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Abstract

Museums and Cultural Heritage institutions have a growing interest in presenting their collections to a broader
community via the Internet. The photo-realistic presentation of interactively inspectable digital 3D replicas of
artifacts is one of the most challenging problems in this field. For this purpose, we seek not only a 3D geometry
but also a powerful material representation capable of reproducing the full visual appeal of an object. In this
paper, we propose a WebGL-based presentation framework in which reflectance information is represented via
Bidirectional Texture Functions. Our approach works out-of-the-box in modern web browsers and allows for the
progressive transmission and interactive rendering of digitized artifacts consisting of 3D geometry and reflectance
information. We handle the huge amount of data needed for this representation by employing a novel progressive
streaming approach for BTFs which allows for the smooth interactive inspection of a steadily improving version
during the download.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.2]: Graphics Systems—
Distributed/network graphics; Computer Graphics [I.3.3]: Picture/Image Generation—Viewing algorithms; Com-
puter Graphics [1.3.7]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture; Im-
age Processing and Computer Vision [1.4.2]: Compression (Coding);—Information Storage and Retrieval [H.3.7]:

Digital Libraries—Dissemination

1. Introduction

Through the steep technological advances of the last two
decades, museums or other Cultural Heritage (CH) institu-
tions find themselves equipped with the capabilities to reach
out to much larger audiences than ever before. The pub-
lic dissemination of CH content in the Internet is a quasi-
standard nowadays. For many media types such as historic
documents, books, pictures, audio and video recordings, the
Internet already offers a compelling means of distribution
and presentation. However, a very important goal in this
field, namely the presentation of three-dimensional objects,
ranging from the Plastic arts to archeological artifacts, was
not very well supported until lately. So far, photographs
have been in use as an unsatisfying substitution. Unfortu-
nately, images will never be able to capture the full ex-
perience of three-dimensional exhibits. The ability to dis-
cover the objects from every angle and under different il-
lumination does offer a considerably higher degree of in-
sight, providing essential information about the shape, ma-
terial and surface structure. Mainly due to recent progress in
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computer graphics and transmission speed, the virtual ex-
hibition of objects or even whole collections has become
a possibility. Textured 3D geometries and Polynomial Tex-
ture Maps (PTMs) are two prominent examples of modern
applications of computer graphics in CH. Textured 3D ge-
ometries are very suitable for obtaining an impression of
the object, allowing inspection from arbitrary viewpoints.
On the other hand, PTMs facilitate changes in virtual light-
ing, providing clues about materials and fine details. Each
of these techniques already offers a significant improvement
over 2D pictures, however, the full visual impression can
only be conveyed by combining both aspects. To obtain the
full view- and light-dependent impression of the artifact’s
appearance, solutions based on 3D meshes combined with
Bidirectional Texture Functions (BTFs) have been proposed.
This approach also offers the possibility of rapid automatic
digitization [SWRK11]. Figures 4 and 6 show the high qual-
ity that can be achieved even for challenging objects using
this technique.

