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Abstract
We present a state-of-the-art system for obtaining and exploring large scale three-dimensional models of urban
landscapes. A multimodal approach to reconstruction fuses cadastral information, laser range data, and oblique
imagery into building models, which are then refined by applying procedural rules for replacing textures with
3D elements, such as windows and doors, therefore enhancing the model quality and adding semantics to the
model. For city scale exploration, these detailed models are uploaded to a web-based service, which automati-
cally constructs an approximate scalable multiresolution representation. This representation can be interactively
transmitted and visualized over the net to clients ranging from graphics PCs to web-enabled portable devices. The
approach’s characteristics and performance are illustrated using real-world city-scale data.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other
Rewriting Systems— I.3.5 [Computational Geometry and Object Modeling]: Modeling packages—

1. Introduction

A large part of Earth’s population lives and works in dense
urban areas, and much of our cultural heritage revolves
around complex cityscapes. 3D urban models can potentially
be used for a variety of means: as user-friendly interfaces to
urban geographic information systems, for visualizing simu-
lation results, for accessing associated metadata/paradata in
scientific applications, as well as for communicating with the
general public, e.g., for public awareness, instruction, gam-
ing, or virtual tourism.

Pure manual modeling, or direct parametric modeling, of
3D urban environments have demonstrated the ability of cre-
ating life-like reconstructions. The labor-intensive approach
associated to current 3D modeling and rendering environ-
ments is, however, not always applicable at a large scale, and
can be accepted only in limited application domains (e.g.,
movies or video-games). Moreover, such models are typi-
cally too complex to be streamed and rendered in real-time,
and should be suitably simplified for integration in interac-
tive platforms. A variety of acquisition devices, among them
terrestrial and airborne laser scanners and cameras, permit
the acquisition of 3D data and color at a city scale. Typical

reconstruction pipelines from such data produce measurable
3D models in an automatic manner, but with limited visual
quality. Creating a pipeline combining direct reconstruction
from acquired data with procedural modeling, and support-
ing interactive local and remote viewing of such models,
would bridge the gap between the artistic re-creation ap-
proach of creative industries and the geometric reconstruc-
tion from acquired imagery approach of geo-information sci-
ence.

Contribution. In this system/application paper, we focus
on presenting state-of-the-art integrated enabling technol-
ogy components for obtaining and exploring 3D urban land-
scapes. In our approach, we reconstruct textured mass mod-
els from image, range, and cadastral data. Selected build-
ings are then refined by applying procedural rules, which
replace textures with 3D elements, such as windows and
doors, therefore enhancing the model and adding semantics
to it. For city scale exploration, mass- or detailed models
are uploaded to a web-based service, which automatically
constructs a scalable multiresolution representation starting
from the detailed geometric representation.
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Advantages. The pipeline is meant to be scalable and appli-
cable to wide-area reconstructions with building-level con-
struction details. It is designed to be integrated in larger sys-
tems for urban modeling and visualization. As demonstrated
by our results on real-world city-scale datasets, the overall
system makes it possible to reduce the time for producing
detailed cityscapes starting from measurements, and, at the
same time, makes those models available to a larger vari-
ety of end users through a scalable approach. The simplified
multiresolution representation can be incrementally rebuilt
during editing sessions, and is interactively transmitted and
visualized over the network to clients ranging from graphics
PCs to web-enabled portable devices.

Limitations. Modeling and visualization of 3D cities is a
complex topic, and our approach has also obviously some
limitations. First of all, its focus is on renderable represen-
tation of large building collections, and, thus, external com-
ponents must be used to handle building interiors or other
objects (e.g., terrain, roads, and vegetation). Second, mul-
timodal reconstruction requires the availability of synchro-
nized image and cadastral data, which limits its general ap-
plicability, and may raise accuracy issues in case of mis-
alignment. We do not see this fact as a major limitation, since
accurate combined datasets are increasingly available from
imaging companies, and our method can be combined with
techniques for footprint and elevation extraction from im-
ages. Finally, our streaming model is an extremely compact
but lossy representation. Close-ups of landmark building
containing important overhangs must thus be handled with
other techniques (e.g., textured multiresolution meshes). On
the other hand, thanks to its compactness and flexibility,
our representation enables smooth large-scale city browsing
even on low-bandwidth configurations.

