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Abstract

Automatic polyp detection is a helpful addition to laborious visual inspection in CT colonography. Traditional
detection methods are based on calculating image features at discrete positions on the colon wall. However
large-scale surface shapes are not captured. This paper presents a novel approach to aggregate surface shape
information for automatic polyp detection. The iso-surface of the colon wall can be partitioned into geometrically
homogeneous regions based on clustering of curvature lines, using a spectral clustering algorithm and a symmet-
ric line similarity measure. Each partition corresponds with the surface area that is covered by a single cluster.
For each of the clusters, a number of features are calculated, based on the volumetric shape index and the surface
curvedness, to select the surface partition corresponding to the cap of a polyp. We have applied our clustering
approach to nine annotated patient datasets. Results show that the surface partition-based features are highly
correlated with true polyp detections and can thus be used to reduce the number of false-positive detections.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation

Line and curve generation

1. Introduction

CT colonography is a minimally invasive technique that en-
ables effective screening of the large intestine [vGVS*02,
Bar05, KPT*07]. The main task is to identify adenomatous
colonic polyps, which are well-known precursors of colon
cancer. Typically, colonic polyps are visible as protrusions
on the interior colonic surface. In virtual CT colonography,
the iso-surface of the colon wall is first extracted as a triangle
mesh, or as an implicit iso-surface using volume ray casting
techniques. Unfortunately, a complete visual inspection of
the colon wall is rather time consuming and important areas
are inevitably missed. To maintain high effectiveness and
efficiency, computer-aided diagnosis (CAD) has been pro-
posed as a helpful addition to the CT colonography pipeline.

The majority of existing CAD schemes [YNO1, SYP*05]
for automatic polyp detection are based on calculating image
features, e.g. surface principal curvatures, at discrete points
on the colon wall. These image features are then filtered us-
ing hysteresis thresholding to identify suspected regions that
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belong to colonic polyps. Polyp candidates are detected by
fuzzy clustering of these connected components. Such ap-
proaches mainly focus on point-wise surface shape charac-
teristics. Large-scale shapes of the colonic surface are not
captured. Point-sampling features are in general more sensi-
tive to CT data noise and surface irregularities. Aggregation
of shape information within a certain area is necessary to
enhance the robustness of polyp surface characterization.

Instead of calculating point-sampling features on the
colon wall, we first partition the colonic surface into regions
that exhibit consistent behaviour with respect to surface ge-
ometry. We perform this partitioning by clustering surface-
constrained curvature lines. Curvature lines are curves ev-
erywhere tangent to one of the two principal curvature direc-
tion vector fields on the surface. Geometric features are then
computed within each surface partition, over the clustered
curvature lines, and used to classify these surface partitions
into various predefined types. These features are also used to
identify surface partitions that contain polyps.
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We integrated our colonic surface partitioning and ag-
gregated surface shape feature calculation with an existing
CAD pipeline. Polyp candidates are pre-detected using an
existing automatic polyp detection scheme [vWVRV*06],
which yields all true polyp detections for the data set we
used, as confirmed by an experienced radiologist, and also
a large number of false detections. We make use of tech-
niques from [ZBB*06] to generate surface-constrained cur-
vature lines in the area around each detected candidate po-
sition. Then each candidate area is partitioned into geomet-
rically homogeneous regions by clustering curvature lines.
New features are derived as aggregation of surface shape in-
formation within each surface partition. These features are
integrated at curvature line points of each cluster that cov-
ers a surface partition. Our experimental study showed that
these features can be used to discriminate between clusters
that contain polyps and clusters that do not.

Our contribution is two-fold:

e We present surface-constrained curvature line clustering
as a new method for surface partitioning in polyp de-
tection. This idea can also be applied in other problems
where larger scale surface shapes have to be captured and
analyzed.

e We show that features calculated over surface partitions
could be used to discriminate effectively between polyps
and non-polyps.

The remainder of the paper is structured as follows. Re-
lated research is briefly reviewed in Section 2. Section 3
explores the relation between curvature line clustering and
colonic surface partitioning. In Section 4, our curvature line
clustering method is described. We discuss how to compute
geometric features within each surface partition in Section 5.
An experimental study to analyze the discriminative power
of these features is given in Section 6. We draw conclusions
in Section 7, as well as outline our future work.