While web-based frameworks for textured 3D geometries or

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VAST/VAST11/113-120

114 C. Schwartz, R. Ruiters, M. Weinmann, R. Klein / WebGL-based Streaming and Presentation Framework for BTF

PTMs are already available, up to now the public presenta-
tion of geometry with BTFs via the Internet has not been re-
alized. This is due to the large volume of the datasets, which
remain unmanageable, even with the help of state of the art
compression techniques.
In this paper, we present a novel progressive transmission
method for the visualization of BTF textured objects over the
Internet. By employing a suitable compression and stream-
ing scheme, we are able to provide a high-quality preview
of the object within a few seconds, allowing interactive ex-
ploration while the remaining details are transmitted in the
background and the real-time visualization is successively
updated. To demonstrate the ability to reach a broad tar-
get audience, we implement our technique in a browser-
based viewer, using the emerging web-standard WebGL that
will work cross-platform and without the need for installing
any apps, plugins or extensions on all standard compliant
browsers. Nonetheless, this technique could also be em-
ployed for browser-plugin-based 3D viewers or full-scale
stand-alone applications, e.g. kiosk viewers, information
panels, collection browsers, etc.. Although the main appli-
cation envisaged in this paper is public dissemination, the
presented technique is of course also applicable for expert
use, e.g. for fast browsing of artifact databases or collabora-
tion between institutions over the Internet.
In summary, our main contributions are
e a two-tiered BTF streaming scheme via successive trans-
mission of SVD basis vectors, each of which is progres-
sively downloaded
e considerable improvement of BTF compression ratio by
employing an additional image compression on the singu-
lar vectors
e a wavelet-based codec for HDR image compression, opti-
mized for the shader-based decoding in WebGL
e a sophisticated heuristic for determining an optimized
streaming order, prioritizing the perceptually most impor-
tant information by balancing the number of transmitted
singular vectors against their respective accuracy
e a real-time WebGL object-exploration demo-application
as proof-of-concept supporting concurrent rendering and
transmission of BTFs out-of-the-box on standard compli-
ant browsers

2. Previous Work

The most widespread modern technique for interactive in-
spection of an object from arbitrary viewpoints is the use
of textured 3D meshes. There are already several web-based
presentation applications in the context of CH, that make use
of this technique, for example [DBPGS10, JBG11]. How-
ever, these approaches are not really suitable for a photo-
realistic representation of objects with complex reflectance
behavior.

In addition to the use of still images, there are also image-
based techniques which take pictures of an object from sev-
eral viewpoints and allow the user to make an interactive se-
lection. Often, either Quicktime VR or Flash based solutions

are employed for the presentation. While these approaches
allow a very realistic depiction, the selection of viewpoints is
limited to those views for which images have been captured.
In-between views are either left out or have to be computed
via interpolation. Other purely image-based techniques such
as Light Fields [LH96] allow for arbitrary viewpoints, but
suffer from large data sizes and are thus not well-suited for
web-based applications. A more sophisticated approach that
is capable of reproducing the view-dependent aspects of ob-
ject appearance under fixed lighting are Surface Light Fields
(SLF) [WAA™00]. They are not entirely image-based, but
instead use an additional object geometry. As a result, clas-
sical computer graphics techniques can be employed, such
as completely free camera movements and the composition
of several objects within one scene.

A different avenue was followed in [DBPGS10], where a
web-based viewer for Polynomial Texture Maps (PTMs) was
presented. PTMs, which are also called Reflectance Trans-
formation Imaging or Reflectance Fields in the literature, are
the complementary technique for the photo-realistic depic-
tion in the sense that they provide a fixed view under arbi-
trary illumination. By employing progressive downloads, the
user is able to view large images and interactively change the
light-direction. There are also works on multi-view PTMs
[GWS™09], but, to the best of our knowledge, there is no so-
lution for web-based distribution and viewing. In [MSE*10],
an offline viewer was presented. However, due to the fact
that it is difficult to take advantage of the coherence between
different views and because flow-fields are used as an im-
plicit geometry representation, a rather large amount of stor-
age is required for every view. Additionally, a large number
of views would be needed for quality results, especially if
a completely arbitrary viewpoint selection is desired instead
of limiting the viewer to a circular motion at fixed distance.

The Bidirectional Texture Function is a technique which
combines the advantages of SLFs and PTMs. A BTF
p(x,®;, ) is a function describing the appearance at each
point x on a 3D surface, depending on both light-direction
; and view-direction ®,. A survey on state of the art tech-
niques for the acquisition and rendering of such functions
can be found in [FHO09]. So far, BTFs have mostly been ap-
plied as a representation of flat material samples. However,
this technique has also been used to capture the appearance
of CH artifacts, e.g. [FKIS02, MBKO05, SWRK11], who pro-
pose capturing the BTF for the whole surface of non-planar
objects. Since then, advances in capture setups have lead
to a considerable increase in quality (see Figures 4 and 6).
In this paper, we show that BTFs can be compressed suf-
ficiently, so that streaming a dense sampling of view- and
light-directions becomes practically attainable, allowing for
virtually artifact-free interpolation. Furthermore, like SLF,
the geometry with BTF representations is suited for work-
ing with scenes composed of multiple objects and free cam-
era movements. An alternative approach makes use of spa-
tially varying BRDFs (SVBRDFs). Here, techniques for the
capture of objects with reflectance behavior (e.g. recently
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[HLZ10]) are available, also. In addition, SVBRDFs are a
reasonable choice for web-based applications due to their
compactness and real-time rendering capabilities. However,
since analytical BRDF models are employed, the complex-
ity of reflectance behavior that can be represented is more
restricted than for BTFs.

