification is that first, reoccurring patterns related to
symmetries we want to detect are locally coherent: If fea-
tures far away correlate with each other, there will be other
features in between that belong to the same symmetry.
Second, we assume that we might miss a few feature points
that drop out of our detection scheme but it is unlikely to
miss a large number (such as 20 neighbors) at the same
time. Therefore, the restriction to a k-nearest features graph
is sufficient for our problem setting. We denote the feature
graph by G = (K, E), K = {k1,…,kn}, E ⊆ {1, n} × {1, n}.

We also store the set of matching feature pairs along with
the matching residuals as a quality measure. Please note
that no edges are added to the graph at this stage; the fea-
ture graph encodes only the spatial relation of surface
features.

5. Sub-Graph Matching

5.1 Problem Statement

Given a graph of features, we want to determine corre-
sponding subgraphs. This means, we want to identify dis-
joint subsets)(ijS ⊆ K that are symmetric. The index i refers
to the class of symmetric subgraphs, ranging from 1 to nS,
and j to the instance index within each class: All instance
sets S(i) := },...,{)(

#
)(

1)(
i
S

i iSS describe parts of the graph that
are similar to each other. We refer to the whole collection
of instance sets as a symmetry set S. Similarity within an
instance means that the corresponding subgraphs are close
to each other according to a distance function distG:

 ε≤∈∀∈∀),(:}..#1{,:}..1{)()()(
21 21

i
j

i
jG

i
S SSdistSjjni

A set of subgraphs where all pairs of elements are similar
to each other form an instance set S(i). We allow for multi-
ple instance sets, describing different classes of similarities
(such as windows, doors, bricks), but these instances have
to consist of disjoint features ki. Please note that we use a
distance function to define subgraph similarity, not an
equivalence relation. In particular, our similarity is not
transitive; it is possible that subgraphs g1 and g2 are similar,
as well as g2 and g3, but not g1 and g3, because the distance
between these two is larger than the permitted threshold.
Therefore, we demand pairwise similarity of all subgraphs
within each instance set. We might also compute different
maximal instance sets that contain common subgraphs but
which are not the same. Thus, in practice, the result might
depend on the subgraph at which the search has been initi-
ated. This is an inherent problem; in general, a strict
equivalence relation cannot be defined without making
arbitrary decisions (think of two shapes morphing into each
other). We address this problem by resorting to a pairwise
matching criterion and use a Random Sample Consensus
(RANSAC) algorithm [FB87] to maximize the descriptive
power of the extracted instances.

3

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

5.2 The Subgraph Distance Function

As distance function, we currently use a simple rigid
matching function. We consider this a first step in explor-
ing graph-based symmetry detection. It is at least concep-
tually straightforward to apply more general matching
criteria such as a graph matching with isometric rather than
Euclidian embedding or a fault tolerant comparison of
subgraph topologies.

The rigid matching criterion needs correspondences to
be established between feature points in all subgraphs of an
instance. This will be done automatically during the graph
matching algorithm (see Section 5.5). From these corre-
spondences, a least-square optimal transformation matrix is
computed that maps corresponding points to each other.
We then form a score based on the average distance of
feature points to their transformed corresponding points
and average distortion of length of edges in the graph. Two
subgraphs are similar, if the rigid mapping leads to a score
below a user defined threshold ε.

5.3 Graph Matching Objectives

Our symmetry detection criterion is capable of detecting a
large variety of valid symmetries S = {S(1), …, S(N)}. There-
fore, we proceed in two steps: First, we want to compute
maximal symmetries. However, usually even a large num-
ber of such maximal solutions exist. Therefore, in a second
step, we look for well-supported solutions; we regard a
solution as more convincing if a large number of corre-
sponding features and instances give evidence that it is not
spurious.

