
Eurographics Workshop on Visual Computing for Biomedicine (2008)
C. P. Botha, G. Kindlmann, W. J. Niessen, and B. Preim (Editors)

GPU Accelerated Normalized Mutual Information and
B-Spline Transformation

Matthias Teßmann1, Christian Eisenacher1, Frank Enders1,2, Marc Stamminger1 and Peter Hastreiter1,2

1Computer Graphics Group, University of Erlangen-Nuremberg, Germany
2Neurocenter, Dept. of Neurosurgery, University Hospital Erlangen, Germany

Abstract

Visualization of multimodal images in medicine and other application areas requires correct and efficient registra-

tion. Optimally, the alignment operation is made an integral part of the rendering process. Voxel based approaches

using mutual information ensure high quality similarity measurement. As a limiting factor, high computational

load is caused since for every iteration of the optimization procedure one volume is transformed into the coordi-

nate system of the other, a 2D histogram is generated and mutual information is computed. The expensive trilinear

interpolation operations are well supported by 3D texture mapping hardware. However, existing strategies com-

pute the histogram and mutual information on the CPU and thus require a cost intensive data transfer. Overcoming

this considerable bottleneck, we introduce a new approach that efficiently supports all computations on modern

graphics cards. This makes expensive data transfers from GPU to main memory dispensable. Due to its modularity,

the presented approach can be integrated into general frameworks. As a major result, the speed improvement over

existing GPU-CPU strategies amounts to a factor of 4 and over pure conventional CPU techniques to more than

a factor of 10. Overall, the suggested strategy contributes considerably to integration of multimodal registration

directly into interactive volume visualization.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing And Computer Vision]:
Registration

1. Introduction

The rapid developments in imaging systems and the ever
increasing amount of acquired datasets reflects today’s im-
portance of advanced and fast processing. Based on new al-
gorithmic approaches and latest developments in computer
hardware, both the analysis and the understanding of com-
plex relationships can be substantially improved.

Registration is an important task in image processing and
computer vision if there are two or more datasets obtained at
different times, from different sensors or with different view-
ports [Bro92]. It aims at calculating a transformation which
optimally maps geometrically corresponding locations onto
each other in order to allow for the correct overlay or fu-
sion of the data. Application fields requiring image regis-
tration include target recognition systems, model acquisition
systems and most importantly medical image processing. It

supports diagnostic and therapeutical strategies as well as
arising new applications [HHH01a].

Every registration problem needs an appropriate combi-
nation of choices of a feature space, a search space, a search
strategy and a similarity metric [Bro92]. Given pixel or voxel
data as input, the intensity information defines the feature
space. As illustrated in figure 1, one dataset is defined as
fixed image which means that it remains unchanged through-
out the alignment process. The other one is denoted as mov-
ing image since it is transformed depending on the current
parameters. The search space is represented by the class of
transformations describing the misalignment of the two im-
ages. In order to find the optimal transformation parameters
the search strategy is important. It decides on the update of
the transformation and is briefly referred to as optimizer. Fi-
nally, the quality of alignment is evaluated by the similarity
metric. In this context, voxel based approaches have proven

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

to provide the highest level of accuracy with mutual infor-
mation (MI) being regarded as appropriate for many registra-
tion problems [WFW∗99]. As an advantage, voxel based ap-
proaches work without pre-segmentation which could limit
the accuracy due to delineation errors. However, they require
a huge number of interpolation operations for the sampling
of the moving image within the grid of the fixed image and
a subsequent cost intensive evaluation of the similarity mea-
sure for every iteration of the optimization procedure.

Figure 1: Typical registration framework using intensity

based similarity measures.

In rigid body situations the performance scales with the
size of the underlying image data and becomes critical for
volume data. For nonlinear alignment problems the compu-
tational load increases dramatically due to the flexibility of
the underlying transformations and the respective high num-
ber of optimization parameters. For example, the alignment
of preoperative and nonlinearly deformed intraoperative im-
age data during neurosurgical procedures is of major rele-
vance in order to access information which is only preop-
eratively available [HRSS∗04]. Since efficient calculation is
an important issue, acceleration techniques are seen as ur-
gent challenge in medicine and other application areas. In
the optimal case, registration is made an integral part of the
data generation and presentation process. This could con-
siderably support the analysis of time critical problems and
complex scenarios within a simulation-visualization cycle.