For the display of 3D content in web-applications one can
choose from a wide variety of technical solutions and APIs.
For a more comprehensive overview of 3D content in web-
applications we refer the reader to [BEJZ09]. To reach the
largest possible audience, it is desirable to avoid installation
of third-party software or vendor specific solutions. A bet-
ter choice would be a cross-platform and standardized solu-
tion. Furthermore, for our needs, a direct access to the graph-
ics hardware is imperative. An API which has gained wide
popularity over the last two years, accompanying the new
web standard HTMLS5, is WebGL. It is has been standard-
ized by the Khronos Group [Khr10] and several main-stream
browser vendors (Mozilla, Google, Apple, Opera) have al-
ready announced their support.

3. Rendering

We use the Decorrelated Full Matrix Factorization (DFMF)
[Miil09] to transmit the BTFs. Even though there are several
different compression techniques available this technique of-
fers several important advantages for our purposes. It pro-
vides a good compression ratio while allowing for decom-
pression at a reasonable cost and allows for real-time render-
ing on the GPU. But more importantly, matrix factorization
based techniques readily provide a level of detail representa-
tion sufficient for progressive transmission of the BTF. Ad-
ditionally, this technique has the considerable advantage that
the texture mapping units of the GPU can be utilized to per-
form interpolation both in the angular and spatial domain.
This reduces the decompression costs considerably in com-
parison with techniques using clustering [MMKO3], sparse
representations [RKO09] or vector quantization [HFM10], to
name just a few. There are also tensor factorization based ap-
proaches [WXC™*08], which are, like our wavelet compres-
sion, capable of further compressing the spatial dimensions.
However, since these techniques are not well-suited for real-
time rendering they are not directly applicable in our case.
When compressing a BTF via a matrix factorization, the
original function is approximated as a sum of products of
two functions, one of them depending only on the view- and
light-directions ®,, ®;, the other on the spatial position x:

c
p(x, 07, 0) & P(x, 07, 000) = Y U (@, @0) v (x) (1)
c=1

Here, the approximation quality versus the compression ra-
tio is controlled by C, i.e. the number of functions used.

Such an approximation can be found by first storing the mea-
sured data samples in one matrix M. Here, each column
index represents a spatial position and each row index de-
notes a combination of light-direction and view-direction.
Then the Singular Value Decomposition (SVD) M = usv’
is computed. Each of the columns of U can now be re-
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garded as a tabulated representation of one of the functions
ul® (®;,®,) and analogously the columns of V as represen-
tations of v(¢) (x). Thus, in this approximation, C denotes
the number of columns or components (SVD and PCA are
closely related and the term component is in common use in
the field of BTF compression [MMS*04]). S is a diagonal
matrix, which can be stored by multiplication either with U
or V. Since many points on the surface exhibit similar re-
flectance behavior, there is a large redundancy between the
columns of M, allowing for a good approximation via a low
rank matrix. For more details, we refer to [Miil09].