2. Related Work

Many existing polyp detection schemes make use of sur-
face shape features derived from scalar principal curvatures,
which are important concepts in differential geometry. It
was shown that the per patient sensitivity of computer-aided
polyp detection in an asymptomatic screening population
is comparable to that of optical colonoscopy for polyps of
8 mm or larger and is generalizable to new CT colonog-
raphy data in [SYP*05]. Yoshida et al. [YNO1] developed
a method that started by computing volumetric shape in-
dex and curvedness to characterize polyps, folds and colonic
walls at each voxel in the extracted colon. Afterwards, polyp
candidates were obtained using fuzzy clustering to con-
nected components filtered based on these geometric fea-
tures. Huang et al. [HSHOS5] introduced a two-stage curva-
ture estimation approach based on cubic spline fitting on tri-
angulated surface meshes for automatic polyp detection.

There are also methods not or indirectly based on scalar
surface curvatures. Hong et al. [HQKO06] presented an au-
tomatic polyp detection pipeline that integrated texture and
shape analysis with volume rendering and conformal colon
flattening. Van Wijk et al. [vWVRV*06] proposed a shape
and size invariant approach in which a “protrusion”measure
was used to find polyp candidates. In [ZBB*06], the poten-
tial of surface principal curvature direction fields for auto-
matic polyp detection was explored. Techniques were devel-
oped for computing surface-constrained curvature lines on
the colon wall. Features strongly correlated with true posi-
tive polyp detections are derived from the geometry of cur-
vature lines and used to reduce the number of false positive
detections in a complete polyp detection protocol.

Techniques have been developed for surface partitioning.
Based on Morse-Smale complex, Natarajan et al. [NWB*06]
proposed a method using topological analysis of a scalar
function defined on the surface. Partition-based techniques
are also widely-used in flow visualization. A survey arti-
cle on this topic was recently published by Salzbrunn et
al. [STWSO08]. Chen et al. [CML*07] provided a technique
for vector field modification.

Many line clustering methods can be found in the liter-
ature. In flow visualization, Chen et al. [CCKO07] presented
a streamline similarity distance metric that considered not
only Euclidean distance but also shape and directions. A
well-known application is the clustering of fibers to obtain
bundles in diffusion tensor imaging (DTI) [MVvWO05]. An
important issue of clustering fibers (or streamlines) is to de-
fine a good similarity (or distance) metric between fibers.
Brun et al. [BKP*04] mapped fibers to a Euclidean feature
space and used a Gaussian kernel for pairwise fiber compar-
ison. They proposed a clustering method in which a normal-
ized cut criterion was used to partition a weighted undirected
graph derived from their fiber similarity measure. Corouge et
al. [CGGO04] computed closest point pairs to define distance
between fibers. Based on this distance measure, they prop-
agated cluster labels from fiber to neighboring fibers. Klein
et al. [KBL*07] calculated an affinity matrix based on the
use of a reconstructed 3D grid to represent fiber similarity.
The number of clusters were automatically determined by
performing a linear eigenvalue regression of this affinity ma-
trix. Brain white matter fibers were clustered using a spectral
clustering method based on multiple eigenvectors.

3. Colonic Surface Partitioning

Point-sampling features are not capable characterizing large-
scale surface shapes, which are necessary to identify polyps.
It is important for automatic polyp detection schemes to ag-
gregate surface shape information within a certain region to
avoid localization. This requires a partitioning of the colonic
surface before feature calculation.

By applying curvature lines [ZBB*06], colonic surface
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Figure 1: Maximum curvature lines on a polyp surface.

shape is well outlined (Figure 1). We calculate principal cur-
vature values and directions on implicit iso-surfaces using
the method developed by van Vliet et al. [vVYV98]. This
method is based on the eigen analysis of Hessian matrix, of
which entries are second order partial derivatives. Gaussian
convolution is used to compute these 3D image derivatives.
We choose 6 = 2.0 for the Gaussian kernel with regard to
iso-surface smoothing and computational efficiency. Curva-
ture lines are traced directly in 3D volume and constrained
on the colonic iso-surface using an iso-projection approach.
The seeding and spacing distance is determined by princi-
pal curvature values. In rare cases, there are umbilics on the
colonic iso-surface. Curvature line integration stops at these
isotropic points.

