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Abstract

Segmentation is an essential task in ultrasound image analysis. Recently, the trend in literature is towards incor-
poration of high-level information, e.g., shape priors, since many low-level segmentation techniques suffer from
the characteristics of medical ultrasound images, i.e., speckle noise, scattering artifacts, and shadowing effects.
However, the majority of these works implicitly assume an additive Gaussian noise model in ultrasound images,
although a strong deviation from this assumption is well known, and the impact of correct physical noise modeling
is not examined sufficiently until now. In this paper we investigate the influence of three different noise models from
literature using a variational region-based segmentation framework, which allows for the incorporation of both
low-level and high-level information. We demonstrate that correct physical noise modeling is of high importance
for the computation of accurate segmentation results. The numerical results are validated on real patient datasets
from echocardiographic examinations and compared to manual segmentations from echocardiographic experts.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Image Processing and Computer Vision]: Seg-
mentation —Region growing, partitioning 1.4.7 [Image Processing and Computer Vision]: Feature Measurement

—Moments

1. Introduction

Segmentation in ultrasound (US) imaging is used to separate
regions-of-interest from background signals and to calculate
borderlines and/or isosurfaces of structures within the given
data. In the field of echocardiography segmentation is used
to assess medical parameters of the cardiovascular system.
In particular, physicians calculate medical parameters like
left ventricular (LV) volume, ejection fraction or strain of
LV by segmenting datasets from US examinations of a pa-
tient’s myocardium [MvR*10]. Furthermore, segmentation
is a fundamental technique to extract volumes-of-interest
from 3D medical imaging data. It is naturally applied for vi-
sualization and operation planning by physicians [NNM11].

Automatic segmentation of US data is a hard task due to
low contrast, shadowing effects, and speckle noise. In or-
der to tackle these problems a huge variety of approaches
has been proposed until today [NB06]. Recently, several au-
thors proposed to explicitly model multiplicative noise char-
acteristics in US images in order to improve segmentation
results [LJBF*10, STIB11, TTB06] (cf. also references in
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[NBO06]). Although this procedure is effective in the case of
image noise, it is not sufficient for regions with structural ar-
tifacts, i.e., shadowing effects and low contrast regions in US
data. This special situation occurs daily in clinical routine,
e.g., when US waves get reflected by ribs during echocar-
diographic examinations of the human heart. Thus, finding
a segmentation algorithm which can automatically segment
the LV of the myocardium is of great interest to cardiolo-
gists. In order to tackle this difficult problem the incorpo-
ration of high-level information, such as prior knowledge
about the shape to be segmented, is proved to be useful.
Different works show that the use of shape priors for seg-
mentation of echocardiographic data leads to improved and
generally more robust segmentation results in the presence
of image noise and structural artifacts [COS06, LIBF*06].

The contribution of this work is to investigate the impact
of selected noise models from literature on the process of US
image segmentation using shape priors. In contrast to related
works (e.g., [COS06,LIBF*06]) we quantify the influence of
appropriate noise modeling for high-level segmentation of
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ultrasound images and determine the best model for a global
convex segmentation method. The paper is structured as fol-
lows: in Section 2 we describe segmentation tools needed
to investigate the impact of correct noise modeling on high-
level segmentation. In particular, we discuss different shape
descriptors for segmentation from literature in Section 2.1
and present a shape prior energy based on the description of
a given shape by Legendre moments in Section 2.2. We then
propose a variational region-based segmentation framework
in Section 2.3, which allows to easily switch between differ-
ent noise models, which are discussed in Section 2.4, in the
process of segmentation. In Section 2.5 we shortly present
a possibility to incorporate the shape prior as regularization
term to the described segmentation framework and highlight
modifications in the numerical realization of the segmenta-
tion algorithm. Implementation details, suitable parameter
settings, and the computational complexity of the proposed
method are discussed in Section 3. To validate the perfor-
mance of different physical noise models we present differ-
ent segmentation results for real patient data from echocar-
diographic examinations in Section 4 and compare these to
contours manually delineated by expert echocardiographers.
In Section 5 this work is concluded by discussion.