Despite these limitations, the elaboration and combination
of these solutions in a single unified pipeline is definitely non
trivial and represents an enhancement to the state-of-the-art.

2. Related work

Our system extends and combines state-of-the-art results in
a number of technological areas. In the following, we only
discuss the approaches most closely related to ours.

Automatic 3D reconstruction of urban environments.
(Semi-)automatic reconstruction of 3D buildings and cities
is an extensively researched topic comprising a range of
input data, approaches, and representations. Purely vision-
driven approaches vary in availability of georeferencing in-
formation and strategy for creating dense models. Exam-
ples are reconstruction of piecewise planar geometries from
video sequences [FZ98] and georeferenced vision-based
systems for urban reconstruction based on high-resolution
airborne optical camera systems [C311]. Multimodal ap-
proaches involving georeferenced LiDAR (Light Detec-
tion And Ranging) and imagery from different angles have

been frequently explored, e.g., for reconstruction of facade
meshes [FJZ05] or for generating textured models of indi-
vidual buildings by first computing 3D geometry from the
images and then matching that to the range data [SA02].
More relevant to our work, automated systems have been
created for combining georeferenced imagery with aerial LI-
DAR [FSZ04, MKI09, KP10, PY09b, PY09a]. Here, we har-
ness additional information provided by cadastral data in the
form of building footprints.

Procedural techniques for creating detailed city models.
Several tools for procedurally generating 3D building mod-
els have been described. Here we concentrate on methods
based on shape grammars [SG72], which encode architec-
ture in rules, whose derivation generates 3D models. Split
grammars [WWSR03] and were originally introduced by
encoding facades, and have been extended into a computer-
generated architecture (CGA) grammar [MWH∗06] for de-
scribing buildings, and, more recently, 3D objects with com-
plex interconnected structures [KK11]. By controlling a
few intuitive input variables, complex structures are gen-
erated, minimizing manual labor. Traditionally these ap-
proaches are used mainly in generative fields such as enter-
tainment [WW08], simulation [MHY∗07] and urban plan-
ning [HKS08]. Recently, manual [ARB07] and computer-
vision-based [MZWG07] image analysis concepts have been
merged with procedural modeling. This reverses the infor-
mation flow: rules (and their driving parameters) are ex-
tracted from facade images. Rules permit to procedurally
generate approximations of the facade and can be used to
generate a more visually appealing 3D representation than
the (potentially low-res) 2D images. Moreover, semantic in-
formation is obtained, for instance window/door positions
or number of floors, allowing for quantitative interpretation.
Many of the mentioned techniques have been refined further
in the commercial software CityEngine [Pro08]. In contrast
to image-based reconstruction, LIDAR point clouds of fa-
cades can interactively be transformed into polygonal mod-
els [NSZ∗10]. In our work, we complement this approach,
which takes as input 3D data, with the possibility of gen-
erating a rule-based representations from oblique airborne
imagery of building facades. In addition, we support the in-
sertion of ground-based images for refining the model.