We use principal curvature direction vectors to cluster co-
herent surface shapes for surface partitioning. For arbitrar-
ily close positions on the surface, they have coherent shapes
when their principal curvature directions are sufficiently par-
allel. Otherwise, even their shape types are analogical, their
shapes are not coherent and belong to different structures.
By definition, curvature lines are curves that everywhere fol-
low one principal curvature direction field. It is intuitive that
parallel curvature lines link coherent shapes over a surface
area and demonstrate meaningful structures. Such a structure
presents homogeneous geometry since its embedded shapes
are coherent. This leads to the idea that the colonic surface
can be partitioned by grouping parallel curvature lines.

In our surface partitioning approach, each partition corre-
sponds with the surface area covered by a single group of
parallel curvature lines. Thus the surface partitioning prob-
lem is converted into a curvature line clustering problem.

4. Clustering Curvature Lines

This section decribes our curvature line clustering method
for colonic surface partitioning, using a new curvature line
similarity measure and a multiple-eigenvector spectral clus-
tering algorithm.

4.1. Symmetric Curvature Line Similarity Metric

A number of clustering algorithms exist, for example ag-
glomerative hierarchical clustering and spectral clustering.
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By using different similarity metrics between clusters, vari-
ations are devised for the same clustering method. In our
work, a similarity measure based on parallelism between
curvature lines is desired. The Euclidean distance should of
course also contribute to the similarity.

We define a symmetric line-to-line similarity measure in
our application, based on the work by Chen et al. [CCKO7].
As a symmetric measure, the similarity between two curva-
ture lines is unchanged no matter it is calculated from one
curvature line to the other or the other way around. In our
definitions, the similarity between two curvature lines is al-
ways calculated from the shorter line to the longer line.
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Figure 2: Similarity measure between curvature lines l; and
l;: point pairs are formed by corresponding window w and
v. Solid black dots indicate window centers and grey dots
indicate point pairs. This similarity is direction-independent.

For a point p on a curvature line /;, a window W of size
m+1 centered at p is computed. On both sides of point p, %
neighboring points of p on /; are included in W. W is a por-
tion of /;. On the other curvature line /;, we find the point g,
closest to p in an Euclidean sense. Another window V of size
m+11is centered at g on /;. Thus we yield pg, p1,-++, pu—1 in
window W about p and ¢g,q,-*,¢n—1 in window V about
q. A correspondence between these two windows W and V
is defined such that p; and ¢g; (i =0,1,---,m — 1) form one
point pair. There are now m+ 1 point pairs including the cen-
ter point pair {p,q}. The similarity distance dj;;,, from point
p to curvature line /; is computed as:

-1
X (pi—gill = llp—4l))
m

dsim:|‘p7q“+(x‘ (1)

This computation is described in Figure 2. dg;,, is computed
from every point on curvature line /; to curvature line /;.
Then the average value of dg;,, is taken as the overall sim-
ilarity distance d;; from /; to ;. Since we only consider the
parallelism and Euclidean distance between curvature lines,
note that this similarity distance is direction-independent, as
described in Figure 2. This is different from the similarity
distance defined by Chen et al. [CCKO7].

Larger similarity distance d;; indicates less similarity be-
tween curvature lines /; and /;. This distance is transformed
to a similarity measure using:

S,’j :exp(—dij) (2)
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This similarity measure can be affected by both the Eu-
clidean distance between curvature lines as well as their
parallelism. A larger Euclidean distance increases the term
|lp — ¢l| in Eq.1. This leads to a smaller similarity measure.
A larger deviation of point pair distances within the win-
dow from the center point pair distance indicates a less par-
allelism between two curvature lines. This increases the sec-
ond term in Eq.1 and results in a smaller similarity. The co-
efficient o is a scale factor that can be used to strengthen the
effect of parallelism. The window size m also influences this
similarity measure. A zero window size will result in a sim-
ilarity metric purely based on the Euclidean distance. In our
experience, o = 2.0 and WindowSize = 20 yielded the best
result as suggested by Chen et al. [CCKO7].