2. Methods

In the following we shortly specify the tools needed to pro-
pose a unified variational segmentation framework incorpo-
rating low-level (noise models) and high-level (shape priors)
information.

First, we will introduce some preliminary definitions to
describe the segmentation model accurately. Let Q C R? be
the image domain and f : Q — R the given image to be seg-
mented. The task of image segmentation is to find a partition

of Q in pairwise disjoint regions Q;,i =1,...,m, i.e.,
m
Uaei=Q., oQ=0. (1
i=1 2]

In the case of echocardiographic images we will restrict the
problem to separation of the inner region of LV denoted by
Q;, from the surrounding tissue and background denoted by
Qour, 1.€., m = 2. This bimodal model is sufficient, since the
endocardial border of the myocardium is traced in most med-
ical assessments in order to diagnose and quantify possible
cardiovascular diseases. In order to characterize the result-
ing shape of region €;, we introduce an indicator function
X, which is defined on Q by

Yx) = {1, ifx € Qi , )

0, else.

2.1. Encoding high-level information with descriptors

There are many different ways to encode high level informa-
tion of objects within images, e.g., shape, with the help of

descriptors (cf. [HMO09, ZL04]). In general, one can divide
the proposed solutions in literature into region-based and
contour-based shape descriptors. Within these two classes
there are different paradigms to describe objects by corre-
sponding feature vectors. On the one hand, contour-based
methods try to describe the shape of an object by its bound-
ary information. While structural methods try to break the
contour into sub-parts and analyze them with respect to cer-
tain criteria, global approaches calculate a feature vector of
the integral boundary directly. On the other hand, region-
based techniques take all the pixels within a shape region
into account to obtain the shape representation and hence are
more robust to noise compared to contour-based approaches.

One popular approach for region-based shape descriptors
is based on moments. Let €;, be the inside region of a shape
which we identify by its characteristic function ). Then the
geometric moments of the shape are defined as,

mpg = /Qx(x,y)xpyq dxdy = /g ®yldxdy, (3)
(p,q) € N? and N = p + q is the order of the moments. As
known from mathematics any arbitrary shape can be recon-
structed from its infinite set of moments mp 4 and thus en-
coding the characteristic function of a given shape by mo-
ments leads to region-based shape descriptors. In practice
the order N of the moments used is a finite number, large
enough to encode the given shape without losing important
details. Note that reconstructing a shape from a finite number
of non orthogonal, geometric moments involves inverting an
ill-conditioned Gram matrix [Tal87] as opposed to orthogo-
nal moments.

Next to geometric moments a variety of alternative fea-
tures exist in literature. By exchanging the basis functions in
(3) different moments can be computed for a given shape.
Using radial, orthogonal polynomials one obtains Zernike
moments [SU12]. The appealing feature of Zernike polyno-
mials is the separable nature of their radial and angular com-
ponents. However, their computation is rather complicated
and can lead to numerical errors if not performed correctly.
Another possibility of orthogonal polynomials are Legendre
polynomials. Legendre moments are less complicated to im-
plement compared to Zernike moments and are optimal with
respect to the minimal mean square error between the orig-
inal object and its reconstruction from moments [FCHO09].
For this reason, we use Legendre moments for incorpora-
tion of shape descriptors into our segmentation framework
as described in Section 2.5. We give a detailed introduction
to Legendre moments in Section 2.2 below.

2.2. Legendre moments as shape prior

From the different approaches for shape description listed
in Section 2.1 we use central-normalized Legendre mo-
ments as proposed in [FCHO09]. By this we derive a multi-
reference shape model from manual segmentations done by
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two echocardiographic experts. This shape descriptor allows
a compact, parametric representation of shapes and is capa-
ble of dealing with arbitrary shape topologies. Furthermore,
the according shape prior is independent of the underlying
segmentation framework, as opposed to methods based on
signed distance functions (e.g., [COS06]).