In this paper, an innovative strategy exploiting the
3D power and technical features of modern PC graphics
cards is introduced which efficiently extends our previous
work. Focusing on MI, the entire calculation of the simi-
larity measure is offloaded onto the graphics processor unit
(GPU). The approach uses the trilinear interpolation capa-
bilities available with texture mapping subsystems and over-
comes the crucial problem requiring a cost intensive read
back operation from frame buffer to main memory.

The paper has the following structure: In section 2, pre-
vious work is outlined. Section 3 presents the mathematical
background of MI. Important issues of the GPU implemen-
tation are explained in section 4. The respective calculation
of the 2D histogram and the evaluation of MI are introduced
in sections 5 and 6. Further on, section 7 shows how this
approach allows for free form deformations using B-splines.
Finally, results are presented in section 8.

2. Previous Work

The idea to accelerate voxel based registration using 3D tex-
ture mapping and to integrate it with 3D visualization was
introduced by Hastreiter et al. [HE98]. This was an exten-
sion to pure software alignment using MI [SW49] which
used hierarchical subsampling [CMD∗95] and stochastic ap-
proximation [WVK95] for acceleration. Considering hard-
ware based registration, FPGA based techniques [JLR02]
and multiprocessor environments [RM03] also proved to be
a valuable assistance to accelerate the evaluation of a simi-
larity measure. In contrast, a considerable speed-up was re-
ported by Glocker et al. with a novel CPU approach using
discrete labeling and linear programming [GPK∗07].

The class of GPU accelerated transformations was ex-
tended to piecewise linear transformations by Rezk-Salama
et al. [RSSSG01]. They were applied by Hastreiter et
al. [HRSS∗04] for deformable voxel-based registration to
examine intraoperative brain deformations denoted as brain
shift. Further improved non-linear alignment was achieved
in the work of Soza et al. [SBH∗02] by using 3D Bézier
functions implemented on the GPU for the non-linear align-
ment of volume data. This strategy also proved to be
adequate for parameter estimation in brain shift simula-
tion [SGN∗04] and correction of diffusion tensor imaging
data [MHS∗04,MSS∗07].

A non-linear GPU based regularized gradient flow method
for the registration of 2D images was presented by Str-
zodka et al. [SDR04]. This approach was extended to 3D
and fully offloaded to the GPU in the work of Köhn et
al. [KDRMK06]. However, limited performance was as-
sessed as a result of memory bottlenecks. Exploiting vertex
shaders and hardware-accelerated 3D texture mapping Levin
et al. [LDS05] suggested an approach of volume warping
based on thin plate splines for iterative image registration.
In a more general scope, Sigg et al. [SH05] presented a fast
strategy for the evaluation of B-spline transformations on
modern graphics cards which allows for a reduction of tex-
ture lookups. Using MI and the Kullback-Leibler divergence
Vetter et al. [VGXW07] presented a GPU based non-rigid
registration for multi-modal medical image data. As a draw-
back, this approach uses 2D-textures only and omits exploit-
ing the full 3D power of graphics cards. The important issue
of efficient optimization using MI and B-splines was inves-
tigated by Klein et al. [KSP07]. In a recent work of Muyan-
Ozcelik et al. [MOOXS08], the Demons registration was ef-
ficiently mapped to the GPU using the Compute Unified De-
vice Architecture (CUDA) programming environment.

3. Mutual Information

Voxel-based registration takes into account the entire grey
value information of the image data. However, the choice of
an appropriate similarity metric is important for the evalua-
tion of the registration quality during the optimization pro-

c© The Eurographics Association 2008.

118



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

cess. For both mono- and multimodal image data MI has
shown to be adequate [WFW∗99].