4.2. Spectral Clustering Algorithm

We applied our new similarity metric described in Section
4.1 in a spectral clustering algorithm [KBL*07] to cluster
curvature lines. There are also alternative hierarchical clus-
tering methods [CHH*03]. A disadvantage of hierarchical
clustering is that the number of clusters is application de-
pendent and sometimes difficult to determine.

The algorithm proposed by Klein et al. [KBL*07] uses a
linear eigenvalue regression technique to compute a reason-
able number of clusters. It takes an affinity matrix as input.
Based on our new curvature line similarity metric, the affin-
ity matrix M is computed as:

Soo  Sou v o Son—1
S10

Si j : )
SN-10 e SNo1N—1

where N is the total number of curvature lines generated on
the colon wall at the candidate position and in its vicinity.
The entry S; ; (i,j € {0,1,---,N —1}) of the affinity matrix
is the similarity measure defined by Eq. 2 between curvature
lines /; and /;. Since by definition S; ; = §;;, this affinity
matrix is symmetric. It has N eigenvalues and eigenvectors.

The affinity matrix M is normalized by:
Sij

N max

Sij= “4)
where S),,4; is the maximum value of entries in matrix M,
except diagonal items. These diagonal items are set to 1.
Eigenvalues of the normalized matrix M are indexed and
plotted against their indices in descending order. At each in-
dex, these eigenvalues are splitted. The resulting two halves
are fitted with two linear functions. The index at which the
smallest fitting error occurs corresponds with the number of
clusters. This number K enables the identification of inner
clusters within coarse structures.

The K largest eigenvectors of M are selected and assem-
bled as columns in a N x K matrix X. Rows of X are consid-
ered as K-dimensional vectors. Each of these vectors corre-
sponds with a curvature line with the same index. A hierar-
chical clustering method [MVvWO05] is performed on these
N K-dimensional vectors to create K clusters. The indices
of rows of X in each resulting cluster correspond to the in-
dices of curvature lines that belong to the same cluster. In our
experiments, using the complete linkage in the hierarchical
clustering provided the best result.

(a) (b)
Figure 3: Clustering curvature lines: (a) A synthetic colonic
surface; (b) Curvature line clusters on a fabricated polyp,
different colors represent different clusters.

There are two advantages of this spectral clustering al-
gorithm. First, a reasonable number of clusters is autmati-
cally determined, considering the inter-cluster connectivity.
Second, using multiple eigenvectors for clustering leads to
more accurate and robust results [AKY99]. Figure 3 shows
the result of our curvature line clustering algorithm on a syn-
thetic 3D volume data. The simulated colonic surface is ren-
dered as an implicit iso-surface using volume ray casting.
Curvature lines that follow maximum curvature direction
are traced. Parallel curvature lines are clustered into several
groups, each of which corresponds with a surface partition.
This clustering algorithm can also be used in other applica-
tions, e.g. clustering white matter fibers to find bundles in
DTI of the human brain.

5. Geometric Features for Surface Shape Analysis

In this section, we describe how geometric features are cal-
culated to characterize the large-scale shape of each surface
partition. These features are used to identify the surface par-
tition that captures a colonic polyp.

To describe the overall shape of a surface area, a tradi-
tional way is to calculate the average or mean values of ge-
ometric features in most existing automatic polyp detecion
approaches. Unfortunately, important surface shape infor-
mation could be neglected in such a way. Therefore we need
to aggregate surface shape information as much as possible
within the surface partition for shape analysis.

Volumetric shape index and curvedness of iso-surfaces are
two well-known features used for automatic polyp detection.
They were firstly introduced by Yoshida et al. [YNOI] to

(© The Eurographics Association 2008.