In order to use Legendre moments as descriptor we use
an orthogonal basis of Legendre polynomials P, of order n
defined on the interval [—1,1] given by,

1 4 n
2"n!ﬁ(x -1)". )
Then the Legendre moments Lyq()) of order N = p + g for
a shape y are computed by

Log) = Cpg [ Po0R) dxdy,  (5)

in

Pi(x) =

where Cpg = (2p + 1)(2g + 1) /4 is a normalization factor.
However, we refrain to use the presentation in (5) and follow
the idea in [FCHO09] in order to achieve scale and translation
invariance. Hence, we introduce intrinsically invariant shape
descriptors Apg (%),

P 4q
Mpa(X) = Cpa ), Y apuaqmun(x) , ©)
u=0 v=0
where a;; are the Legendre coefficients. Here, the 1,y repre-
sent the normalized central moments, which can be deduced
by aligning the shape at its centroid (%,¥) and normalizing
its area, i.e.,

Mol = [ e ) dsdy . )

Hence, using formula (6) we are able to encode a shape
X into a feature vector A = {Apy € R| p+¢q < N} whose di-
mension is d = (N + 1)(N +2) /2. A given training set of

reference shapes x,rff ,k=1,...,n,is transformed into their

respective Legendre moments k(x,rff ). In order to use only
the most discriminative shape features to measure the simi-
larity of objects one can perform a principal component anal-
ysis and use only the first m < d principal components. Note
that choosing d too small inevitably leads to a loss of details
and thus to undiscriminable shape representations. Follow-
ing the idea of [FCH09] we use a mixture-of-Gaussians to
measure the similarity of a shape to a trained set of refer-
ence shapes as this is reasonable from a statistical point of
view. Then, the multi-reference shape prior energy can be
defined for n reference shapes xff as

. M) — 213
Ren(x) = —log ( Z exp <— 2—2]{2 » (8)
k=1 o
where o7 is the fixed variance of the Gaussian functions.

To achieve rotational invariance we have to perform an ad-
ditional step. Before building the shape model in the training
phase as well as during the segmentation process, all shapes
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are rotated according to angles obtained by principal compo-
nent analysis. This enhances the robustness of our segmen-
tation algorithm proposed in Section 2.5 and enables us to
segment ultrasound images obtained from different exami-
nation protocols for which the orientation of the LV varies.

2.3. Low-level information using variational
region-based segmentation framework

In order to investigate the influence of different noise mod-
els on results of image segmentation we use a variational
region-based segmentation framework recently proposed in
[STIB11, STIB12]. This framework allows a flexible in-
corporation of different noise models occurring in medical
imaging and a-priori knowledge about the subregions to be
segmented using statistical (Bayesian) modeling. In contrast
to comparable segmentation frameworks (e.g., [COS06])
this method allows for the modeling of fore- and back-
ground signal separately. Furthermore, it uses recent algo-
rithms from the field of global convex segmentation to per-
form minimization of the corresponding energy functional
and hence overcomes several drawbacks of methods based
on level sets and signed distance functions. The correspond-
ing energy functional is given by,

E(ub-,MhX) =
/QxDb(f,ub) + (1= 0)Di(four) d ©)

+ Ry (up) + R (ur) + BlXlgy () -

In this context ¥ denotes an indicator function of the seg-
mented region which can be used to represent the shape
of the segmented object (cf. Section 2.2). The data fi-
delity terms Dy, and D; are negative log-likelihood functions,
which are chosen according to the assumed noise model for
the given data f. The regularization terms R;, and R; are used
to incorporate a-priori knowledge about the expected unbi-
ased signals. Finally, the total variation |X|gy (q) of % (i.e.,
the perimeter of Q;, in Q) allows to regulate the level-of-
details in the segmentation results and hence the smoothness
of the contour. Since we want to concentrate on the influ-
ence of noise models on high-level segmentation results we
restrict the framework (9) to a Chan-Vese-like [CVO01] en-
ergy functional E(cjy,cour,,) (discarding the regularization
terms R;, and R), which assumes constant approximations
cin and coyr in subregions Q;, and Q. respectively,

E(Cirh Cout X) =

/QxDin(ﬁCin) + (1 = %) Dow (fscou) dx + Blx|py(q) -
(10)

Although the assumption of a constant approximation is not
valid for Quur (due to the inhomogeneity of regions sur-
rounding LV) we will restrict on this case for the sake of
simplicity. Computation of more realistic approximations u,
and u; in (9) would increase the computational effort drasti-
cally and thus would complicate our evaluation of different
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noise models for shape prior segmentation. For the details
of a more realistic approximation of intensities in Quur We
refer to [STIB11, STJB12] in order to incorporate a-priori
knowledge about the smoothness of approximations.