Achieving scalability for streaming and rendering. Ex-
ploring the large detailed urban models generated by our
pipeline, seamlessly going from high altitude flight views
to street level views, handling both mass models and proce-
durally refined ones, is extremely challenging, since models
have high texture and geometric details. The classic solution
for managing large textured urban models is the texture-atlas
tree [BD05], which, however, considers multi-resolution tex-
tures but low-resolution geometry, and does not take into ac-
count network streaming issues. Major problems arise when
rendering clusters of distant buildings, hard to faithfully and
compactly represent with simplified textured meshes. Direct
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rendering from procedural models [HWA∗10, MGHS11] is
appealing, but has currently limited performance and does
not handle non-procedurally generated contents. Impostor-
like techniques, introduced over a decade ago (see [SCK07]
for a survey) are enjoying a renewed interest, because of
the evolution of graphics hardware, which is more and more
programmable and oriented toward massively parallel ras-
terization. In the omnidirectional relief impostors [ABB∗07,
AB08] approach, the urban scene is approximated with a
cloud of relief maps, and a GPU raycasting is done for each
frame on the subset of such cloud which is optimal with re-
spect to the point of view. In this work, we follow instead
the BlockMap approach [CDG∗07, DCG∗09] of exploiting
a small number of precomputed maps to efficiently encode
and render urban models as a set of compactly encoded tex-
tured prisms. This representation is more similar to LODs
than to impostors, since it encodes a discretization of the
original geometry. We extend that work by introducing a re-
construction engine supporting incremental rebuilds, a web
based interface to the reconstruction pipeline, and a refined
rendering engine supporting selective exclusion.

3. Overview

Reconstruction of urban environments starts with data ac-
quisition. The more data about a city is available the more
information can be exploited during reconstruction. For the
pipeline described in this paper, we require cadastral data
(building footprints as georeferenced 2D polygons, poten-
tially with metadata such as building height, typically Esri
shapefiles), as well as georeferenced multi-angle oblique and
nadir airborne imagery. These aligned datasets are typically
available from geographic information companies, and are
used in system such as BingMaps. In addition we can op-
tionally exploit digital terrain models (DTM, georeferenced
model of the ground surface, without any plants and build-
ings), digital elevation models (DEM, similar to the DTM,
but all objects on the ground are included, a typical exam-
ple being LIDAR data, i.e., georeferenced point clouds), as
well as ground-based images of buildings (close-up details,
not georeferenced). Other important data types are manually
created CAD models (e.g. landmark buildings) and street
networks. While such data can be handled by the system,
it is not discussed further here.

In our system, the builder component has the purpose to
let the user import all available data and combine it to gen-
erate 3D models of individual buildings. Starting from the
raw data mentioned above, we first reconstruct a mass model
of entire cities, i.e., terrain elevation plus photogrammetric
urban models in the form of simple, real-world sized 3D
building models with flat facades (see Sec. 4). This simpli-
fied model is then refined to add 3D procedural details to all
or selected buildings (see Sec. 5). Reconstruction typically
happens either during an interactive process or in a batch
process. At the end of reconstruction, or once each build-

ing or group is finalized, the refined models are published to
a geometry server, which incrementally optimizes them for
streaming and rendering and stores the resulting encoding in
an updatable multiresolution database (see Sec. 6). A client-
server architecture then enables multiple clients to explore
city models stored on the rendering server (Sec. 7)

4. Multimodal techniques for the automatic acquisition
of city models

Automatic reconstruction can be applied in batch to all
building footprints or initialized in the builder from a user-
selected one. We first extrude an initial mesh from the foot-
print, along with building heights given in the metadata.
Next, the mesh is refined using available DEM data to deter-
mine roof shapes. The most prevalent DEM data is aerially-
acquired LIDAR range data, composed of densely-sampled
3D points. If these are available, we filter points within the
footprint polygon, include any known points on the bound-
ary, particularly measured roof corners, and perform con-
strained Delaunay triangulation to acquire a roof mesh. We
then project textures onto the mesh from aerial imagery.
Registration between the mesh and imagery is accomplished
using measured ground points at the image corners. Oblique
images are available along four cardinal directions, and we
select textures maximizing image area within the facade.

