
Point Cloud Segmentation for Cultural Heritage Sites

S. Spina1 and K. Debattista1 and K. Bugeja1 and A. Chalmers1

1International Digital Lab - University of Warwick

Abstract
Over the past few years, the acquisition of 3D point information representing the structure of real-world objects
has become common practice in many areas. This is particularly true in the Cultural Heritage (CH) domain,
where point clouds reproducing important and usually unique artifacts and sites of various sizes and geometric
complexities are acquired. Specialized software is then usually used to process and organise this data. This paper
addresses the problem of automatically organising this raw data by segmenting point clouds into meaningful
subsets. This organisation over raw data entails a reduction in complexity and facilitates the post-processing effort
required to work with the individual objects in the scene. This paper describes an efficient two-stage segmentation
algorithm which is able to automatically partition raw point clouds. Following an intial partitioning of the point
cloud, a RanSaC-based plane fitting algorithm is used in order to add a further layer of abstraction. A number of
potential uses of the newly processed point cloud are presented; one of which is object extraction using point cloud
queries. Our method is demonstrated on three point clouds ranging from 600K to 1.9M points. One of these point
clouds was acquired from the pre-historic temple of Mnajdra consistsing of multiple adjacent complex structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

In recent years many CH institutions have been engaged in
the exercise of creating 3D virtual reproductions of arte-
facts and sites for which they are responsible. Large archi-
tectural heritage sites are continuously being scanned and
documented (for example in the work described by Ruther
[Rut10]). There are clearly many reasons why this is im-
portant including amongst others academic study, hypoth-
esis evaluation, better preservation and CH dissemination to
the general public. Traditional 3D scanning devices based on
laser or structured light, using either triangulation or time-
of-flight approaches are normally used. Recently with the
popularisation of algorithms and tools (for example Ver-
gauwen et al. [VG06] and Snavely et al. [SSS06]) capable
of generating relatively accurate 3D point clouds from pho-
tographs without the need of expensive and specialised hard-
ware, the amount and availablility of 3D point cloud data has
also rapidly increased. This scenario is contributing to an
increase in importance for algorithms which are capable of
analysing and processing point clouds efficiently. As pointed
out by Cignoni et al. [CS08], a major challenge is now how
to manage the complexity of scanned data. In this paper we
address this concern by proposing an efficient and semanti-

cally meaningful point cloud segmentation pipeline that as-
sumes only the availability of position information within
the data. This partitioning of the point cloud effectively pro-
vides for a higher level of abstraction over raw position data
and allows for easier and more efficient point cloud manipu-
lation.

Our point cloud processing pipeline consists of two main
stages; a segmentation stage and a fitting stage (using the
RanSaC paradigm [FB81]). For the first stage, a point cloud
segmentation algorithm which is particularly suited for the
processing of sites which typically exhibit rough (e.g. eroded
stone) surfaces is described. The segmentation algorithm is
robust enough to automatically extract most of the individual
stones composing the rubble walls of the temple. Following
this process RanSaC fitting is applied on the segments pro-
duced in order to try and fit primitive shapes within the data.

The Mnajdra site area used for this paper’s results is ap-
proximately 60m2. Figure 2 illustrates the rendering of the
point cloud acquired from the smallest of three temples in
the Mnajdra pre-historic site. When laser scanning relatively
large sites, the final point cloud is the union of various
scans of many different adjacent objects. As pointed out by
Cignoni et al. [CS08], the acquisition process is followed

c© The Eurographics Association 2011.