Maximal symmetries: A symmetry set S is maximal, if
no more similar subgraph can be added to the solution
without violating the previously defined conditions. Be-
cause of the disjointness requirement, we can optimize an
existing symmetry set in multiple, possibly competing,
directions: On the one hand, we can add additional sub-
graphs to an instance set, which means one and the same
pattern has been found at more places than previously. We
refer to such an operation as instance expansion. A second
operation is adding more features to an instance. This
means, we retain the same number of patterns that are

similar, but make each subgraph larger by adding another
feature that is reoccurring in all subgraphs of an instance.
We call such an operation a feature expansion. A third
operation is adding a new instance set to the symmetry set.
This means, we detect a new pattern, not matching previ-
ously known ones that appears multiple times in our feature
graph G. We call such an operation a pattern expansion. As
all subgraphs in a symmetry set are forced to be disjoint, all
of these moves are competing, leading to different, mutu-
ally exclusive ways of creating maximal symmetry sets. It
is easy to see that enumerating all valid, maximal possibili-
ties might lead to an exponential number of solutions.

In the following, we will develop an expansion strategy
that creates maximal sets according to heuristic regularity
rules that yield “reasonable” maximal sets. By restarting
the search algorithm on different random initializations
following the RANSAC paradigm, we compute an estimate
of an optimal solution in the sense of being the best-
supported of all regular, maximal solutions.

5.4 Inherent Ambiguities

A fundamental problem in symmetry detection is the phe-
nomenon of inherent ambiguities. This can be understood
by looking at typical regular patterns that occur in particu-
lar in geometries of man-made objects. For example, con-
sider a wall consisting of an array of bricks, laid out on a
simple regular grid (Figure 2). We could consider instances
of bricks, covering the whole wall. Alternatively, we could
also form instance sets consisting of subsets of bricks, such
as sets of adjacent bricks or even irregular subsets that
reoccur one or more times. Such regular structures can be
described using group theory [MGP06]: We consider the
group of rigid transformations. The transformations T that
map regular patterns to a symmetric configuration such as
depicted in Figure 2 can be described by repeated applica-
tion of generator transformations Gi:

 k
k

i
k

ii
ii GGGT ooo ...21

1 21,..., =

where the range of exponents ij is subject to additional
index constraints (in our example, the instance is only valid
for i1, i2 ∈ {0,..,3} if T1 moves a brick to the left, and T2
downwards by one). Given a product that satisfies the
index constraints, any multiplication with products of
generators will again form a valid instance if the overall
product still satisfies the constraints.

In order to get reasonable results, we need to resolve
these ambiguities. For our algorithm, we have decided to
impose an additional regularity constraint to make the
algorithm find the simplest and most frequently occurring
instantiation patterns. This will yield the smallest possible
subgraphs that are instantiated as much as possible. In
terms of the group of rigid motion, it will try to find solu-
tions with transformations that have no more common
divisor.

(a) regular pattern

(b) canonical symmetry

(c) alternative symmetry

(d) complex symmetry

Figure 2: A simple regular pattern can exhibit a large
number of maximal symmetries.

4

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

5.5 Matching algorithm

With these considerations at hand, we can design a sub-
graph matching algorithm. Our algorithm is based on a
RANSAC approach: We start with small seed symmetry
sets and extend these to maximal sets using the previously
described expansion moves.

Initialization: The outer loop of the RANSAC graph
matching algorithm creates the smallest possible non-trivial
subgraphs, which are edges from the graph, with candidate
correspondences. For this, we compare all edges to all
other edges according to our subgraph distance measure
distG. This means, we select all pairs (ei, ej) of edges where
the features at both end points match between the two
edges and the edge length is within the defined threshold ε.
We assign an importance value of (ε – dist(ei, ej)) to each
edge correspondence and add up the score for all reoccur-
rences of each edge, thus favoring edges that reoccur more
frequently. We then use importance sampling according to
this importance value to randomly create an initial symme-
try set that contains only one instance of one single edge
reoccurring several times in our model.