For rendering, it is necessary to reconstruct samples for arbi-
trary positions on the surface and arbitrary view- and light-
directions. Therefore, one has to interpolate the available
discretized representation. Here, the DFMF has the advan-
tage that the interpolation can be performed independently
for the spatial and angular dimensions by interpolating the
2D functions 1(©) and the 4D functions V¢, respectively, in-
stead of the actual 6D function p(x, ®;, ®,). The GPU can be
used to evaluate the sum (1) in real-time. Here, the tabulated
functions u(c), v(€) are both stored in textures and can thus be
evaluated per fragment by simply performing adequate tex-
ture fetches. For v(°) the 2D texture interpolation can be per-
formed directly on the GPU, whereas for the angular com-
ponents a 4D interpolation is necessary, which is not sup-
ported in hardware. Thus, for each available view-direction,
we store a full light-hemisphere independently, represented
via a parabolic parametrization. This way, we can utilize the
GPU for light interpolation, but have to perform the view in-
terpolation explicitly in the shader.

The DEMF does not compress the three color channels RGB
together. Instead it first performs a decorrelation by trans-
forming the colors into YUV color space, where each color
is represented by a luminance Y and two chrominance com-
ponents U and V. The rationale here is that for many ma-
terials there is a strong dependence of the intensity on the
view- and light-direction, whereas the color remains largely
constant. Thus, by performing this decorrelation, it is possi-
ble to store them independently and use fewer components
to encode the color information than for the luminance.
Apart from the decorrelation, we additionally perform a re-
duction of the dynamic range before computing the SVD.
For this, we apply a logarithmic transform to the Y chan-
nel and normalize the color channels as % and % This is
necessary, since BTFs can exhibit a considerable dynamic
range and the compression minimizes a squared error func-
tion. This means, that without this transformation, dark re-
gions in the material would not be treated sufficiently, since
they do not contribute much to the squared error, although
they are still perceptually important.

4. Streaming

When transmitting BTFs over a network for interactive ren-
dering, a progressive download is desirable due to the large
size of BTFs. The full transmission of a BTF can require sev-
eral minutes, whereas, using our technique, a high-quality
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Figure 1: Overview over our proposed compression, streaming and rendering pipeline.

version is available after about seven seconds, a first preview
even after less than a second (Timings depend on the connec-
tion speed. In the remainder of this paper, we will consider
a commonplace 8 MBit/s connection). To achieve this, we
both progressively increase the number of components C and
the resolution of the textures by utilizing a wavelet codec.
By transmitting more components, the quality of the approx-
imation is successively increased. In fact, it is possible to
prove, that by using only the first C components, one ob-
tains the best possible rank-C approximation of the original
matrix under the L2-norm [EY36]. This can obviously be di-
rectly utilized for the progressive transmission of a BTF, by
successively transferring the individual columns of the ma-
trices U and V, each time effectively increasing the rank of
the approximation available for rendering.

Instead of employing a specialized streaming protocol, our
viewer application simply requests small chunks in a speci-
fied order, which is comparable to current HTTP streaming
approaches for other multimedia content [VDVLVdW10].
This has the advantage that it can work over HTTP, which
allows delivery with an ordinary web server, omitting fire-
wall problems or the need for a particular streaming server.

Wavelet Compression. The rendering can start as soon as
the first component for each channel Y, U and V is avail-
able. Each additional component that has been transmitted,
can then be utilized directly for rendering to further increase
the quality of the approximation. The individual components
') and v(), however, are still very large. Especially the
spatial components can require considerable space, as each
one is an high dynamic range (HDR) gray-scale image with
the full resolution of the texture. Thus, for a 2048 x 2048
pixel BTF, uncompressed transmission of only one compo-
nent for one of the channels still requires 8MB. Since the an-
gular components show rather low frequencies and the spa-
tial components exhibit frequency characteristics similar to
natural images (cf. Figure 3), usual image compression and
transmission techniques can be applied here. We thus utilize
a wavelet codec to send each of the individual component
textures progressively. We start with a highly compressed
version and then gradually send several difference images,
each also encoded with the wavelet codec, until the original
has been reconstructed to a sufficient level of accuracy.