The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2011)
M. Dellepiane, F. Niccolucci, S. Pena Serna, H. Rushmeier, and L. Van Gool (Editors)

DOI: 10.2312/VAST/VAST11/041-048

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VAST/VAST11/041-048

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

Figure 1: Automatic Point Cloud Segmentation Pipeline - Raw data is first segmented into smaller patches then geometric
planes (coloured patches) are mapped onto these segments using the RanSaC paradigm

by substantial data processing, usually requiring user inter-
vention, long processing times and above all tedious work.
Ruther in [Rut10] describes how post-processing tasks usu-
ally take much more time than the actual acquisition process
on site. This can be more relevant in the CH domain when-
ever points in the cloud would usually need to be grouped
and tagged as specific objects for future reference. This pro-
cessing time can be decreased if the point cloud generated
from the scanning process is partitioned into smaller mean-
ingful subsets of points representing distinct geometries (see
Figure 1). This ability to automatically distinguish between
different elements in the scene would benefit the CH pro-
fessional working with the acquired point cloud. For exam-
ple, tessellation problems common with complex sites such
as pre-historic temples consisting mostly of weathered and
eroded stone which usually require decimation, can be ap-
proached compositionally by tessellating segments individ-
ually according to their needs. The selection of parts of a
site, for example a specific wall or the floor, would usu-
ally require users to learn how a specific GUI is used. Our
segmentation pipeline enables the use of simple point cloud
queries, where a processed point cloud can be used to effi-
ciently query for and extract specific parts.

Figure 2: Point cloud of temple (600K points)

2. Related Work

The post-processing of scanned 3D surfaces plays an im-
portant role in the acquisition pipeline of CH artefacts.

Overviews of the typical problems encountered and descrip-
tions of the various algorithms designed to address them can
be found in various sources, such as the work carried out
by Bernardini et al. [BR02], Weyrich et al. [WPH∗04] and
Cignoni et al. [CS08]. Segmentation addresses the problem
of automatically partitioning a set of points (in 3D) or pixels
(in 2D) into equivalence classes representing ’meaningful’
patches.

A number of point cloud segmentation (or decomposi-
tion) algorithms exist, most of them based on depth or range
maps with 2.5D information. In this case traditional im-
age processing techniques can be applied, mainly adopting
either edge or surface based segmentation. In edge-based
techniques, for example by Wani et al. [WB94], edges on
the image are first detected then pixels within these regions
grouped together. In surface-based techniques, grouping is
based on similarities (e.g. normals, curvature) between spa-
tially close pixels. For surface-based segmentation either
top-down (starting from one segment and splitting accord-
ingly) or bottom-up (starting from seed pixels and growing
the segments) approaches are usually adopted. Our segmen-
tation algorithm applies an edge-based bottom-up approach
directly on unstructured 3D points.

Other segmentation algorithms working directly on point
clouds have been developed which are more domain-specific
(e.g. segmentation of point clouds representing trees by
Ning et al. [NZW09] and buildings by Dorninger et al.
[DN07]) and make a number of assumptions on the in-
put point cloud. Golovinsky et al. [GF09] describe a min-
cut based method capable of extracting objects from point
clouds. Given an initial object location their algorithm com-
putes a foreground-background segmentation. Robbani et
al. [RV06] describe an algorithm based on smoothness con-
traints which is able to produce smoothly connected areas.
Their work is however primarily focused on identifying in-
dustrial objects exhibiting smooth surfaces. Segmentation is
particularly challenging in the CH scenario due to the gen-
erally more complex geometrical and surface properties (eg.
weathered and eroded stone) typical for CH sites.

Segmentation can also be carried out by trying to fit prim-
itive objects (e.g. planes, spheres, cylinders, etc) within the
point cloud using the RanSaC paradigm developed by Fis-
chler et al. [FB81]. RanSaC provides an efficient mecha-
nism by which geometric primitves (planes, spheres, cylin-

c© The Eurographics Association 2011.

42

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

ders, etc.) are fitted to point cloud data. Minimal point sets
representing these primitives are iteratively randomly se-
lected from the point cloud and used to determine whether
the rest of the points actually fit the current model primi-
tive. If enough points fit the model, this is chosen to rep-
resent the data. The main benefit resulting from this tech-
nique is that outliers have no influence on the result. Schn-
abel et al. [SWK07] demonstrate that RanSaC can be very
efficiently used on point cloud data consisting of millions of
points.