L. Zhao et al. / Curvature Line Clustering for Polyp Detection 57

CAD schemes in CT colonography. These two features are
derived from surface principal curvatures:

1 1 kmin + kmax
Sl = - — —arctan —— 5)
2 T kmin - kmwc
and
2
cv = | Bmin + Kinax J;k'z'm (6)

where ki, is the minimum curvature value and kg, is
the maximum curvature value. However, SI and CV were
mostly used as point-sampling measures for shape analysis
and large-scale shapes were difficult to be described in exist-
ing approaches. We define a new feature based on the aggre-
gation of SI and CV at curvature line points corresponding
to a surface partition to characterize its overall shape.

5.1. Feature Definition

Curvature line points of a cluster are treated as sampling
points of the corresponding surface partition. To identify the
overall shape of a surface partition, surface shape informa-
tion is aggregated through these sampling points. SI and CV
are calculated and aggregated within each surface partition.

The most important feature is the shape index SI. A
unique value of SI describes a distinct surface shape [YNO1].
The value of SI varies in the closed interval [0.0,1.0]. Five
predefined shape types are represented by their characteristic
shape index values (Table 1). These values divide the shape

Table 1: Five predefined shape types and their correspond-
ing shape index values.

Shape type | Shape index value
Cup 0.0

Rut 0.25
Saddle 0.5
Ridge 0.75

Cap 1.0

index value range into four subintervals. Values that fall into
one of these subintervals represent transitional shapes from
one predefined shape type to another. Such a shape transition
is continuous over the whole domain of S/.

The iso-surface curvedness CV is a complementary fea-
ture to the shape index SI. The shape index only measures
the shape type of a surface. The curvedness can represent
how significant the surface shape is. The value of CV varies
in the interval [0.0, +o0), where a small value implies a more
flat surface and a large value implies a sharp edge or peak.
Using the mean value of S/ and CV as an aggregation for
surface analysis has a significant drawback. For example, if
a surface partition has most of its sampling points where S/
values fall into the intervals [0.0,0.25] and [0.75,1.0], the
mean value of its S/ is close to 0.5. Thus the dominant shape
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Figure 4: Using SI subintervals to characterize the overall
shape of a surface partition: a surface partition has its SI
value range a (red line) overlapped with 2nd, 3rd and 4th SI
subintervals. In this case, the surface partition has overall
cap-like shapes.

of this surface partition is represented as the saddle, which
is obviously incorrect.

We define new features, which account not only for values
of ST and CV but also for the shape types at sampling points
over the surface partition. This definition is demonstrated in
Figure 4. Values of SI over a surface partition are mapped
to the four subintervals of the SI value domain. Assuming a
geometrically homogeneous surface partition has analogical
shapes over it in general, we intend to use shape subinter-
vals, in which shapes described by the majority of sampling
points are included, to characterize the overall shape of a sur-
face partition. Values of SI and CV are calculated through
curvature line points of the single cluster that corresponds
with a surface partition. The value ranges a and b of these
discrete ST and CV values can be determined. Then we com-
pute four overlaps of range a with the four subintervals of S/
(Figure 4):

E:%x1oo%,(i=0,1,2,3) )

where n; is the number of curvature line points that have their
SI values included in the ith SI subinterval. N is the total
number of curvature line points that belong to the cluster
corresponding to the surface partition. If there is no overlap
of a with a S subinterval, then a negative value is calculated
as:

__llc-A|
P =
|A—B|

x 100% ®)

where A and B are the two values at the border of range a and
C is the closest value of the non-overlapped S/ subinterval to
a. In the case shown in Figure 4, C and A are the closest
domain border values. The overlap of range b with a proper
value domain is also computed for the iso-surface curvedess
of the surface partition using similar functions. This proper
CV value domain is determined as suggested by Yoshida et
al. [YNO1]. Reasonably curved surface partitions are signif-
icant for shape analysis in our automatic polyp detection
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scheme, whereas approximately flat regions are much less
meaningful. For finding surface significant overall shapes,
the CV value domain is [0.08,+cc). We compute a percent-
age Fry of the number of points with their CV values of at
least 0.08 against the total number of points to characterize
the general curvedness of a surface partition. Now we have
a 5-dimensional vector feature F = {Fy, F,F»,F3,Fey } for
each surface partition. It can be used to identify the surface
partition that captures a polyp surface.