Expansion: In order to compute the most regular, i.e.
the simplest possible, building blocks for our symmetry set,
we chose to always first perform instance expansion to
maximize our current candidate symmetry set, followed by
feature expansion. This means, we first find all edge corre-
spondences to the selected initial edge. Afterwards, we add
more features to these initial subgraphs until no more
expansion is possible. This second step considers all edges
incident to nodes in the current subgraphs. If length and
angles of these outgoing edges match our error threshold in
all subgraphs of the instance, the outgoing edge is added to
the model. This step is repeated until no more expansion is
possible. Once an instance is completed, additional, dis-
joint instances are computed by iterating this random sam-
pling algorithm until no more solutions are found (pattern
expansion).

Outer loop: The outer loop of the RANSAC algorithm
evaluates the symmetry sets obtained this way. We perform
a number of iterations (typically 10 are sufficient) of the
instance search, and then compute a score for each solu-
tion. The score is given by the number of instances, multi-
plied by the number of subgraphs in each instance, which
again is weighted by the number of features involved in
each of these. In this way, we compute the most complex
solution, where symmetries are best supported in the sense
of supported by the largest number of features and reoccur-
ring subgraphs found.

Robustness to noise: Our method relies on distinguish-
able descriptors. If a dataset is very noisy and incomplete,
this is not the case. To avoid incorrect symmetries we add
an ICP verification step in the pattern expansion: When we
have decided to take an edge, we use the transformation
matrix to copy a small piece of geometry to the target edge.
Only if ICP converges there, the edge is taken. Too much

noise also causes the algorithm to detect multiple classes of
the same geometry due to slight variations in feature cover-
age, but it still retrieves symmetries for most objects. To
solve this, we can apply a second stage after a class is
completed: We take random edges of the found class mem-
bers and search for them in the remaining data. This step
reveals all instances in the noisy data experiments (Figure
3a right).

6. ICP-based Region Growing

Having found symmetric features constellations as de-
scribed in the previous section, we now want to transfer
these symmetries to the point cloud. We need this step to
associate actual geometry with the discrete regularity pat-
terns we have computed so far. First, we consider the case
of a single instance set: This means, we are given symmet-
ric subgraphs with sets of features F1, …, Fm, and rigid
transformations Ti,j that maps every feature point in Fi to
the corresponding feature point in Fj (as computed by the
graph matching algorithm with the rigid distance measure).
We initialize region growing by putting every feature point
k ∈ F1 in a priority queue sorted by distance to the feature.
We then iteratively pop the priority queue and add neigh-
boring points to the queue if they fit the surface around F1
when being transformed by Ti,1 (neighborhood is deter-
mined by a precomputed k-nearest neighbor graph of the
data point cloud; typically k = 12). At this point, we need a
measure that defines the distance from an arbitrary point to
the surface. Due to noise in the data and differences in
discretization we cannot use the trivial nearest neighbor
approach. Instead we use a variant of an MLS projection to
define the surface and to measure the distance between the
projected points. To project a point x, we compute a local
tangent coordinate system via principal component analysis
(PCA), fit a bivariate quadratic polynomial to the data
points in a least squares sense and move the point x onto
the computed polynomial. We use a standard Gaussian
window function ω = exp(–||x||2/σ2) to define the support
for PCA and least-squares fitting. We adapt the parameter
σ to the amount of noise and variation in sampling density.
Using this surface representation, we also compute a nor-
mal for the projected point. In order to decide whether
points x and y from two potentially symmetric pieces of
geometry match, we project both points onto their local
surface, then transform the result in one coordinate system
using Ti,1, and measure the distance of the points and of the
corresponding normals. If both differences are within a
threshold, we have found a symmetric point on the geome-
try. For multiple instances, the test is executed for all pairs
of points and considered successful if all pairs succeed.
While we keep adding points to a region this way, we mark
every visited point with an id according to the feature
where the region growing has been started. If a point has
been marked with another region id, we skip it so that we
compute disjoint results, as in the discrete case. As we start
from a discrete solution that maximizes the number of
subgraphs in its instances first, and numbers of features

5

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

involved second, we expect to perform region growing on
the simplest, most elementary building blocks. Disjoint
growing according to smallest distance now again tries to
compute the simplest decomposition into building blocks.
As demonstrated in the result section, this heuristic is not
perfect, but yields reasonable results in practice. In order to
handle multiple instance sets S(i), we perform the same
algorithm simultaneously on all instances. In particular,
points are associated with at most one instance so that the
resulting symmetry set for the points is still strictly disjoint.