As opposed to point cloud segmentation algorithms, a
considerable number of mesh segmentation algorithms ex-
ist. An overview of mesh segmentation algorithms is given
by Chen et al. [CGF09]. Of particular interest is the work
carried out by Wu et al. [WK05], in that they adopt a sim-
ilar partitioning and primitive fitting sequence over the in-
put mesh. The provision of topological information on the
vertices is assumed to be correct and usually used when de-
termining the various segments. Since tessellating a point
cloud might actually introduce surface errors in the data (for
example joining vertices from adjacent stones together), we
opt not to tessellate point clouds before segmentation. Tes-
sellation is actually considered as one of the applications of
our segmentation pipeline.

3. Segmentation

Key to the segmentation method presented here is the ob-
servation that objects typically consist of a combination of
surfaces (not necessarily flat) and edges (not necessarily
straight). A simple object such as the obelisk shown in Fig-
ure 3, for example, consists of five surface geometries (ren-
dered as green splats) connected together through one con-
tinuous edge (rendered as black splats). When sampling the
surface of this obelisk into a point cloud, points would fall
into two disjoint subsets storing respectively points that are
found on surfaces, and others that are found on edges. On
the other hand when sampling a smooth spherical object (if
enough points are sampled), the set of edges would be empty
since every point sampled would be a surface point. Each
point is either of type surface or edge and the determination
of type information for each point depends on two factors,
namely, point cloud resolution and neighbourhood function
implementation.

All vertices in the point cloud are stored in a spatial data
structure in order to accelerate neighbourhood queries. The
neighbourhood query function, φ(p), returns the closest n
points to point p. It takes into consideration not just the grid
cell in which the current point p is located but also points
in the 26 adjacent cells. In this way, the algorithm is able to
crawl across neighbouring points when segmenting the point
cloud. The time complexity is O(nm2) where n is the num-
ber of points in the cloud and m is the number of points in
the 26 adjacent cells.

Prior to segmentation, Principal Component Analysis

(a) (b) (c) (d)

Figure 3: Point cloud segmentation of obelisk - starting from
position only information all points are progressively as-
signed to segments using algorithm 1.

(PCA) is used to determine for each point whether it is most
likely to be located on a surface or an edge. In a similar
fashion to the work of Hoppe et al. [HDD∗92], an oriented
bounding volume for a small set of neighbouring points is
first calculated. The ratio of the eigenvalues of this orthog-
onal basis determines the type of each point. Eigenvalues
are discussed in depth by Pauly et al. [PGK02]. If the third
eigenvalue is much smaller than the second eigenvalue, i.e.
there is minimal variance along the third eigenvector then
the point is tagged as surface. The point is tagged as edge
otherwise. For the point clouds used in this paper this ratio
was set to 12, i.e. if the third eigenvalue multiplied by 12 is
smaller than the second eigenvalue, then the point is tagged
as surface. The neighbourhood function φ(p), returning the
30 closest points is used to determine point type. Figures
3(a) and 3(d) show the same obelisk point cloud with the lat-
ter figure having all its points labelled as either edge (black
splats) or surface (green splats).

The output of our segmentation algorithm is a graph G,
representing the various surface and edge segments extracted
from the point cloud. Each segment is a collection of points
with the same type. Let G = (N,E) be an undirected graph
with graph vertices ni ∈ N, be the set of segments (both
surface and edge) obtained after segmentation and edges
(ni,n j) ∈ E corresponding to pairs of adjacent segments.
The union of points from all segments ni ∈ N is equal to
the set of points P in the point cloud. The pairwise predicate
adjacent is defined on segments as A(ni,n j) = true if there
exists a point pi ∈ ni and a point p j ∈ n j such that pi and
p j fall in the same neighbourhood set and the type of pi is
different from that of p j. If this predicate is true, an edge
is created between ni and n j storing the spatial relationship
between them. Graph edges are thus only created between
segments of different type.