5.2. Shape of Colonic Polyps

The vector feature defined in Section 5.1 has four S/ com-
ponents and one CV component. If a ST component of this
vector has a larger value than other S/ components, the over-
all shape of the corresponding surface partition is described
by that shape subinterval. As shown in Figure 4, the ST range
a of an example surface partition has larger overlaps with the
3rd and 4th SI subintervals, while just a very small overlap
with the 2nd S7 subinterval and no overlap at all with the 1st
SI subinterval. Its feature vector F' has a negative 1st compo-
nent and a small and positive 2nd component. Its 3rd and 4th
components have larger positive values. This indicates that
the overall shapes are ridge and cap-like.

Figure 5: (a) A polyp surface consists of a cap and a neck.
(b) Irregular shapes of a large polyp.

In most current CAD schemes, colonic polyps are usu-
ally modeled as approximately spherical or ellipsoidal pro-
trusions. A polyp surface consists of the head and the neck.
As shown in Firgure 5, the polyp head is a cap-like sur-
face while the polyp neck is an anticlastic (or saddle) sur-
face. Since irregularities are included on most significant
polyps, sometimes not all points on a polyp head present a
cap shape. Ridge-like or even saddle-like shapes could also
be presented on the polyp head. The polyp neck presents
saddle-like shapes in general. Therefore, overall shapes on a
polyp surface have significant overlaps with the 3rd and 4th
S1 subintervals. As discussed by Yoshida et al. [YNO1], the
vector feature F for a surface partition that captures a polyp
surface also has a significant overlap of its CV range b with
the interval of [0.08, o).

Summarizing these issues, we hypothesize that overall
shapes of a polyp are mainly included in the 3rd and 4th S/

subintervals, i.e. these overall shapes correspond to S/ val-
ues in [0.5,0.75] and [0.75, 1.0]. Importantly, the SI compo-
nent F3 has a larger value to represent the polyp head. Other-
wise, the corresponding surface partition does not capture
the polyp cap. We calculate {Fy,Fj,F>,Fs,Fey} for each
surface partition of a pre-detected polyp candidate. If the
sum of its 3rd and 4th SI components (F», F3) is larger than
the value of Fyp or Fi, and F3 is significant by itself, such
a surface partition is considered to correspond with a polyp
surface. On the other hand, its CV component should be able
to indicate that it is a sufficiently curved surface partition.
For each polyp candidate, we pick one of its surface parti-
tions that most likely captures a polyp surface. The vector
feature F of this partition is used to represent corresponding
polyp candidate. We use this feature to discriminate between
true polyps and false detections.

6. Results

This section documents the results of an experimental study
in which our surface partition-based features were tested on
nine real patient data sets.

6.1. Materials and CAD approach

Our patients underwent CT colonography before optical
colonoscopy, which is considered as the golden standard.
Each patient has two CT scans in prone and supine direc-
tions. The average resolution of these CT data is 512 x
512 x 267 and the average voxel size is 0.77mm X 0.77mm X
1.60mm.

Our automatic polyp detection system consists of
three fully automatic steps. First an existing approach
[VWVRV*06] was used to pre-detect polyp candidates. These
candidates included all true polyps and a large number of
false detections. In second step, we took pre-detected candi-
date positions as the input and applied our approach to calcu-
late surface partition based features for the vicinity of each
candidate. The thrid step is supervised pattern recognition,
by which these features were processed and the number of
false detections was reduced.

6.2. Colonic Surface Partitioning

Curvature lines are directly traced in 3D volume data and
rendered as polylines [ZBB*06]. In our study, curvature lines
that follow the maximum principal curvature direction were
used for colonic surface partitioning. The average time cost
for curvature line computation per candidate area (centered
at the pre-detected position with a radius of 15mm) is 16.871
seconds. For curvature line clustering, the average time cost
per candidate area (on average 221 lines and 7 —9 clusters) is
1.082 seconds. We show our colonic surface partitioning re-
sults at some true polyp detection areas in our CAD pipeline
(Figure 6). Visual inspection of our results shows that the
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Figure 6: Images in the upper row: Colonic surface partitioning based on clustering curvature lines. Each surface partition
corresponds with the surface area covered by a single cluster. Different colors indicate different curvature line clusters. Images
in the lower row: The curvature line cluster that corresponds with a colonic polyp.

curvature line clustering method provides a reasonable pre-
segmentation of the polyp candidate area. Most importantly,
as shown in images on the lower row of Figure 6 a surface
partition that corresponds well with a true polyp surface can
be obtained. This indicates that our overall shape features
calculated in such a surface partition can be used to discrim-
inate between true and false detections.