Occlusion removal and feedback. Visibility constraints
are critical to texturing facades with aerial imagery. Particu-
larly in dense urban areas, many facade sections may be in-
complete due to occlusion by vegetation or other buildings,
so ground images or other assets can be manually or semi-
automatically added to complete these areas, as described in
Sec. 5. To aid the user, we detect and mark occluded regions
on each facade. In cases where facades are hidden by other
buildings, we find occlusions by projecting mesh extrusions
into the camera and only selecting visible sections of the fa-
cade texture, similarly to the approach in [FSZ04]. Vegeta-
tion detection has been extensively studied, see e.g. [IBC08]
for a recent example using a linear SVM classifier on color
infrared images. We use a simple texture classifier on im-
age patches, which we trained on a separate set of manually-
segmented images. For each patch, we construct a feature
vector containing the following components to encapsulate
color and texture: mean RGB and HSV, a five bin hue his-
togram, and an edge orientation histogram containing orien-
tation and number of modes. The feature is classified as veg-
etation or background using an efficient approximate nearest
neighbor classifier [ML09]. Finally, morphological closing
refines the detections into an occlusion mask(see Fig. 2).
Besides highlighting missing regions, we also generate a
quality indicator for the building based on the percentage
of visible facade area, which can then be used for planning
acquisition of ground-based images.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Automatic Reconstruction of Palazzo Strozzi: (a)
user selects footprints; (b) initial mesh extruded; (c) roofs
refined from DEM; (d) relevant aerial images selected; (e)
building textured; (f) occlusions marked.

Figure 2: Left: image region including vegetation. Right: de-
tected vegetation marked in red.

5. Adding Detail with Procedural Technology

The computer vision techniques described above permit the
generation of photogrammetric urban models: simple, real-
world sized 3D building models with flat facades. Each fa-
cade polygon has a 2D texture projected upon. This texture
is a cutout from one of the airborne images. Possibilities to
add 3D detail to the model are:

1. Manual modeling with an external tool (e.g., Maya or 3D
Max): This is the traditional approach and not further dis-
cussed here.

2. Semi-automatic creation of complex CGA facade rule
templates from an image.

3. Procedural modeling: If no facade image is available,
other sources can be used to design a procedural descrip-
tion of the building. These can be written descriptions,
sketches, paintings or archaeological evidence.

The second approach is described in more detail below.

A A

A A

A A BBB

BBB

BBB

C C

C C

C C

Figure 3: Semi-automatic creation of a procedural facade
from an image. Top left: Image of the facade. Top right: Sub-
division scheme applied with identical geometries colored.
Bottom left: 3D geometry assets. Bottom right: Final 3D
model.

Semi-automatic procedural reconstruction. Fig. 3 shows
how (a ground-based) image can be used to turn a 2D facade
into a 3D model. A top-down subdivision hierarchy of the
facade [WWSR03, BA05, MWH∗06, MZWG07] is interac-
tively defined by the user with the aid of the photography.
On top of the image, the user can interactively place split
lines and identify tiles with identical geometry. From this
information, a number of rules in CGA code are generated
automatically, eliminating the need to manually write code.
The rules apply the subdivision scheme to an arbitrary poly-
gon and insert 3D assets. Such assets can either be modeled
manually or, if accuracy is not the primary goal, downloaded
from an asset library such as Google 3D warehouse† or Tur-
bosquid‡.

In the example in Fig. 3, a facade image from Venice is
interactively analyzed. The facade is subdivided vertically
into two border regions on the bottom and the top, and
three floors in-between. This results in following (simpli-
fied) CGA code, for more elaborate examples of CGA code
see for example [MWH∗06] or [MVW∗06]:
Facade-->

split(y) { 0.41: Bottom | 4.69: Floor1 |
~4.41: Floor2 | 3.89: Floor3 | 0.48: Top }

Each floor is then split horizontally; here, each Floor can be
described with an A*B*C* scheme (with * denoting repeti-
tion).
Floor1 -->

split(x) { 0.35: Wall | ~5.67: Floor1_A_rep |
0.71: Wall | ~4.56: Floor1_B_rep |
1.69: Wall | ~5.76: Floor1_C_rep | 0.25: Wall }

† http://sketchup.google.com/3Dwarehouse
‡ http://www.turbosquid.com
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The A, B and C elements typically consist of a number of
2D wall elements (textured rectangles) and a central 3D ge-
ometry (window or door). The rule for A looks like this:

Floor1_A_rep-->
split(x) { ~2.84: Floor1_A }*

Floor1_A-->
split(x) { 0.74: Wall | ~1.50: Floor1_A_mid | 0.60: Wall }

Floor1_A_mid -->
split(y) { 1.11: Wall | ~2.91: Window | 0.67: Wall }

Window -->
t(0, 0, -0.15) s(’1, ’1, 0.15) i("smallArc.obj")

The rules for B look very similar, but a different 3D asset is
used. Applying the rules, a 3D version of the facade can be
generated.