Pseudo code of our segmentation process can be seen
in Algorithm 1. In order to improve the readability of the
pseudo code the input is taken to be a point cloud P with
point type (edge or surface) information already calculated.
Using this type information, an algorithm based on flood-fill
is used to partition the point cloud according to the predicate
A(ni,n j). In the pseudo code, the type Segment refers to both

c© The Eurographics Association 2011.

43

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

surface or edge segments, and the boolean array V is used to
store the visited status of each point. A point becomes visited
as soon as it is associated with a segment.

Algorithm 1 Segmentation of Point Cloud P into G=(N,E)
Input: Point cloud P with point type information, Seg-
ments {N}, Segment Relations {E}, Neighbour function
φ(p), Boolean array V of size |P|, Queue QA, Queue QR
Initialise: Set all elements in V to false, Enqueue QR with
the pair (p ∈ P, new s:Segment)
while QR is not empty do

(p,s)⇐deq QR
p⇒enq QA
while QA is not empty do

p⇐deq QA
V [p] = true
{s}⇐add p
{nbr} ⇐ φ(p)
for i = 1 to |nbr| do

if V [nbri] == false then
if nbri.T == activeType then

nbri⇒enq QA
else

(nbri,new s′ : Segment)⇒enq QR
{E} ⇐ (s,s′)

end if
end if

end for
end while
{N} ⇐ gg

end while
return G = (N,E)

Two queues are maintained throughout the segmentation
process. The first one, QA, stores the currently active points,
i.e. those points retrieved by the neighbourhood query to
be considered next. The second queue, QR, stores potential
new segments. QR is initialised with the pair (pi, s:Segment),
where pi, is randomly chosen from the sparse grid cell which
has the highest number of surface points. s is thus a new sur-
face segment seeded with the point pi. QA is initiailised by
popping this first element from QR and pushing pi onto the
queue. The activeType property is set to the type of pi, i.e.
surface in this case.

The status of these two queues determines the control flow
of the algorithm. The outer while loop checks whether there
are any more potential segments that can be created whereas
the inner loop checks whether there are any more points that
can be added to the current segment. During the inner loop
the current point p is first added to the current segment, then
the points returned from the neighbourhood query φ(p) are
pushed onto QA if they are of the current active type. If not,
the point together with a new instance of a segment (as a
pair) are pushed onto QR and the relation (edge on the graph
G) between the current and this new segment is added to

{E}. This essentially implements the pairwise predicate ad-
jacent. In our implementation another outer loop is added to
check whether there are any points not considered for seg-
mentation. This can occur when there are distant disjoint ob-
jects in the scene. In this case the execution of the algortihm
is repeated on the disjoint subset of points.

3.1. Point Cloud Resolution

An important factor determining the outcome of the segmen-
tation algorithm is the resolution of the points in the cloud
as this directly affects the point set returned by the neigh-
bourhood function. This function is first used to determine
the type of each point then used when constructing the seg-
mentation graph. Due to the surface roughness present at the
Mnajdra temple, resolution contributes mostly when deter-
mining point type. Figure 4 shows a cross-section of a hypo-
thetical surface with samples (crosses) taken from it. When
a higher resolution is used many more points will be tagged
as edge points as opposed to the slightly lower resolution
sampled points.

Figure 4: High and slightly lower point sample resolution

The result of the neighbourhood function also depends
of the resolution of the sparse grid used to fit the points.
The smaller the resolution the more points would surround
a given point (in the 26 adjacent cells). Grid and point cloud
resolution can be viewed as the two sides of the same coin. A
user-defined parameter is hence used to determine the reso-
lution of the sparse grid in order to best fit the data available.

3.2. Over and Under Segmentation

Figure 5: Boundary between edge and surface points

Given the nature of most surfaces in CH, especially those

c© The Eurographics Association 2011.