There is a wide range of techniques, both for image com-
pression and for progressive transmission of images. Even
giving a short overview would by far exceed the scope of

this paper, and hence, as possible starting points, we re-
fer the reader to [DN98,RY00]. However, for our purposes,
many of these techniques are not directly applicable, as we
have two important constraints. Firstly, we have to transmit
HDR textures. Even though the dynamic range of the result-
ing textures has been reduced considerably by the logarith-
mic transform, for full quality display of the BTF the higher
precision of floating point values is still desirable. And sec-
ondly, our codec must be suitable for fast decompression in
the browser. There are several elaborate encoding schemes,
such as the SPHIT [SP96] codec, which achieve very good
compression ratios and allow for elegant progressive trans-
mission. However, JavaScript, being an interpreted language
(though JIT is available in newer browsers), is still not fast
enough for decompressing data encoded with these tech-
niques. Instead we need a codec that can either be decoded
by native browser-functions or via shaders in WebGL.
Unfortunately, the browser does not support a decompres-
sion codec which is directly suited to our purposes. Usually,
one can only rely on support for JPEG and PNG images,
both providing neither HDR encoding nor progressive trans-
mission (though possible in both PNG and JPEG, it cannot
be used for WebGL textures). We therefore decided to im-
plement a simple wavelet codec ourselves. The restoration
of the HDR signal from LDR images and the decompression
of the wavelet transform is performed in a fragment shader
using the render-to-texture capabilities of WebGL. Conse-
quently, this step is no longer limited by the execution speed
of the JavaScript interpreter. For the actual stream-decoding,
on the other hand, WebGL is not suitable at all, since a se-
quential decompression of the bit-stream is necessary, which
cannot easily be performed on the GPU. Hence, we store
the quantized wavelet components in a PNG image, utiliz-
ing the LZ77 compression and Huffman entropy encoding
that is part of PNG. This approach is not the best available
image-codec w.r.t. compression ratio. However, while still
compressing reasonably well it allows for the progressive
transmission of HDR data and can be efficiently decoded
with the limited resources available to a JavaScript appli-
cation. In our experiments, it performed better than JPEG
compression regarding RMS error (see Figure 2).

For image compression we apply a straightforward wavelet
transform coder. As first compression step, we perform a
dyadic wavelet decomposition of our texture using the popu-
lar CDF 9/7 wavelet [CDF92], which has found widespread
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JPEG(0.4bpp)
RMSE 22.1427
Figure 2: Enlarged views of a detail in a spatial texture of the Buddha dataset. The left-most image shows as comparison a
uniformly quantized and JPEG compressed LDR version. The next four images show how our wavelet codec continuously refines
the texture compared to the original on the right. The last row gives the RMS error computed for only those regions of the texture
which are occupied (unoccupied texels are marked in blue).

Wavelet (0.4bpp)
RMSE 10.8259

RMSE 6.7880

application in image compression, for example in the
JPEG2000 image format. This decomposition is performed
directly on the HDR floating point data. To compress these
floating point values, we then use a deadzone uniform scalar-
quantizer to obtain 16 Bit integer values. For each of the
wavelet bands, we choose an individual threshold, using the
algorithm from [SG88] to perform the bit allocation for ob-
taining chunks of a fixed size. During this allocation, we
compute the rates under the assumption that each of the sub-
bands is compressed individually via LZ77 and Huffman en-
coding. This is obviously only an approximation, since the
coefficients for all sub-bands are stored together in the final
PNG, but we found that it is an acceptable approximation,
resulting in files of almost correct size. Finally, the quan-
tized coefficients are stored in one PNG image, storing the
high and low bytes separately from each other, as this pro-
vided the best compression results in our experiments.

The parabolic parameterization of the hemispherical angu-
lar components only occupies circular regions in the texture
representing the u-vectors, and often the spatial components
contain an only partially filled texture atlas representing the
v-vectors. Therefore, in both textures we have entries which
are of no importance to the final appearance of the object,
denoted as "Don’t Care" values (see Figure 3 with "Don’t
Care" areas marked in blue). However, when these entries
are simply set to O, the resulting texture contains sharp edges,
which are not well-suited for the wavelet compression, as
many coefficients are necessary to encode the resulting high
frequencies. To avoid these problems, we use the approach
described in [BHH*98] to fill these areas in such a way that
the number of coefficients needed for compression is mini-
mized as far as possible.