Defined in information theory, MI describes the statistical
dependence of two images or the amount of information that
one image contains about the other. More formally, let

H(X) = −∑
x

pxln(px) (1)

denote the marginal- and

H(X ,Y ) = −∑
x,y

px,yln(px,y) (2)

the joint entropy of two images X and Y . Then the MI of the
two images ξ and ζ is defined as

CMI(ξ,ζ) = H(ξ)+H(ζ)−H(ξ,ζ) . (3)

Varying overlap of the fixed and the moving image can
cause disproportional contributions to the MI. This happens
predominantly in areas of very low intensities such as back-
ground noise [HHH01b]. In order to make the registration
more insensitive to changes in image overlap, normalized
MI (NMI) has been proposed which has been shown to be
considerably more robust than standard MI [SHH99]. It is
defined as

CNMI(ξ,ζ) =
H(ξ)+H(ζ)

H(ξ,ζ)
. (4)

With the similarity measure, an optimization term can
be constructed that allows maximizing the NMI by nu-
merical computations [RSH∗99]. Direction set methods are
frequently used if the explicit evaluation of partial deriva-
tives must be avoided. There are numerous strategies which
mainly differ in the set of direction vectors they use. Since
the focus of this work does not cover optimization strate-
gies, a readily available implementation of Powell’s algo-
rithm was chosen, which generates a set of mutually conju-
gate direction vectors for the iterations [PFTV88].

4. Implementation

For image registration, it is necessary to load both datasets
into memory and to determine their similarity based on
the NMI. Then, the chosen transformation is applied to the
dataset defined as moving image. Finally, the similarity of
the images is recomputed and checked whether it has im-
proved. In the registration process the transformation of
the moving image is one major bottleneck due to the huge
amount of interpolation operations. Since the memory of
modern graphics cards has enormously increased so that
medical volume data can be entirely stored in 3D textures
memory, it became feasible to perform the interpolation of
non grid positions in the graphics subsystem [HE98]. How-
ever, it is not reasonable to offload the transformation to the
GPU exclusively and to calculate the NMI on the CPU. The
necessary copying of the data to the graphics card and the

cost intensive read-back operations of the transformed data
would eliminate any performance gain [SBH∗02].

Recent developments of GPUs made it possible to over-
come this limitation. Framebuffer objects (FBO) make it
practical to perform off-screen rendering without the ad-
ditional cost of a context switch. Additionally, OpenGL
1.5 promoted the well known vertex buffer objects to gen-
eral buffer objects which serve as a generic data storage
in GPU memory. Version 2.0 then added shading support
via shader objects and the GL shading language (GLSL) to
the API. To date the final contribution important for the ap-
proach suggested in this paper, OpenGL 2.1 promoted the
ARB_pixel_buffer_object extension to a generic target for
buffer objects. Based on these advances a fully standard
compilant and portable GPU-based registration implemen-
tation became achievable.

The pixel buffer objects are crucial for the presented al-
gorithm. Applying them allows reusing framebuffer objects
as vertex data, which is the core part of the histogram gener-
ation method. In the beginning, a buffer object is generated
which is bound to the GL as PIXEL_PACK_BUFFER. This
causes all subsequent calls to ReadPixels() to target at the
on board memory of the graphics card to which the buffer
object is assigned to. Hence, rendered framebuffer data can
be read back directly to graphics memory without the ne-
cessity to make a detour to generic system RAM. The so
filled buffer object can then be rebound as an ordinary ver-
tex array, which in turn can be used for rendering using the
DrawArrays() call.

The process of NMI calculation is divided into two parts:
(1) Computation of the 2D histogram of the superimposed
fixed and moving datasets on the GPU. (2) Evaluation of the
NMI on the graphics card with the obtained histogram.

5. Histogram Generation

Following is the basic GPU procedure for the 2D histogram:

1. Create an off-screen buffer for sample generation.
2. Create an off-screen buffer containing the desired number

of bins for the histogram.
3. Upload the image data to 3D texture memory and gener-

ate samples from the overlapping image area.
4. Interpret the sample values of the overlapping area as ge-

ometric coordinates to the histogram area.
5. Count the number of samples into the histogram.