44

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

where very old and weathered stone is present, over seg-
mentation can easily occur. The other side of the coin is
under segmentation, where distinct geometric entities are
merged together as one segment. In order to minimise under-
segmentation, a straightforward heuristic is used within the
inner loop of the algorithm which determines whether the
points returned by the neighbourhood function, which have
the same type as the current active point, should be added
to the current active queue. If the number of current active
type points is less than the number of points which are not
of the same type, the points returned by the neighbourhood
function are added to the current segment but not added to
the current active queue. Figure 5 shows a simple boundary
example where if p2 had to be added to the current active
queue, the current segment would end up with many more
surface points which should really be a separate segment.
This heuristic is used to minimise the possibility of under
segmentation by somehow measuring the evidence that a
boundary between two regions exists.

4. RanSaC Fitting

In our processing pipeline only plane primitives
(parametrised with a tolerance value to include points
close to the plane) are used and fitted to the patches result-
ing from segmentation. The main intuition behind the use of
planes is that these provide for an efficient representation of
more diverse geometric objects as collections of planes. For
example, the three apses of the Mnajdra temple might each
fit a cylinder primitive, however, finer grain segmentation
can be achieved when using a number of smaller planes
each represting the indivdual stones composing the surface.
The second stage of the pipeline, takes each surface segment
produced by the segmentation algorithm just described, and
determines which plane geometric primitives fit the data.
Clearly since the data (within a segment) will nearly never
perfectly fit a plane, a tolerance parameter t, is attached to
each plane, i.e. points are allowed to fit the plane whenever
the distance d from a point to a plane is within the range
−t ≤ d ≤ t. For each segment three points are randomly
chosen to define the plane parameters. These parameters
are then used to calculate the percentage of points from the
segment which fit this model. Different plane parameters are
repeatedly chosen until this percentage gets stable, i.e. does
not improve over a number of iterations. If the percentage of
points fitting the plane is below a certain threshold, further
plane fitting is carried out on the remaining points in the
segment. Figure 6 shows how the previously segmented
obelisk (five surface and one edge segments) has been fitted
with nine planes, i.e. the four vertical segments have been
fitted to two planes each, whereas the bottom horizontal
segment easily fits within one plane.

In general, when the number of iterations computed is
limited, the solution (planes created in our case) obtained
may not be optimal and it may not even be one that fits the

(a) All five surface seg-
ments

(b) Nine RANSAC
planes

Figure 6: Plane primitives fitted to obelisk segments

data in a good way. In our case, since RanSaC fitting is done
over segments and not the entire point cloud, this whole pro-
cess is much more efficient timewise and the solution ob-
tained for Mnajdra fits the data perfectly. Moreover, this new
level of abstraction over the data, allows for the creation of
simple point cloud queries which can be used to very effi-
ciently select different parts of the point cloud.

5. Point Cloud Queries

The extracted planar patches, together with a neighbour-
hood graphs computed over these patches as shown in Fig-
ure 10(b), provide the required structure necessary to enable
reasoning about and querying of point clouds. Given a seed
patch (RanSaC plane), a predicate comparing the surface
normals of adjacent planar patches (e.g. similar, same or op-
posite directions) is used to traverse the graph until the pred-
icate is satisfied. Figure 7 shows the point cloud represent-
ing the Kalabsha temple [SCM04] and the transformation of
some of the segments extracted (representing columns here)
into RanSac plane primitives. The bottom left part of the
image shows a cross section of one column and describes
how RanSaC plane primitives are fitted. When searching the
point cloud, one of these planes needs to be manually se-
lected as the seed plane. The result of the query (or search)
would consist of all the planes connected to the seed which
satisfy the predicate.

6. Results

Our segmentation pipeline is evaluated on three point clouds.
The first one represents part of the pre-historic site of Mna-
jdra that was acquired in 2005 by Heritage Malta, the na-
tional agency for museums, conservation practice and cul-
tural heritage in Malta. The modeled surface precision was
stated as +/- 2mm. The bounding volume of the point-
cloud is [19.64,18.58,3.54]. The sparse grid resolution was
set to 0.05, thus producing a sparse grid of maximum size
392x371x71 cells. The second point cloud, used to better
assess the scalability of our segmentation pipeline, consists

c© The Eurographics Association 2011.