6. Optimized representation for streaming and
rendering

The result of the mass- or procedural reconstruction of a city
is ultimately a textured polygonal model. However, a whole
city does not have to be built at once as a single large model,
but will generally result from several partial reconstruction
actions, each one dedicated to a specific portion, which may
be a city block, a street or even a single building. We refer
a textured model of this kind as Block. Our system defines
a component called Geometry Server (see Figure 4(a) ) to
which blocks are uploaded and stored. A Block is encoded
as an archive file containing:

• one or more files encoding polygonal models;
• one ore more images for the texture of polygonal models;
• the WGS84 [NIM00] coordinates of the models;
• the Historic Date of the model

Specifying the geographical coordinates separately from
the polygonal model enables users to work on a local refer-
ence frame for reconstruction and to specify the actual loca-
tion of the model at upload time. This is especially useful
to instance the same model in different locations (for ex-
ample to model row houses). Since cities change over time,
each model is also assigned with a Historic Date, therefore a
dataset may contain several versions of the same building the
refer to different moments in history. When a Block is up-
loaded to the Geometry Server, a simple server-side program
(named Unpacker in Fig. 4(a)) decompresses the archive and
adds an entry to a MySql database. The database is made of
a single table and stores WGS84 position, Date, and a BLOB
data for geometry and texture files.

Rendering Urban Environments. Real-time rendering of
large detailed urban models is extremely challenging and
the many techniques that work for dense meshes cannot be
applied to this case. What makes urban models so pecu-
liar is that their geometry is made of many small connected
components, i.e., the buildings, which are often similar in
shape, adjoining, rich in detail, and unevenly distributed.

While multiresolution texturing and geometric levels of de-
tail may provide acceptable solution for buildings near to the
viewer and moderate degrees of simplification, major prob-
lems arise when rendering clusters of distant buildings, hard
to faithfully and compactly represent with simplified tex-
tured meshes. In the framework of this project, we developed
the BlockMaps [DCG∗09], a GPU-friendly data structure for
encoding coarse representations of both geometry and tex-
tured detail of a small set of buildings. BlockMaps store in a
rectangular portion of texture memory all the data required
to represent a group of textured vertical prisms defined and
discretized on a square grid. The key idea of BlockMaps
is that they encode the large scale features of a urban-like
dataset, i.e. the vertical flat walls of the buildings with little
memory footprint and they can be efficiently rendered with
a simple GPU-based raycasting. A BlockMaps dataset is a
quadtree where each node correspond to a BlockMap. The
BlockMap at the root node corresponds to the whole domain,
each of the four BlockMaps at the first level correspond to
a quarter of the city and so on, until the deepest level of the
hierarchy where each node/BlockMap cover few meters of
the city. Building a BlockMap dataset is a bottom up pro-
cess. The BlockMaps corresponding to the finer level, i.e.
the leaves of the octree, are built with an ad hoc sampling
of the original geometry, while BlockMaps of the generic
level i are built using those at level i+1 (see [DCG∗09] for
details). The sampling algorithm for building a BlockMap
requires multiple rendering passes and is not a fast process.
For example for a model of 80K buildings may require over
four hours on a PC [DCG∗09]. While these times are accept-
able for static datasets, in this project we wanted to make
the process of building the city concurrent and incremental.
Since we cannot afford to wait hours every time a building
model is updated, we improved the original version of the
BlockMaps by enabling partial reconstruction of the dataset.