2.4. Noise models for medical ultrasound data

Before we combine the shape prior energy introduced in (8)
with the energy functional in (10) we will discuss three pop-
ular noise models used in literature for segmentation of med-
ical ultrasound images. We compare and evaluate the perfor-
mance of these three noise models in Section 4.

2.4.1. Additive Gaussian noise

The simplest assumption about the image noise is the pres-
ence of an additive Gaussian noise model of the form,

f=u+m, (11

in which m is a Gaussian distributed random variable with
mean 0 and variance 6°. This noise model applies for most
data investigated in computer vision literature and is of-
ten used implicitly in standard segmentation methods, e.g.,
the Mumford-Shah formulation [MS89]. For this case the
energy functional (10) corresponds exactly to the popu-
lar Chan-Vese model [CVO1]. The negative log-likelihood
functions in (10), i.e., the data fidelity terms D;(f,c;),i €
{in,out}, are given by (cf. [STIB11,STIB12])

1
= 57 wilx) = ()"
(12

Di(f,ci) = —logpi(f(x) |ui(x))

It is well known that in presence of additive Gaussian
noise the optimal constants for an approximation of Q;, and
Qour can be computed as mean intensities of the respective
regions,

W?L/fm,me& (13)
|Qi‘ Q;

where |Q;| denotes the amount of pixels in Q;. Note that the
model (11) corresponds to the noise model in Equation (14)
below for the special case of Y= 0.

2.4.2. Multiplicative speckle noise

In contrast to this additive signal-independent noise in Sec-
tion 2.4.1 speckle noise is of multiplicative nature, i.e., the
noise variance directly depends on the underlying signal in-
tensity. This type of noise is characteristic for diagnostic ul-
trasound imaging and can be described mathematically by a
statistical model for multiplicative noise [LMA89,RLO03],

f=u+u'm, (14)

In this context u is the unbiased image intensity, 1 is Gaus-
sian distributed random noise with mean 0 and variance 62,
and f is the observed image. The parameters Y determines
the degree of signal dependency and hence the characteris-
tics of the multiplicative noise. Speckle noise leads to heavy

distortions in the image, especially in regions with high in-
tensity values. Typical values for y can be found in litera-
ture, e.g., in an experimentally derived model for multiplica-
tive speckle noise [LMAS89] the authors investigate the case
v= 1, whereas in [RLOO03] the authors choose Y= 2 to model
the noise in medical US imaging. In general, the parame-
ters Y and ¢ depend on the imaging system, the application
settings, and the examined tissue. For our investigations we
focus on the case Y= 1 as proposed by [LMAR89] for log-
compressed ultrasound images which we call Loupas noise
model in the following, i.e.,

f=u+/un. (15)
In this case the negative log-likelihood functions in (10), i.e.,
the data fidelity terms D;(f,c;),i € {in,out}, are given by
(cf. [STJB11,STIB12])

Di(f.ci) = —logpi(£(x) |ui(x)
ui(x) — f(x))? (16)
- SO

for which the optimal constants for Q;, and Qs can be com-
puted by

4 (o f2dx
Ci:l 04+L762 dx,i€ {in,out}. (17)
2 1€

2.4.3. Rayleigh noise

Finally, we investigate a noise model based on Rayleigh dis-
tribution, which has been also used in [LJBF*06] in combi-
nation with shape priors described in Section 2.2. Here the
data are modeled by

f=uwun, (18)

where 1 is a Rayleigh distributed random variable with the
probability density function,

pn) = e i (19)

c

and is assumed to be appropriate for US B-scans in the
presence of a large number of randomly located scatters
[WSSL83]. In this case the negative log-likelihood functions
in (10), i.e., the data fidelity terms D;(f,c;),i € {in,out}, are
given by (cf. [STIB11,STIB12])