45

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

Figure 7: Individual columns extracted via the segmentation
process are fitted with planes.

of the same Mnajdra point cloud upsampled to 1.2M points.
Bounding volume and resolution are not altered. The seg-
mentation pipeline is also applied on a point cloud repre-
seting the Kalabsha temple consisting of 1.9M points. The
bounding volume of this point cloud is [43.64, 6.90, 31.70]
and the sparse grid resolution was set to 0.1. Segmenta-
tion results are presented first, followed by results obtained
from RanSaC fitting. Finally, two point cloud queries are
described which enable the quick selection and retrieval of
parts within the Mnajdra point cloud.

6.1. Segmentation

In the Mnajdra case study presented here, segmentation
should be able to discriminate between the various stones
composing the temple. Figure 8(a) shows the entire point
cloud rendered using our point cloud viewer with black
and green splats representing edge (248,761) and surface
(344,248) points respectively. A total of 793 edge and 1031
surface segments are extracted.

Figure 8(b) shows the largest surface and edge segments.
As would be expected the largest surface segment consists
of points sampled from the floor of the main part of the tem-
ple, whereas the largest edge segment is made up of points
connecting the entire rubble wall structure. Figure 8(c) il-
lustrates a closer view (of part) of the rubble wall present
in the site. Around 35 stones are automatically identified in
this part alone. The edge segment contributes towards the
partitioning of the rubble wall into a number of surface seg-
ments representing the individual stones making the apse.
Very similar results are obtained with the upsampled 1.2M
point cloud. Due to the increased number of points per grid
cell, more time is spent in neighbourhood queries. With the
Kalabsha 1.9M point cloud, the various walls, floors and
columns are extracted as shown in figure 8(d). Table 1 shows
the processing time for the first and second stages of the
pipeline to compute.

(a) Mnajdra partitioned into seg-
ments. All segments rendered

(b) Only largest surface and
edge segments rendered.

(c) Closeup view of one of the
apses

(d) Kalabsha partitioned into
segments

Figure 8: Segmentation of point cloud

PointCloud Segmentation Fitting #Planes
Mnajdra 600K 55sec 60sec 930
Mnajdra 1.2M 112sec 90sec 1011
Kalabsha 1.9M 180sec 121sec 2025

Table 1: Statistics for the three point clouds used

6.2. RanSaC Plane Fitting

Figure 9(a) shows all the planes (rendered using different
colours) fitted over all the different surface segments of the
Mnajdra temple. A total of 930 planes are created fitting all
surface points (344,248) in 60 seconds. Prior point cloud
segmentation is critical here. Our RanSaC implementation
is very efficient due to the fact that planes are fitted on sub-
sets of related points (produced by our segmentation pro-
cess) rather than the whole data set. The 98% of the sur-
face points are fitted within the 930 plane primitives. With-
out prior segmentation, our implementation of RanSac does
not converge properly and only two planes (see Figure 9(c))
are fitted to the floor of the temple in approximately 4 min-
utes. Moreover, each of the two plane primitives cover points
which are found on different, unrelated parts of the temple.
When segmentation is used, one can visually easily verify
that the planes created fit the data in a very accurate way
and that the general structure of the temple is clearly visi-
ble. Figures 10(a) and 10(b) show the transformation from
surface segments to planar patches on one of the apses. A
total of 1011 planes are fitted on all surface points of the up-
sampled Mnajdra point cloud in approximately 90 seconds.
The planes created in this upsampled version of the Mnajdra
temple are nearly identical to the ones created in the 600K
model. This is expected since the general structure of the

c© The Eurographics Association 2011.

46

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

temple is maintained. Given that the same grid resolution is
kept, more points are present within each grid cell thus re-
sulting in more time spent on neighbourhood queries. For
the Kalabsha 1.9M point cloud, 2025 planes are extracted in
121 seconds (see figure 9(b)). Figure 9(d) shows how planes
are fitted over the columns present in the temple.