Sampling from Overlapping Image Areas Sampling of
volume data is effectively carried out by the GPU, since it is
highly optimized for trilinear interpolation. Hence, the fixed
and the moving image is uploaded to the graphics card and
stored as 3D luminance textures. The fixed volume is placed
at the origin, with a width, height and depth equal to 1.0 re-
spectively. This maps the fixed volume onto its own texture

c© The Eurographics Association 2008.

119



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

space. The rigid transformation of the moving image vol-
ume is stored in the current model-view matrix of OpenGL.
To obtain samples of the overlapping area, the volumes are
rendered slice by slice into an off-screen buffer with multi-
texturing enabled. Thereby, both datasets can be accessed as
textures during the rendering pass. A simple vertex shader
passes the current vertex coordinate of the fixed volume to
the fragment stage. For the moving volume, the shader multi-
plies the vertex coordinate with the inverse model-view ma-
trix to transform it into the texture space of the fixed volume.

Figure 2: Determination of valid overlapping samples. Sam-

ples drawn in black are valid, since the are located within the

overlapping area of the images. Samples drawn in white are

invalid, since they are located outside the valid texture space

range of [0,1].

Since a unit cube mapping of the datasets is used in tex-
ture space , the corresponding fragment shader just needs
to determine whether the generated texture coordinate is in
the range of [0,1]. If the coordinate is inside this range, it
is a valid sample located in the overlapping area of the two
datasets. Consequently, the sample value of the fixed volume
is written to the red channel of the output buffer and the cor-
responding sample of the moving volume is written to the
green channel. If the coordinate value falls outside the range
of [0,1], the associated sample value cannot lie within the
overlapping area. Hence, it is discarded and the value of −1
is written to the respective output channels, indicating that
the value is invalid (Fig. 2).

Creation of the Histogram In order to access the data of
every rendered slice a buffer object is created. The buffer is
then used as a PIXEL_PACK_BUFFER and the contents of
the sample slice is read back into graphics card memory via
ReadPixels(). Finally, the buffer is rebound as vertex array.

For the subsequent generation of the 2D histogram on the
GPU an additional off-screen render buffer with the desired
number of histogram bins is allocated. This buffer is ini-
tialized with zeros and a parallel projection is set up. The
fragment values of the generated sample slices located in

the buffer object are interpreted as geometric coordinates of
the histogram slice, i.e. the vertex array is drawn. The inten-
sity values of the red and the green channel of the sample
slice which are in the range [0,1], are mapped to the range
between zero and the maximum number of histogram bins
in x−, and y−directions, respectively. For all value pairs, a
point with an intensity value of 1 is drawn at the derived
location (Fig. 3).

Figure 3: Generation of the 2D histogram from the overlap-

ping area of the rendered sample slices.

Additive blending is enabled during the drawing process,
hence the corresponding histogram bin value is increased
by one each time a point gets drawn. Since sample values
outside the overlapping area were set to −1, the respective
points lie outside the rendering area and are thus clipped au-
tomatically.

6. Calculation of NMI

After the computation of the 2D histogram, the NMI is also
evaluated in graphics hardware. In order to take advantage
of the GPU processing capabilities it is necessary to refor-
mulate the equations for the marginal- and joint entropies
H(ξ), H(ζ) and H(ξ,ζ) from section 3. Based on the ob-
tained histogram, the probabilities of individual sample val-
ues can be calculated by simply taking the sample count
Nξ,ζ(i, j) stored in each histogram bin and dividing it by the
total number Aξ,ζ of all samples within the histogram.

More formally, the total number of all samples is

Aξ,ζ = ∑
i∈Ωξ

∑
j∈Ωζ

Nξ,ζ(i, j) . (5)

Inserting Aξ,ζ into equation 2 and defining

DSξ,ζ = ∑
i∈Ωξ

∑
j∈Ωζ

Nξ,ζ(i, j)log
(

Nξ,ζ(i, j)
)

, (6)

the joint entropy can be written as

H(ξ,ζ) = −
1

Aξ,ζ
DSξ,ζ + log

(

Aξ,ζ

)

. (7)

Note that the summands of DSξ,ζ and Aξ,ζ are only de-
pendent on Nξ,ζ(i, j). The same can be done for the marginal

c© The Eurographics Association 2008.