—togpi(rlei) = —tog (p(£) 1)

f f
-1 L
o8 (Gzc-z + 2(52ci2

1

Di(fvci)

and the optimal constants for Q;, and Qs can be computed

by
1 f2 .o
¢ = m /Qf Y dx, i€ {inout}. (20)

Note that the formulas for the optimal constants in (17)
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and (20) contain a free parameter ¢ which determines the
corresponding probability distribution of . Since G is un-
known in real data, we choose this parameter according to
the noise inherent in a given image and try to optimize its
value with respect to the segmentation performance.

2.5. Incorporation of high-level information into
segmentation framework

In order to incorporate both low-level and high-level infor-
mation in a unified framework, we combine the variational
segmentation framework in (10) with the shape prior energy
in (8),

E(CimCOMthXSh) =
/QXDin(f, Cin) + (1 - X)Dout(f7cout) dx 0

)
+ Blxlsv() + YRsu(Xsn) + EHX—Xsth :

In addition we add a lz—sirnilarity distance between the im-
age region-driven segmentation ) and the shape space-driven
segmentation ), since we want to ensure that j = X, in
case of convergence. For minimization of (21) we follow the
numerical realization proposed in [STIB11,STIB12], where
an alternating minimization scheme is used as illustrated in
Algorithm 1.

Algorithm 1 An alternating minimization scheme for the
numerical realization of (21).

repeat
computeOptimalConStants(xk) =
k1 k1 . k k
( in »Cout ) = argmlnE(CimC(th 7x.fh)
ci
segmentlmage(c’,;+1 , cf“ ,xfh) =
k+1 . k+1 k+1 k
X = argmin E(Cin s Cout 7X7Xsh)
X
updateShape(ka) =
k+1 . k+1 k+1  k+1
Xsh = argmlnE(cin s Cout 7X 7XS/1)
Xsh

until Convergence

The optimal constants cf,f ! and cﬁjtl are computed for

each assumed noise model individually as described in Sec-
tion 2.4. The shape prior update x];;l based on the current
segmentation ka is performed as proposed in [FCH09] by
a steepest gradient step in the shape space of the form

k1 _ k1 Y ORg ki
Xsh = X 5 BXsh( ) - (22)

Note that we approximate the gradient descent vector using
the given segmentation ka in order to avoid the inversion
of the gradient of Rgy,.

The image region-driven segmentation step in Algorithm
1 requires only a minor modification compared to [STJB11,
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STIB12]. In the case of the energy functional (21), the seg-
mentation step can be rewritten to

e argmin { / xgdx + B|x|3v<g>} (23)
x€BV(Q:{0,1}) L/&
with
1
€ = Dull-cht") = Dowtr.chil) — 8 (s~ 3

using the identity (x%,)> = x¥, for characteristic func-
tions. Then the problem (23) can be solved analogously
to [STJB11, STIB12] using the well known Rudin-Osher-
Fatemi (ROF) model in image processing. The advantage of
this approach is the strict convexity of the ROF model and
thus the avoidance of local minima, in contrast to, e.g., level
set methods.

3. Implementation

We implemented the alternating minimization scheme for
our segmentation algorithm in the numerical computing en-
vironment MathWorks MATLAB (R2010a) ona 2 x 2.2GHz
Intel Core Duo processor with 2GB memory and a Microsoft
Windows 7 (64bit) operating system.

We optimized the selection of regularization parameters
B,v, and & in Equation (21) with respect to the segmen-
tation performance as described in Section 4 below. For
additive Gaussian noise (cf. Section 2.4.1) we used B €
[0.02,1.5],y € [0.01,0.05], and & € [10#,0.9]. In the case
of multiplicative speckle noise (cf. Section 2.4.2) we chose
B € [0.015,0.02],y € [0.01,0.05], and & € [0.8,0.9]. For
Rayleigh noise (cf. Section 2.4.3) the best parameters were
B € [0.1,0.5],y € [107*,1073], and & € [0.1,0.2]. During
our experiments we observed that a noise variance param-
eter of 6 = 0.19 is the best choice in the case of multi-
plicative speckle noise, while 6 = 0.27 showed best results
for Rayleigh noise. We use Legendre polynomials of order
N =40 to encode shapes since this was the minimal number
without losing important details during reconstruction.