Over these planes a neighbourhood graph is derived which
is used in the implementation of point cloud queries. Each
node in the neighbourhood graph represents a plane prim-
itive. The median point of each plane primitive is used to
calculate the distances between each plane and generate the
graph. Note that if segmentation is not done before RanSaC
fitting then the neighbourhood graph derived would not be
correct. This can be observed in Figure 9(c), where the me-
dians of the two planes would be very close.

(a) Plane fitting over the segmented Mnajdra point cloud

(b) Plane fitting over the segmented Kalabsha point cloud

(c) RanSac plane fitting without
prior segmentation

(d) View of columns within Kal-
absha point cloud

Figure 9: Fitting on Mnajdra and Kalabsha point clouds

6.3. Point Cloud Queries

(a) Segmention of one apse (b) Planes fitted over surface
segments

(c) Query returns all points on
the main floor

(d) Query returns internal walls
of the temple

Figure 10: Point Cloud Query results

Two queries have been implemented to describe how re-
lated parts of a point cloud can be extracted. The first query
takes a seed patch and iteratively follows the neighbourhood
graph until the predicate used returns false. The predicate al-
ways compares the current node in the graph with the seed
node. When p is set to one of the patches on the main floor of
the temple and the predicate is set to similar(seedNormalDir,
pNormalDir, tolerance), the query returns all the points mak-
ing up the floor of the main part of the temple as shown
in Figure 10(c). The query starts searching from the seed
patch and follows the neighbourhood graph until the pred-
icate similar returns false, which occurs when the vertical
wall patches are encountered. Note here, that although mov-
ing away from the seed patch to adjacent patches, the query
always compares against the normal of the seed patch.

The second query applies the predicate on adjacent
planes. Hence, if the predicate is comparing the difference in
normals it would do so between adjacent patches rather than
with the seed patch. This query can be used to extract the
internal walls of the temple. Figure 10(d) shows the union of
three such queries where the seed patches are chosen from
stones located in the three different apses and the predicate
used was similar(pNormalDir, qNormalDir, tolerance). Note
how the query now follows the rubble wall until megalith
stones positioned perpendicular to the wall are encountered.

7. Further Applications

In this section further applications of our point cloud seg-
mentation pipeline are proposed.

Texture Mapping. Aligning textures with geometry is an
important post processing task especially if no colour infor-
mation is available within the data. In this case, the ability of

c© The Eurographics Association 2011.

47

S.Spina & K. Debattista & A.Chalmers / Segmentation Pipeline

partitioning the point cloud into small meaningful segments
can be used to find correspondences between photographs of
the site and the specific parts of the point cloud.

Adding Semantics. CH experts would usually require
that specific parts of the point cloud are tagged with some
specific meaning. For example one might label a particu-
lar segment of the point cloud as representing the ground,
which is then linked to photographs from the site. In this re-
gard, point cloud queries require further development so that
they can be used to locate and extract specific objects within
point clouds. Further work is being carried out on formalis-
ing a point cloud query language and develop a user friendly
GUI which can be used to execute these queries.

Tessellation. Another interesting aspect of segmentation
lies in the potential use of the results obtained to optimise
tessellation algorithms and rendering quality. For instance,
automatically creating a reasonably accurate mesh of the
Mnajdra temple is not a simple task. Segmentation results
can be used to project the RanSac planes extracted onto a
flat surface, tessellate using traditional Delaunay triangula-
tion, then use the topological information acquired to render
the quasi-flat surface as a triangular mesh.

8. Conclusion and Future Work

The generation of 3D point clouds is becoming increasingly
common in many areas of research. Given this huge amount
of data, algorithms are required which are able to process,
organise and extract important information about it in order
to help in the post-processing effort. Our initial results have
shown that the proposed automatic segmentation pipeline is
a feasible approach towards achieving this goal. However,
in order to better evaluate the robustness and scalability of
this approach, we are currently in the process of obtaining
further point clouds whose size ranges from a few million to
billions of points. As the size of the point cloud increases,
we plan to extend the current implementation of the seg-
mentation pipeline to support out-of-core processing. More-
over, in order to keep the processing times within a reason-
able limit, a distributed and concurrent implementation of
the pipeline described here is being designed. Another im-
portant direction is the further development of point cloud
queries, in order to provide an automated, user-friendly and
efficient mechanism by which CH professionals can select
interesting parts within a point cloud.