120



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

entropies. If we denote the sum of all samples from a single
image as Aξ = ∑i∈Ωξ

Nξ(i), we can accordingly define

SSξ = ∑
i∈Ωξ

Nξ(i)log
(

Nξ(i)
)

. (8)

The marginal entropy of a single image then results to

H(ξ) = −
1
Aξ

SSξ + log(Aξ) . (9)

This reformulation expresses the entropy formulae as sums
of sample values already contained in the histogram and log-
arithms thereof. This provides the basis for an efficient GPU
implementation.

6.1. Evaluation with Graphics Hardware

To evaluate the NMI with the adapted formulae on the GPU
an off-screen buffer with 32 bits floating point precision is
created. The existing histogram buffer from the preceding
step is bound as a texture input for the upcoming calcula-
tions. In a first render pass, the sample values in all four color
channels of the histogram buffer are added to get the total
sample count of the corresponding histogram bin. Further-
more, the fragment shader that performs the addition opera-
tion also calculates the logarithm of this number and multi-
plies it with the total number of samples in the corresponding
bin. Hence, the GPU computes Nξ(i) and Nξ(i)log(Nξ(i)).
The values are written to the red and the green channel of the
output buffer. To compute Nζ(i) and Nζ(i)log(Nζ(i)) in the
same step, the x and y texture coordinates for the histogram
lookup are simply swapped. Then, a column-wise lookup of
the histogram bins is achieved. The results are written to the
blue and the alpha channel of the output buffer.

In a second render pass, the computed values are added.
This is done by a technique called parallel reduction, de-
scribed in [BFH∗04]. For this, a second floating point texture
buffer is needed. This buffer is bound as the output frame-
buffer and the sum buffer from the previous step is bound as
an input texture. The sum is computed by a 2:1 reduction,
i.e. rendering the upper half of the input image to the out-
put buffer while a fragment shader is adding one row of the
upper half of the input texture to its corresponding row of
the lower half. Subsequently, the roles of the two buffers are
reversed (ping-ponging) and the step is repeated until only
one row is left. Finally, the last rendered row contains the
partial sums of SSξ, SSζ, Aξ and Aζ for each sample value i.
This sum-row is read back to main memory and the remain-
ing computation is most efficiently carried out in software.
This includes addition of the partial sums contained in the
row, a division and evaluation of a logarithm, which yields
H(ξ,ζ), H(ξ) and H(ζ). What is left is only one addition
and one division to evaluate CNMI .

Having the evaluation of the NMI on the GPU, a rigid
alignment is straightforward. Due to the transformation of

the second texture coordinate by the inverse model-view ma-
trix, the rigid transformation is already included in the sam-
ple generation process. The optimizer just needs to adjust the
six parameters. Transformation and NMI evaluation occur in
the same rendering step on the GPU.

7. Non-Rigid Registration on the GPU

For non-rigid image registration, free-form deforma-
tions (FFD) using a cubic B-spline transformation has
proven to deliver high quality results [RSH∗99]. Therefore,
it is desirable to integrate such mapping into the presented
GPU framework. Recall that a cubic B-spline based FFD of
3D volume data can be expressed as 3D tensor product of
1D cubic B-splines.

T(!p) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

N
3
l (s)N3

m(t)N3
n (u)!di+l, j+m,k+n . (10)

Here, !p is a position within the image domain Ω = {!p =
(x,y,z)|x ≤ 0 < X ,y ≤ 0 < Y,z ≤ 0 < Z}. !di, j,k are the
control points of a Nx × Ny × Nz control point mesh of
spacing δx × δy × δz. Then, u = x / δx − $ x / δx %,
v = y / δy − $ y / δy %, w = z / δz − $ z / δz %,
i = $ x / δx % − 1, j = $ y / δy % − 1 and
k = $ z / δz % − 1.

This definition provides an intuitive behavior of the de-
formation and inherent elasticity, which matches normal soft
tissue movement. Special care has to be taken when the con-
trol point mesh is generated. For the initial transformation a
uniform, regularly spaced control point mesh is used. This
ensures that no transformation happens. Additionally, extra
control points have to be added on the boundary of the 3D
grid. This is necessary since at the image border partition of
unity would be violated. The extra control points circumvent
this. Since they stay constant during the registration process,
these additional points do not influence the calculation time
significantly.