For the image-based segmentation step of Algorithm 1 we
observed that 850 — 1400 inner iterations are enough to reach
a stationary state for Rayleigh and multiplicative speckle
noise, i.e., no more changes between two consecutive inner
iteration steps. For additive Gaussian noise 1200 — 2400 in-
ner iterations were needed. For the outer iterations we ob-
serve between 25 — 35 iteration steps until convergence of
the segmentation process.

3.1. Computational complexity

In order to understand the computational complexity of our
proposed segmentation framework in Equation (21) and the
overall time needed to compute a segmentation we give a de-
tailed discussion of the substeps of Algorithm 1 with respect
to their runtime in the following.
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Let us assume that we have k outer iterations of our seg-
mentation process. In each of these iterations we have to
compute the optimal constants for Q;,, and Qs as described
in Section 2.4. Furthermore, we have to perform the image-
based segmentation of Q in Equation (23) with respect to
the updated optimal constants cj, and cour. The last step is
the update of the shape X, according to its similarity to the
training set of shapes as described in Equation (22). The
computation of the optimal constants can be performed in
O(|Q]), since the intensity values of all pixels are used to
perform these calculations. The image-based segmentation
step is rather complex, since efficient solver schemes from
numerical mathematics are used. For the sake of clarity we
focus on the part with highest computational costs and refer
to [STIB11, STIB12] for a detailed discussion of the algo-
rithm. Let us assume we need p inner iteration steps, then
the computational complexity of the segmentation step is in
O(p-1Q|log(]€])) (there is a discrete cosine transformation
in every inner iteration step). Finally, we discuss the shape
update using a single steepest gradient step. Let N be the de-
gree of the used Legendre polynomials and let us assume we
use all principal components of the feature vectors, i.e., m =
N. Furthermore, letd = (N + 1)(N +2) /2 be the dimension
of the vector of central normalized Legendre moments A. To
encode the current shape ) by Legendre-moments (cf. Sec-
tion 2.2) we have a complexity of O(d - |Q]). The steepest
gradient step for the optimization of the shape prior in Equa-
tion (22) is performed in O(d). To reconstruct the updated
shape from Legendre moments we need O(d - |Q|) opera-
tions. Hence, the total computational complexity of the pro-
posed segmentation algorithm is in O(k - (p|Q|log(|Q])).

For a 108 x 144 pixel image we measured the following
runtime: the computation of the optimal constant approxima-
tions for fore- and background takes approximately 1ms and
the shape update only 60ms. As described above the image-
based segmentation has the highest computational complex-
ity and needs 5.1s. The overall time for the segmentation
process with 35 outer iterations takes 149.2s.

4. Results

In this section we investigate the influence of different noise
models proposed in Section 2.4 on high-level segmentation
of ultrasound data. In order to evaluate the segmentation
results we obtained manual delineations of the endocardial
contour for each dataset by two different echocardiographic
experts, who are familiar to this task due to daily clinical
routine. The performance of each segmentation process is
measured using the Dice index, which compares two given
segmentations A and B by

2|A N B|
Al + |B| -
The Dice index is normalized between 0 (no similarity) and

1 (exact match). For each image in the test dataset we list
the inter-observer variability between the two physicians and

D(A,B) = 24)

Figure 1: Part of the training data set used to build the
shape prior energy (8). The masks show manually segmented
shapes of LV of the human heart.

compute the average similarity between the automatically
segmented images and the two observers.