References

[BR02] BERNARDINI F., RUSHMEIER H. E.: The 3d model ac-
quisition pipeline. Comput. Graph. Forum 21, 2 (2002), 149–172.
2

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A
benchmark for 3d mesh segmentation. In ACM SIGGRAPH 2009
papers (New York, NY, USA, 2009), SIGGRAPH ’09, ACM,
pp. 73:1–73:12. 3

[CS08] CIGNONI P., SCOPIGNO R.: Sampled 3d models for ch
applications: A viable and enabling new medium or just a techno-
logical exercise? J. Comput. Cult. Herit. 1 (June 2008), 2:1–2:23.
1, 2

[DN07] DORNINGER P., NOTTHEGGER C.: 3d segmentation of
unstructured point clouds for building modelling. In Interna-
tional Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences (2007), Institute of Photogrammetry and
Cartography Technische Universitaet Muenchen. 2

[FB81] FISCHLER M. A., BOLLES R. C.: Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM 24 (June
1981), 381–395. 1, 2

[GF09] GOLOVINSKIY A., FUNKHOUSER T.: Min-cut based
segmentation of point clouds. In IEEE Workshop on Search in
3D and Video (S3DV) at ICCV (2009). 2

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Surface reconstruction from unorganized
points. In SIGGRAPH ’92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1992), ACM, pp. 71–78. 3

[NZW09] NING X., ZHANG X., WANG Y.: Tree segmentation
from scanned scene data. In Plant Growth Modeling, Simulation,
Visualization and Applications (PMA), 2009 Third International
Symposium on (2009), pp. 360 –367. 2

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient sim-
plification of point-sampled surfaces. In Proc. VIS ’02 (USA,
2002), IEEE, pp. 163–170. 3

[Rut10] RUTHER H.: Documenting africa’s cultural heritage. In
In Proceedings of the 11th International Symposium VAST. Vir-
tual Reality, Archaeology and Cultural Heritage (2010). 1, 2

[RV06] ROBBANI, VOSSELMAN: Segmentation of point clouds
using smoothness constraint. In Image Engineering and Vision
Metrology (2006). 2

[SCM04] SUNDSTEDT V., CHALMERS A., MARTINEZ P.: High
fidelity reconstruction of the ancient egyptian temple of kalabsha.
In Proceedings of the 3rd international conference on Computer
graphics, virtual reality, visualisation and interaction in Africa
(New York, NY, USA, 2004), AFRIGRAPH ’04, ACM, pp. 107–
113. 5

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo
tourism: Exploring photo collections in 3d. In SIGGRAPH Con-
ference Proceedings (New York, NY, USA, 2006), ACM Press,
pp. 835–846. 1

[SWK07] SCHNABEL R., WAHL R., KLEIN R.: Efficient ransac
for point-cloud shape detection. Computer Graphics Forum 26,
2 (2007), 214–226. 3

[VG06] VERGAUWEN M., GOOL L. V.: Web-based 3d recon-
struction service. Mach. Vision Appl. 17, 6 (2006), 411–426. 1

[WB94] WANI M. A., BATCHELOR B. G.: Edge-region-based
segmentation of range images. IEEE Trans. Pattern Anal. Mach.
Intell. 16 (March 1994), 314–319. 2

[WK05] WU J., KOBBELT L.: Structure recovery via hybrid vari-
ational surface approximation. Comput. Graph. Forum 24, 3
(2005), 277–284. 3

[WPH∗04] WEYRICH T., PAULY M., HEINZLE S., SCANDELLA
S., GROSS M.: Post-Processing Of Scanned 3D Surface Data. In
Symposium On Point-Based Graphics (2004), pp. 85–94. 2

c© The Eurographics Association 2011.

48