Improving the accuracy: The initial transformations
Ti,j are not necessarily the best matching transformations
between two symmetric patches. Especially smaller patches
tend to have small errors in rotation. When a sufficient
number of neighboring points are added to the region, we
use ICP alignment to improve the transformations.

7. Extensions

The scheme can be easily extended to other data modalities
than point clouds. As an example, we apply the algorithm
to bitmap images and triangle meshes. In the latter case, we
assume that we have a consistently triangulated mesh that
has perfect symmetries up to numerical precision. Detect-
ing symmetric parts is useful in reverse engineering appli-
cations, where only a triangle soup of some original
construction plan is known and the original instancing
scheme has been lost and should be recomputed.

Images: In the case of symmetry detection in images,
we employ the standard OpenCV corner detector [HS88] in
order to compute feature points. As feature descriptor, we
compute a simple histogram of color values within a circu-
lar neighborhood of fixed size (radius: 6 pixels). We then
run the same graph matching algorithm as in the point
cloud case (we actually use the same code, with feature
representation encapsulated accordingly). Region growing
is performed similar to the point cloud case; however, MLS
projections are not necessary and thus omitted. In order to
define the neighborhood of the “data points”, we just em-
ploy the 4-neighborhood on the pixel grid.

Triangle meshes: For reverse engineering “perfect” tri-
angle meshes, we place one feature point at the barycenter
of each triangle and use the vector of sorted side length as
descriptor. As an additional preprocessing step, we detect
polygons formed by triangles and retriangulate these con-
sistently, as this tends to be the main source of inconsis-
tency even in “perfect” data. We use the triangle mesh
connectivity to create an initial feature graph. Again, we
then execute the same graph matching algorithm. Region
growing is not necessary in the triangular case.

8. Results and Applications

We have implemented the proposed algorithm and applied
it to a number of benchmark data sets. We have looked at

three different cases: Synthetic data, real-world scanner
data and data from other modalities.

Synthetic data: We have constructed a data set consisting
of a plane with about 50 sketched faces embossed in vari-
ous orientations (height fields constructed using image
editing software). Figure 3(a) shows the result: Every
instance of the face is recognized except for the face in the
middle that is incomplete in the sense that it shares a dou-
ble feature with another face, which is not covered in our
disjoint symmetries model. Please note that the borders of
the detected region resulting from region growing are
entirely defined by the contact with other instances and the
border. Next, we have added Gaussian noise with standard
deviation σ = ±10% of the height field amplitude, which is
quite substantial. In this example we used ICP during
pattern expansion, as described in chapter 5.5.

Actual 3D scanner data: We have tested the approach
on three different real-world 3D scanner data sets. The first
example shows a historical artifact with multiple engraved
figures of equestrians (Figure 3b). Although the object is
man-made and thus shows some shape variation, our algo-
rithm is able to recognize two instances almost completely,
up to a small portion at the head of the horse, where the
shape variation is to drastic. The third figure on the same
piece is geometrically too different under our employed
rigid matching criterion so that no correspondence is de-
tected. The second example shows a scan of the “Zwinger”
in Dresden, a historical building from the 18th century
Figure 3(c). Similar to the engraved horse, two out of three
instances are detected. The third instance is missed due to
noise and acquisition holes. Balconies and windows are
detected separately. The third example is a scan of a small
clay house model, which has been hand modeled, therefore
showing only imperfect symmetries (Figure 3d). In this
example, our algorithm detects all salient symmetries
except from three small windows, where the feature detec-
tor was not able to provide sufficient coverage. For detect-
ing features on a smaller scale, such as roof tiles, the
resolution of the 3D scan is not sufficient.