4.1. 2D B-mode echocardiographic images

We use 30 datasets from echocardiography (Philips iE33)
containing images of LV of the human heart from differ-
ent acquisition angles, i.e., apical two-chamber and four-
chamber views of the human myocardium, which were man-
ually segmented by two experts. Since the shape of the left
ventricle depends on the acquisition angle, we get a signifi-
cant inter-shape diversity within the training data set as can
be seen in Figure 1. Instead of specializing our algorithm
for one certain US imaging protocol, we train our method
for different echocardiographic examinations for the sake of
flexibility. For quantification we choose 8 images from the
dataset which cover all challenges for image processing we
observed in the given data, e.g., speckle noise and shadowing
effects. The parameters in the proposed segmentation frame-
work (21) are optimized for each test image with respect to
the Dice index. For training of the shape prior energy we use
a leave-one-out strategy, i.e., Ny, = 58 manual delineations,
and use the two excluded delineations of the experts for val-
idation. This procedure is necessary since the training set
needs to be large enough to provide robustness in the pres-
ence of large variance of the discussed effects.

Figure 2 illustrates one representative result on a rather
easy dataset. It was not possible to find a good parameter
setting for the case of additive Gaussian noise. Figure 2b-2d
demonstrate our typical observations for this noise model on
all datasets as discussed in detail below. Using the Loupas
or Rayleigh noise model leads to reasonable results as can
be seen in Figure 2e- 2f. In order to illustrate the challenges
occurring in our chosen test dataset, in Figure 3 the typi-
cal noise artifacts present at the lateral wall of LV are illus-
trated, which leads to significant problems in the process of
segmentation. Additionally, one of the mitral valve leaflets
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can be seen within the cavity of LV, which also produces er-
roneous segmentations. The Loupas noise model in Figure
3d is able to deal with these noise artifacts and produces the
best segmentation results again compared to the other noise
models in Figure 3b-3c.

The Dice indices of numerical results for our experiments
are presented in Table 1. As expected, the segmentation with
the additive Gaussian noise model using the optimal con-
stants in (13) failed on all test images. We observed two dif-
ferent ways of possible behavior of our segmentation frame-
work during optimization of parameters in this model. The
results vary extremely between a segmentation of the US
image without any similarity to the prior shapes on the one
side and the convergence towards a mean shape of the train-
ing dataset without influence of image information on the
other side. However, for an initialization of Q;, inside LV
and an extensive parameter search it is also possible to ob-
tain results comparable to the case of Rayleigh modeling in
some cases. But we disregard these results due to instabil-
ity of the algorithm with respect to the choice of the ini-
tialization shape and segmentation parameters. However, we
note that the mentioned observations in the case of Gaussian
noise modeling are only valid in our case due to the glob-
ally convex segmentation approach proposed in Section 2.5
and might not be appropriate for methods based on level set
methods, due to the existence of local minima.

The cases of Rayleigh noise and the speckle noise model
proposed by Loupas et al. [LMAS89] lead to significantly bet-
ter results (see Table 1). In particular, they are robust with re-
spect to the choice of shape initialization and segmentation
parameters compared to the additive Gaussian noise case
discussed above. We observe also that the model of Loupas
has an average Dice index of 0.87 and thus is more suitable
for high-level segmentation of US B-scan images than the
Rayleigh modeling, which has an average segmentation per-
formance of 0.78 on our 8 test datasets. This can also be
seen visually as for example illustrated in Figure 3, which
shows all three automatic segmentation results of dataset 6
in Table 1 compared with the manual delineations of the two
physicians.

5. Discussion

In this work we investigate the impact of three different
noise models from literature on high-level segmentation of
echocardiographic data. The numerical results show that the
incorporation of proper noise models for US have a sig-
nificant influence on segmentation performance when using
shape priors. Although the additive Gaussian noise model
is not a good choice under these conditions, its impact on
other segmentation frameworks, e.g., level set methods, has
yet to be explored. Furthermore, it would be interesting to
include temporal information using consecutive US frames
to increase the robustness of segmentation results, since ex-

(© The Eurographics Association 2012.

(h) 2@ physician

(g) 1* physician

Figure 2: US B-scan of LV with manual delineations of
physicians and segmentation results using noise models de-
scribed in Section 2.4.

perts from echocardiography also heavily depend on this in-
formation when evaluating the examination data.
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