Transmission and Decompression. The individual compo-
nents are loaded from the JavaScript by successively request-
ing the compressed chunks from the server. The quantization
thresholds can be transmitted separately in a JSON file. As
soon as it has been received, each chunk is decompressed
from PNG into a WebGL texture natively by the browser.
Further decompression is then performed in two steps by a
shader. First, the low and high bytes are combined and the
quantization is reversed to obtain a floating point texture of
the wavelet transformed image. Secondly, the original tex-
ture is reconstructed by applying the inverse wavelet trans-
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form. This is done successively for the horizontal and verti-
cal directions on each scale. We perform the transformation
via direct convolution, instead of using a lifting scheme, to
avoid the need for even more render-passes. Each of these
steps is performed in a fragment shader on the GPU, by us-
ing a WebGL framebuffer to render a suitable quad into a
texture. Care has to be taken to correctly interleave these in-
dividual decoding tasks with the actual rendering of the ob-
ject to avoid noticeable drops in the frame rate. To achieve
progressive transmission, we successively transmit encoded
difference images, which are then joined by the shader using
additive blending.

Transmission Order. One important remaining question is
the order in which the components are to be transmitted to
the client. At any time during streaming, there are several
possibilities for choosing the next chunk. For each of the
channels Y, U and V, it is either possible to transmit a new
component or to increase the quality of an already transmit-
ted component by loading the next difference image for ei-
ther the angular or spatial domain. We determine this order
in a preprocessing step. Here, we sort the textures by em-
ploying a greedy scheme in such a way that the total RMS er-
ror for the whole BTF is decreased as much as possible with
each transmitted chunk. This order could be found by com-
puting the sum of squared errors (SSE) between the origi-
nal BTF and the reconstruction with the transmitted compo-
nents explicitly. However, this would be extremely costly, as
it would require decompressing and computing the SSE for
the whole BTF file for every possible decision. We instead
use an approximation, which takes advantage of the fact that
the BTF is represented via a SVD. For this approximation,
we consider the errors in U and V independently. Assum-
ing that the compression had only been performed for the
columns in matrix U, this results in a distorted matrix U, the
error of which is given by

[USV" —USV' |7 = [|(U-0)SV'[|7 = [|(U-0)S| 7.

By construction, V is orthogonal, and the second equal-
ity holds as a result of the fact that the Frobenius norm is
invariant under orthonormal transformations. We can thus
compute the SSE for the whole BTF dataset by comput-
ing the errors for each of the component textures individu-
ally and weighting them with the weights in S. The same
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7
Figure 3: Uncompressed first spatial (left) and angular (right)
luminance components for the Buddha dataset. "Don’t Cares"
are marked in blue. The angular component texture in fact ex-
hibits rather low frequencies, as the blue border around the
light-hemispheres are "Don’t Care" values and thus do not
need to be taken into account.

[%]

10

Perceptual difference (SSIM
(6}

0o 10 20 30 40 50  [MB]
Figure 5: The perceptual error [WBSS04] in dependence of
the amount of transmitted data for different versions of the
1.0SMP Buddha BTF. The dashed lines correspond to the
DFMF compressed BTFs without employing further wavelet-
compression. The error is computed w.r.t. the uncompressed
(133GB) dataset and averaged over 5 representative view- and
light-combinations.

computation is also possible for V, under the assumption
that U is orthonormal. When there are distortions in both
matrices, this no longer holds exactly. However, we found
that deviations are very small. The difference between the
correctly computed error |[USV? — USV” |2 and the ap-
proximation ||(US — US)||% + ||VS — V§||% was below 0.3%
when comparing the DFMF compressed dataset with one
with additional wavelet compression applied. Currently, we
simply compare the errors in the channels Y, U and V di-
rectly. However, since luminance and chrominance are ac-
tually represented using different units, one being the loga-
rithm of the intensity, the other being normalized color com-
ponents, proper weighting factors, obtained by perceptual
experiments, should be employed instead. Even better re-
sults might be possible by using a more sophisticated BTF
error metric, e.g. [GMSKO09]. Unfortunately, for such an ap-
proach our heuristic would no longer be applicable, increas-
ing computation time drastically, as the error would have to
be recomputed for many different combinations of transmit-
ted components with varying approximation qualities.