Triangle meshes and bitmap images: We have tested
the variant of our algorithm for reverse engineering perfect
triangle meshes on parts of the well known “power plant”
model, which contains a large amount of redundancy but
does not provide the original building plan with the instan-
tiation structure. For this clean situation, we were able to
get again practically perfect detection results, as shown in
Figure 3(e). Application of our algorithm to bitmap images
that show reoccurring subimages also leads to a very good
recognition rate. For example, we were able to fully auto-
matically identify the symbols of a circuit diagram and
identify reoccurring phrases in a Japanese translation of the
traditional German poem “ode to joy” (Figure 3f).

Computation time: Our algorithm consists of different
steps with varying computational costs: The initial feature
detection is rather expensive and takes about 10 minutes
for the examples shown here. The computation times of the

6

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

graph matching and region growing steps were in the range
of a few minutes in each example. It depends on the quality
of the input. In the face example without noise, with well
distinguishable descriptors, it takes only a few seconds per
step. In the noisy example much more time is needed be-
cause many ICP tests during pattern expansion are neces-
sary. In our examples region growing on the point clouds
takes also a few minutes, plus a couple of minutes to pre-
compute a k-nearest neighbor graph of the original sample
points.

9. Conclusion and Future Work

We have presented a novel approach to symmetry detection
in geometric data. Unlike previous approaches, the new
technique is based on a subgraph matching algorithm. The
different approach has some advantages over previous
techniques: It does not require the detection of the global
symmetry structure prior to handling small scale symme-
tries and can be potentially generalized to more general
matching criteria that cannot be described by voting in
transformation spaces. In this paper, we deliver a proof of
concept that such an approach can actually perform reliable
symmetry detection, by combining the novel randomized
graph matching algorithm with a stable and general feature
detection technique and a region growing geometric valida-
tion step. In future work, we would like to examine gener-
alizations to isometric matching (using geodesic lengths on
surfaces instead of rigid Euclidian transformations) as
validation criterion, as well as more general, topology-
based graph matching techniques. The graph-based ap-
proach might also be useful in more general shape match-
ing problems, such as multi-view deformable registration.

Acknowledgements

The authors wish to thank Markus Wacker, Allan Chalmers
and Simon Pabst for providing data sets and the anony-
mous reviewers for their helpful comments. This work has
been supported by DFG grant "Perceptual Graphics”, the
Max Planck Center VCC and Cluster of Excellence "Multi-
Modal Computation and Interaction" at Saarland Univer-
sity.

References

[BBW*08] BOKELOH, M., BERNER, A., WAND, M., SEIDEL,
H.-P., SCHILLING, A.: Slippage features. Technical Report,
WSI-2008-03, University of Tübingen, 2008
[BM92] BESL, P. J., MCKAY, N.: A Method for Registra-
tion of 3-D Shapes. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14, 239-256, 1992.
[CM92] CHEN, Y., MEDIONI, G.: Object modelling by
registration of multiple range images. In: Image Vision
Comput., 10, 145–155, 1992.
[FH05] FELZENSZWALB, P., HUTTENLOCHER, D.P.: Picto-
rial Structures for Object Recognition. In: Intl. J. Computer
Vision, 61(1), 55–79, 2005.