To achieve a correct deformation of the dataset, the B-
spline evaluation has to be performed per voxel. This means
that a neighborhood of 64 control points which affect a voxel
is involved and has to be considered for each image element,
i.e. each fragment. Using the programmability of GPUs this
procedure is supported by traversing the datasets slice by
slice. The required computations are performed per frag-
ment. While the contributing value of the fixed image is ob-
tained by a single trilinear texture lookup, the value of the
moving image requires the expensive B-spline evaluation.

An essential problem is to handle all 64 control points
per fragment. Common general purpose approaches use tex-
tures in order to store input values. However, in our case, the
calculation itself is comparatively simple. Since the texture
fetches for the input values are the major bottleneck, they
were omitted and uniform variables were used instead. In
consequence, the complexity of the fragment program was
reduced resulting in a much higher fragment throughput.

c© The Eurographics Association 2008.

121



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

8. Results

The suggested approach was evaluated with 11 datasets of
tumor patients consisting of pre- and intraoperative MR
volumes with 512× 512× 256 voxels and a voxel size of
0.49×0.49×1.0mm3 acquired with a Siemens MR Magne-
tom Sonata Maestro Class 1.5 Tesla scanner. Additionally,
corresponding CT data were used to test multi-modal reg-
istration. For the calculations, a PC equipped with an In-
tel Core 2 Duo, 3.0 GHz processor, 2 GBytes RAM and a
Nvidia 8800 Ultra was used.

The evaluation focused on time measurements of the NMI
calculation (rigid and non-rigid transformation) at different
resolution levels of the volumes. The results are summa-
rized in table 1 and serve as a basis for different optimization
strategies.

Resolution NMI + Rigid NMI + Non-Rigid
5122 ×256 1.2 sec 2.3 sec
2562 ×128 0.4 sec 0.7 sec
1282 ×64 0.16 sec 0.2 sec
642 ×32 0.08 sec 0.13 sec

Table 1: Timings of NMI evaluation, rigid- and unoptimized

non-rigid transformation.

Though the presented non-linear deformation is regarded
as an add-on of this work, it is noteworthy that the obtained
calculation times are very low. Compared to a CPU imple-
mentation the speedup is significant. For example, evaluat-
ing the NMI and performing a B-spline transformation on a
5122 × 256 dataset using an optimized software implemen-
tation took about 22 seconds.

For completeness, we performed fully rigid and non-rigid
registrations using the implementation of Powell’s algorithm
from [PFTV88]. Depending the optimization parameters re-
sults of different quality and total registration times were
achieved. The rigid registrations were obtained in about
20 seconds (Fig. 4). The non-linear registration result of fig-
ure 5 c) took 20 minutes to complete. The higher quality
registration result of figure 5 d) was computed in 1 hours.

9. Conclusion and Future Work

An approach for the efficient calculation of the NMI on mod-
ern GPUs including rigid and non-rigid transformations has
been presented. Due to its modularity it can be used within
different registration frameworks. Considering the evalua-
tion strategy of the similarity measure, the GPU implemen-
tation includes rigid transformations almost “for free”. Ad-
ditionally, a FFD approach using a cubic B-spline trans-
formation has been presented which integrates seamlessly
into the presented pipeline. Hence, for the example of med-
ical image registration it is possible to combine initial rigid
alignment and subsequent non-rigid registration of the data

Figure 4: Multi-modal rigid registration and simultaneous

visualization including interactive adjustment of the 2D his-

togram (lower right) and fusion of the final result (lower

left).

which greatly reduces process times. Moreover, using the
method within a framework permits easy integration of dif-
ferent GPU- and software-based methods which allows for
convenient analysis.

Concerning the presented FFD evaluation on the GPU, it
was shown that the 64 texture fetches can be replaced by just
eight trilinear texture fetches [SH05]. Applying this method
to the presented implementation might lead to a compara-
tively higher speed of non-rigid transformations.