5. Evaluation
We evaluate our approach on several challenging real-world
datasets captured using a highly parallelized photographic

setup [SWRKI11], which offers an angular sampling of
151 x 151, high geometry and texture resolution and high
dynamic range. We used flat material samples as well as BTF
texture atlases for whole 3D objects. The view- and light-
directions are resampled into parabolic maps with a radius of
16 pixels, resulting in angular textures of 1024 x 1024 pix-
els. For the texture atlases of the objects, 1024 x 1024 pixels
were employed, except for the Buddha dataset, for which a
higher spatial resolution of 2048 x 2048 was available. The
material samples (two fabrics and one leather) have spatial
resolutions of 346 x 335, 573 x 463 and 512 x 512. Uncom-
pressed, the size of the data reaches from 534.4GB for the
4.2 Megapixel (MP) BTF over 133.6GB for 1.05SMP down
to 15.6GB for the smallest material sample.

For testing the transmission performance and real-time ca-
pabilities, we created an HTMLS5 based BTF viewer em-
ploying WebGL for rendering. Datasets presented in this
paper and the interactive viewer are available at http:
//btf.cs.uni-bonn.de. Currently, we do not employ
asynchronous transfer for loading additional information,
e.g. the 3D geometries or the quantization thresholds, as this
would be beyond the scope of this paper, but instead include
them directly in the HTML file. Even though, in real-life ap-
plications these files should be transmitted asynchronously
on request, (or in the case of geometry even progressively
downloaded) we found this setting suitable for evaluating the
performance of our rendering and BTF streaming technique.
Please note that we do not include the quantization thresh-
olds (=~ 35-64KB) in our transmission-size considerations.
Unfortunately, the missing support for 3D textures forces
us to store the angular and spatial components in several
tiles of one 2D texture, restricting the maximum render-
able spatial- and angular-resolution and increasing the num-
ber of necessary texture-fetches. Although these constraints
could be partially handled by using large textures and mul-
tiple texture-units, the most crucial remaining limitation is
the available GPU memory, especially since half-precision
floating point textures are not yet supported in any browser.
Just the 4.2MP BTF data, disregarding any additional buffer-
textures, would require 2.5GB of GPU memory for 64 com-
ponents for the Y and 32 for the U and V channels, by far
exceeding a mainstream configuration.

Therefore, we tested our streaming approach with 32 Y
and half as many U and V components, resulting in about
1.4GB of GPU memory consumption. In principle higher
numbers of components as well as higher texture resolu-
tions could also be streamed efficiently. This is especially
since the wavelet codec performs a multi-scale analysis and
transmits the most important wavelet coefficients more ac-
curately (see Figure 2). Thus, a perceptually acceptable ver-
sion, only lacking high frequency details, is usually available
very fast. To allow for a meaningful visualization as early as
possible, we constrain the wavelet compression to produce
chunk sizes of 100KB. Rendering can start as soon as six
chunks are available. As shown in Figure 4, after transmit-
ting just IMB of chunks, i.e. 1s of transmission, the overall
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0.87MB 0.99MB 1.91MB 6.97MB 46.39MB 534.4GB
Figure 4: A sequence of screenshots showing the refinement of the appearance of the 4.2MP Buddha dataset over the streaming
progress. With 0.87TMB enough chunks were transmitted to start rendering. From 6.97 to 46.39MB only minor changes in appear-
ance are noticeable and merely remaining fine details are loaded (reducing the SSIM error [WBSS04] from 3.84% to 2.54% on the
Sfull image and from 12.54% to 8.28% on the detail view). For comparison, a raytraced image of the uncompressed dataset is shown

on the right.

impression of the object’s appearance is already successfully
recovered. The progressive download of additional fine de-
tails is perceivable until about 7MB are transmitted. The full
dataset with applied wavelet compression occupies as little
as 46.4MB, while approximating the captured appearance
with a perceptual error [WBSS04] of 2.5%. A more detailed
analysis is given in Figure 5.