[FB87] FISCHLER, M. A., BOLLES, R. C.: Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Morgan
Kaufmann Publishers Inc., 1987.
[GC06] GAL, R., COHEN-OR, D. Salient geometric fea-
tures for partial shape matching and similarity. In: ACM
Trans. Graph. 25(1), 130-150, 2006.
[GG04] GELFAND, N., GUIBAS, L. J.: Shape segmentation
using local slippage analysis. In: Proc. Symp. Geometry
Processing (SGP04), 214–223, 2004.
[HS88] HARRIS, C., STEPHENS, M.: A Combined Corner
and Edge Detection. In: Proceedings of The Fourth Alvey
Vision Conference, 147–151, 1988.
[HMH*07] HUBO, E., MERTENS, T., HABER, T., BEKAERT,
P.: Self Similarity-Based Compression of Point Clouds,
with Application to Ray Tracing. In: Proc. Symp. Point-
Based Graphics, 2007.
[KCD03] KAZHDAN, M., CHAZELLE, B., DOBKIN, D.,
FUNKHOUSER, T., RUSINKIEWICZ, S.: A Reflective Symme-
try Descriptor for 3D Models. In: Algorithmica, 38, 201–
225, Springer, 2003.
[LW88] Lamdan, Y., Wolfson, H. J.: Geometric hashing:
A general and efficient model-based recognition scheme.
In: Int. Conf. Computer Vision (ICCV’88), 238–249, 1988.
[LG05] LI, X., GUSKOV, I.: Multiscale Features for Ap-
proximate Alignment of Point-based Surfaces. In: Proc.
Symp. Geometry Processing (SGP05), 217–226, 2005.
[LE06] LOY, G., EKLUNDH, J.O.: Detecting Symmetry
and Symmetric Constellations of Features. ECCV (2) 2006:
508-521
[MSH*06] MARTINET, A., SOLER, C., HOLZSCHUCH, N.,
SILLION, F.: Accurate Detection of Symmetries in 3D
Shapes. In: ACM Transactions on Graphics, 25(2), 439 –
464, 2006.
[MGP06] MITRA, N. J., GUIBAS, L. J., PAULY, M.: Partial
and approximate symmetry detection for 3D geometry. In:
ACM Trans. Graph., 25(3), 560-568, 2006.
[MGP07] MITRA, N. J., GUIBAS, L. & PAULY, M.: Sym-
metrization. In: ACM Trans. on Graphics 26(3), 2007.
[PSG*06] PODOLAK, J., SHILANE, P., GOLOVINSKIY, A.,
RUSINKIEWICZ, S., FUNKHOUSER, T.: A Planar-Reflective
Symmetry Transform for 3D Shapes. In: ACM Trans. on
Graphics 25(3), 2006.
[SWW*08] Schnabel, R., Wessel, R., Wahl, R., Klein,
R.: Shape Recognition in 3D Point-Clouds. In: Proc. Conf.
in Central Europe on Computer Graphics, Visualization
and Computer Vision, 2008.
[SKS06] SIMARI, P., KALOGERAKIS, E., SINGH, K.: Fold-
ing meshes: hierarchical mesh segmentation based on
planar symmetry. In: Proc. Symp. Geometry Processing
(SGP06), 111–119, 2006.
[TW05] THRUN, S., WEGBREIT, B.: Shape from Symme-
try. In: Proc. Int. Conf. Computer Vision (ICCV '05),
1824–1831, 2005.

7

 A. Berner et al. / A Graph-Based Approach to Symmetry Detection

© The Eurographics Association 2008.

(a) Faces – synthetic data set: left: features, middle: detected subgraphs, right: symmetry detection result. The left image in each column

shows the plain heightfield and the right image the version with σ = ±10% Gaussian noise.

(b) Engraved horseman (historical artifact): Left: Slippage features, middle: symmetry detection result, right: matching residuals
(blue = low, red = high). Data set courtesy of Allan Chalmers.

(c) Zwinger at Dresden (3D scan of the actual building): left: features, middle: symmetry detection result, right: matching residual. Data

set courtesy of Markus Wacker.

(d) Clay house model: Left detected features, middle: symmetric parts (instances are color coded), right: matching residuals.

(e) Application to triangle meshes: All instances of the same type are coded in the same color. For such clean data, we obtain a more or
less perfect recognition performance.

(g) Application to image data: Left – circuit diagram (from left to right: input, features, feature graph, detected subgraphs, final symme-

tries after growing; corresponding instance obtain the same color). Right – Japanese text; top: input image, bottom: Recognized subgraphs.

Figure 3: Example data sets with symmetry detection results.

8