6.3. Discriminating Candidate Detections

The polyp candidate pre-detection step based on the method
of van Wijk et al. [vWVRV*06] returned 4036 candidates
in total 18 scans. Protrusions are calculated on the surface
throughout the entire colon. Candidate detections are found
by hysteresis thresholding of protrusions as suggested in
[VWVRV*06]. Medical diagnosis confirmed that these polyp
candidates included all polyps of the 9 patients. 30 polyps
(larger than or equal to 6mm) were annotated using an expert
opinion of an experienced radiologist. A polyp was counted
as a true positive if it was classified as a polyp in at least one
of the two scans. There were 4006 false-positive detections,
which needed to be significantly reduced.

In order to estimate the discriminating power of the five-
dimensional vector feature, we first performed basic statis-
tic analysis on all pre-detected polyp candidates. In uni-
variate logistic regression analyses, each of the five com-
ponents were separately found to be significantly related to
the polypness of clusters (p = 0.000,0.000,0.001,0.000 and
0.011). However, in a multivariate logistic regression analy-
sis, only F3 was found to be independently associated with
the polypness of clusters (p=0.000). In other words, each of
the other features does not significantly improve the predic-
tion of polypness over that attainable with F3 by itself. This
analysis does show that F3 could be used to discriminate be-
tween clusters over polyps and non-polyps.

(© The Eurographics Association 2008.

The features F3 and Foy were used in our pattern recogni-
tion step to classify polyps out of false-positive candidates.
Only candidates with a mean internal intensity of around
that of tissue were retained. This excluded all candidates
that were detected as a result of the partial volume effect
and due to artifacts of CT. A nine-fold cross-validation was
used to compute the system’s performance. A logistic clas-
sifier [Web02] was trained on the train data set consisting of
16 scans from 8 patients, and was used to classify the two
scans of the remaining patient to obtain the classification re-
sults. The results for all patients were summed up to get an
estimate of the performance of the CAD system.

The system achieved 95% sensitivity for polyps while pre-
senting on average less than 11 false positives per scan and
80% sensitivity with on average 7 false positives per scan.
This means that more than 95% of the false-positive detec-
tions, i.e. 3808 false positives, were discarded while retain-
ing high sensitivity that 28 true positives were correctly de-
tected. To conclude, this analysis shows that the features de-
rived from the surface partitions correlate quite well with the
polyp annotations.

7. Conclusions and Future Work

In this paper, we presented surface-constrained curvature
line clustering as a new method for surface partitioning in
polyp detection. These surface regions are able to capture
polyp characteristics. They could also be used to capture and
analyze other larger scale surface shapes. We proposed a new
direction-independent, line-to-line and symmetric similarity
metric between curvature lines. This similarity metric was
applied in a spectral clustering algorithm, in which a reason-
able number of clusters is automatically determined. Results
showed that polyp surfaces can be captured by correspond-
ing surface partitions. A 5-dimensional feature based on the
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volumetric shape index and iso-surface curvedness was pro-
posed to describe overall surface partition shapes. Statistical
analysis showed that one of the five components could be
used to discriminate between clusters over polyps and non-
polyps. We demonstrated that our new proposed features can
be used in a polyp detection system. Visual inspection of the
clustered curvature lines showed a strong correlation with
expected polyp areas.

We plan to investigate the possibility of using our colonic
surface partitioning approach for polyp segmentation. Opti-
mizing our scheme will be an important avenue for future
work. Our approach will be further tested with a larger num-
ber of clinical data sets and other clustering algorithms will
be explored, as well as more partition-based discriminative
features for polyp detection.
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