While rendering the BTF is mainly limited by the num-
ber of components and screen resolution, decompression
depends on the resolution of the angular and spatial tex-
tures. On a current GPU (GeForce GTX560 TI), render-
ing 640 x 640 pixels was possible with at least 65 FPS for
1.05MP with up to 32 components. Higher spatial resolu-
tions (4.2MP,C = 32) are still renderable with 60 FPS, while
a higher number of components (C = 64) leads to a slightly
worse result of 25 FPS. During decompression of transmit-
ted chunks the frame rate remains constant for C = 16 and
C = 32 and decreases to 25 FPS for C = 64 at 1.05MP. For
the 4.2MP BTF with C = 32, 14 FPS were achieved. The de-
compression times directly influence the maximum possible
transmission rate, which was at about 1.9MB/s for the small-
est dataset and 0.4MB/s for the largest. Even on 5 year old
graphics hardware (GeForce 8800GTX) the C = 16, 1.05SMP
datasets were transmitted with 7 and rendered with 25 FPS.
Therefore, we recommend to offer datasets at multiple qual-
ity levels to accommodate older hardware.

Compatibility. So far, four of the five major mainstream
browsers have committed themselves to supporting WebGL,
however only Chrome and Firefox have WebGL readily
available in their current release versions. Additionally, so
far only Google Chrome and the nightly build of Firefox do
implement the oes_texture_float extension, which

(© The Eurographics Association 2011.

= : ‘,I' vl " [ ,
Figure 6: A screenshot of our application and enlarged views
of the presented object from two arbitrarily selected view-
points with two freely chosen light directions, respectively.

our current implementation needs, as our BTF representa-
tion makes heavy use of HDR data. It should be possible to
circumvent this limitation by using several LDR textures and
combining these in the shader to obtain HDR data, although
we have not yet implemented such an approach. We hope
that the support for WebGL will improve in future browsers,
but would like to stress that the basic streaming technology
we presented is in no way limited to WebGL. Our decom-
pression and viewing shaders are based on OpenGL ES2.0,
a standard specifically designed to be supported by as many
devices as possible, including mobile platforms.

In our proposed implementation, a major challenge for main-
stream deployment would be the large amount of texture
memory that is needed to render even one BTF-textured
object, making scenes composed of multiple objects not
yet feasible. Thus, a more memory efficient compression
scheme would be desirable.

6. Conclusions and Future Work

We presented a WebGL framework for the public dissemi-
nation of cultural heritage artifacts as digitized 3D objects
textured with Bidirectional Texture Functions. This repre-
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sentation allows for the generation of highly accurate dig-
ital replicas with complex reflectance behavior, including
visual hints about manufacturing techniques and signs of
wear. By streaming the individual components obtained by
the SVD based compression of the BTF together using a
wavelet-based image compression, we are able to present
high-quality previews of the BTF after just a few seconds.
The remaining data is progressively loaded until a full qual-
ity presentation is obtained. Even though we used a WebGL
based implementation, the presented technique is not limited
to web browsers, but could be used by a wide range of clients
for the streaming and photo-realistic depiction of objects.
Apart from CH, this technique also has the potential to find
application in fields such as virtual prototyping, entertain-
ment and advertisement.

In our implementation, we include the geometry of the ob-
jects in the HTML file. It would be an obvious first extension
of our technique to also employ progressive geometry trans-
mission. Furthermore, it is conceivable, that in the future a
full-fledged hierarchical level of detail renderer could be im-
plemented, employing view-dependent refinement to allow
for the presentation of large objects in extremely high res-
olution or even complete scenes, such as virtual excavation
sites or historical settings, at very high levels of detail.
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