Compared to todays more common general purpose GPU
computing approaches such as CUDA, the presented ap-
proach has the advantage that volume visualization can be
carried out while the registration is in progress. This allows
analyzing the behavior of different registration and optimiza-
tion algorithms in more detail. Additionally, the presented
approach is flexible enough to permit on-line user interac-
tion during the alignment process. First experiments with
CUDA based registration have shown that a major bottle-
neck is the transfer of the computed results to a graphics con-
text in which they can be prepared for visualization. With the
evolution of CUDA, this limitation might be overcome in the
future which will then allow a direct comparison of a CUDA
and direct GPU implementations.

References

[BFH∗04] BUCK I., FOLEY T., HORN D., SUGERMAN

J., FATAHALIAN K., HOUSTON M., HANARAHAN P.:
Brook for GPUs: Stream Computing on Graphics Hard-
ware. ACM Transactions on Graphics 23, 3 (2004), 777–
786.

[Bro92] BROWN L.: A Survey of Image Registration
Techniques. ACM Computing Surveys 24, 4 (1992), 325–
376.

c© The Eurographics Association 2008.

122



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

Figure 5: Example of a patient dataset acquired before (a) and during (b) surgery and results of non-rigid registration with

coarse (c) and optimal (d) parameter setting.

Figure 6: Difference images of rigid registration (a) as well as non-rigid registration with coarse (b) and optimal (c) parameter

setting.

c© The Eurographics Association 2008.

123



M. Teßmann, C. Eisenacher, F. Enders, M. Stamminger & P. Hastreiter / GPU Accelerated Normalized Mutual Information

[CMD∗95] COLLIGNON A., MAES F., DELAERE D.,
VANDERMEULEN D., SUETENS P., MARCHAL G.: Au-
tomated Multi-modality Image Registration Based on In-
formation Theory. In Information Processing in Medical

Imaging (1995), vol. 3, pp. 263–274.

[GPK∗07] GLOCKER B., PARAGIOS N., KOMODAKIS

N., TZIRITAS G., NAVAB N.: Inter and Intra-modal
Deformable Registration: Continuous Deformations Meet
Efficient Optimal Linear Programming. Inf Process Med

Imaging 20 (2007), 408–20.

[HE98] HASTREITER P., ERTL T.: Integrated Registra-
tion and Visualization of Medical Image Data. In CGI

(Hannover, Germany, 1998), pp. 78–85.

[HHH01a] HAJNAL J., HAWKES D., HILL D.: Medical

Image Registration. CRC Press, 2001.

[HHH01b] HAJNAL J., HILL D., HAWKES D.: Medical

Image Registration. CRC Press, 2001.

[HRSS∗04] HASTREITER P., REZK-SALAMA C., SOZA

G., GREINER G., FAHLBUSCH R., GANSLANDT O.,
NIMSKY C.: Strategies for Brain Shift Evaluation. Med

Image Anal 8, 4 (2004), 447–464.

[JLR02] JIANG J., LUK W., RUECKERT D.: FPGA-based
Computation of Free-form Deformations. In Proceedings

of IEEE Int. Conf. on Field-Programmable Technology

2002 (16-18 Dec 2002), pp. 407–10.

[KDRMK06] KÖHN A., DREXL J., RITTER F.,
M. KÖNIG H.-O. P.: GPU Accelerated Image Registra-
tion in Two and Three Dimensions. In Bildverarbeitung

für die Medizin 2006 (2006), Handels H., Ehrhardt J.,
Horsch A., Meinzer H.-P., Tolxdorff T., (Eds.), Springer
Verlag, pp. 261–65.

[KSP07] KLEIN S., STARING M., PLUIM J.: Evaluation
of Optimization Methods for Nonrigid Medical Image
Registration Using Mutual Information and B-Splines.
IEEE Trans Image Process 16, 12 (Dec 2007), 2879–90.

[LDS05] LEVIN D., DEY D., SLOMKA P.: Effi-
cient 3D Nonlinear Warping of Computed Tomography:
Two High-performance Implementations Using OpenGL.
In Proc. SPIE Medical Imaging: Visualization, Image-

Guided Procedures, and Display (2005), Robert L. Gal-
loway J., Cleary K. R., (Eds.), vol. 5744, pp. 34–42.

[MHS∗04] MERHOF D., HASTREITER P., SOZA G.,
STAMMINGER M., NIMSKY C.: Non-linear Integration
of DTI-based Fiber Tracts into Standard 3D MR Data.
In VMV (Vision, Modeling, and Visualization) (2004),
pp. 371–377.

[MOOXS08] MUYAN-OZCELIK P., OWENS J., XIA J.,
SAMANT S.: Fast Deformable Registration on the GPU:
A CUDA Implementation of Demons. In Int. Conf. on

Comput. Sc. and its Appl. (ICCSA) 2008 (2008), IEEE
Computer Society. in press.

[MSS∗07] MERHOF D., SOZA G., STADLBAUER A.,

GREINER G., NIMSKY C.: Correction of Susceptibility
Artifacts in Diffusion Tensor Data Using Non-linear Reg-
istration. Med Image Anal 11, 6 (2007), 588–603.

[PFTV88] PRESS W., FLANNERY B., TEUKOLSKY S.,
VETTERLING W.: Numerical Recipes in C. Cambridge
University Press, 1988.

[RM03] ROHLFING T., MAURER JR. C.: Nonrigid Im-
age Registration in Shared-memory Multiprocessor Envi-
ronments with Application to Brains, Breasts, and Bees.
IEEE Trans Med Imaging 22, 6 (2003), 730–41.

[RSH∗99] RUECKERT D., SONODA L., HAYES C., HILL

D., LEACH M., HAWKES D.: Non-rigid Registration Us-
ing Free-form Deformations: Application to Breast MR
Images. IEEE Trans Med Imaging 18, 8 (1999), 712–721.

[RSSSG01] REZK-SALAMA C., SCHEUERING M.,
SOZA G., GREINER G.: Fast Volumetric Deformation on
General Purpose Hardware. In SIGGRAPH/Eurographics

Workshop on Graphics Hardware (2001).

[SBH∗02] SOZA G., BAUER M., HASTREITER P., NIM-
SKY C., GREINER G.: Non-rigid Registration with Use
of Hardware-Based 3D Bézier Functions. In MICCAI

(2002), LNCS, Springer, pp. II,549–556.

[SDR04] STRZODKA R., DROSKE M., RUMPF M.: Im-
age Registration by a Regularized Gradient Flow - A
Streaming Implementation in DX9 Graphics Hardware.
Computing 73, 4 (Nov. 2004), 373–389.

[SGN∗04] SOZA G., GROSSO R., NIMSKY C., GREINER

G., HASTREITER P.: Estimating Mechanical Brain Tissue
Properties with Simulation and Registration. In MICCAI

(2004), vol. 2 of LNCS, Springer, pp. 276–283.

[SH05] SIGG C., HADWIGER M.: Fast Third-Order Tex-
ture Filtering. In GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose

Computation. Addison-Wesley, 2005, pp. 313–29.

[SHH99] STUDHOLME C., HILL D., HAWKES D.: An
Overlap Invariant Entropy Measure of 3D Medical Image
Alignment. Pattern Recognition 32, 1 (1999), 71–86.

[SW49] SHANNON C., WEAVER W.: The Mathematical

Theory of Communication. Univ. of Illinois Press, 1949.

[VGXW07] VETTER C., GUETTER C., XU C., WEST-
ERMANN R.: Non-rigid Multi-modal Registration on
the GPU. In Medical Imaging 2007: Image Processing

(2007), vol. 6512, SPIE, p. 651228.

[WFW∗99] WEST J., FITZPATRICK J., WANG M.,
DAWANT B., C. MAURER J., KESSLER R., MACIUNAS

R.: Retrospective Intermodality Registration Techniques
for Images of the Head: Surface-Based Versus Volume-
Based. IEEE Trans Med. Imaging 18, 2 (1999), 144–150.

[WVK95] WELLS III W., VIOLA P., KIKINIS R.: Multi-
modal Volume Registration by Maximization of Mutual
Information. In Medical Robotics and Computer Assisted

Surgery (1995), Wiley-Liss, New York, pp. 155–162.

c© The Eurographics Association 2008.

124