Partial reconstruction. A partial reconstruction is exe-
cuted every time a new Block is uploaded to the server, i.e.
every time the model has been modified. We recall from
the BlockMaps technique (see [DCG∗09] for details) that
only the leaves of the BlockMaps hierarchy are built from
the textured geometry, while the upper levels are built sam-
pling the BlockMaps themselves, therefore we only need re-
construct the leaves of the BlockMaps hierarchy that are af-
fected by the change and propagate the reconstruction to the
rest of the hierarchy. A leaf may be affected by a change
of geometry directly, because it covers a portion of the do-
main where the geometry has been changed, or indirectly,
because it is spatially near to a changed geometry. The sec-
ond case happens because BlockMaps description also in-
corporate an ambient occlusion term which accounts for the
average amount of light that reaches each point due to in-
direct illumination. In principle the ambient occlusion term
at a point depends on the whole dataset, but in practice it
may be computed considering a limited surrounding of the
point, that in our experiments it is fixed to 30 meters. There-
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Figure 4: Left: Geometry server and remote rendering architecture. Right: An illustration of the partial reconstruction of the
BlockMaps hierarchy after updating Palazzo Strozzi. The blue squares indicate the BlockMaps covering the domain for which
textured geometry has been changed, the orange ones the BlockMaps which AO value may change as a consequence.

fore, we also mark for reconstruction also the leaves within
50 meters from those whose geometry has been changed.
Fig. 4(b) illustrates these steps in the hierarchy, rendering in
blue the leaves with changed geometry and in orange those
influenced because of the ambient occlusion computation.
When the complete set of leaves to recompute is determined,
in may reconstruct those levels and hence the portion of hi-
erarchy from those leaves up to the root. Note that if sev-
eral users make small modifications all over the dataset, we
may experiment conflicts in trying to recompute the same
internal nodes, i.e. the same BlockMaps, because of differ-
ent modifications. Although we adopt a lazy update strat-
egy and simply serialize the concurrent modifications to the
same nodes, we must observe that, depending on how dras-
tic is the modification and on the depth of the hierarchy, it is
not always necessary to propagate them up to the root. For
minor modifications (typically, a more detailed version of
a building), after few levels, the regenerated BlockMaps are
almost identical to the old ones. So, to reduce response times
during concurrent editing, every time a BlockMap is recom-
puted we compute pixel-by-pixel difference with the old ver-
sion and if the relative change is under a given threshold (we
used 3% in our experiments) the bottom-up propagation is
stopped (this is indicated as merging level in Fig. 4(b)). It
should be noted that the errors propagate up, not down, and
thus the possible inaccuracies are only at the coarser levels
of the hierarchy.

7. Remote exploration architecture

We implemented a prototype client-server architecture en-
abling multiple clients to explore city models stored on a
remote server (see Fig. 4(a)). The only data which is per-
sistently resident on the client memory is the node hier-
archy, which is transmitted upon connection, while all the
BlockMaps initially reside only on the server side. At each
frame, the client performs an error driven visit of the hier-
archy until the best approximation to the user defined error
threshold with the nodes locally available in GFX RAM is
met. During the visit, the nodes which have not yet been
downloaded, but would be needed by the current view to re-
fine/coarsen downloaded nodes, are requested to the server.
On its side, the server receives the requests and send back
the BlockMaps. Landmark buildings are handled by selec-

tively excluding BlockMap portions once a predefined LOD
is reached, and replacing them with an external LOD repre-
sentation (typically, multiresolution textured meshes) of the
building geometry.

8. Results

We implemented the described system on Windows and
Linux platforms using Java, C++, OpenGL, and GLSL
shaders. A streamlined version of the renderer was also cre-
ated for the web platform through WebGL.

We have extensively tested our system with a number of
urban models. The quantitative and qualitative results dis-
cussed here are for the Florence urban environment, which
is an examples of a large scale model created starting from
the vision based approach. The source data (8GB) consists
of 18.5K building footprints, 671 oblique and orthographic
images at 4872x3248 resolution, a digital terrain model of
663K points, and a digital elevation model of 11M LIDAR
points. We additionally present results for the ancient city of
Rome, representative of a smaller scale but detailed model
created by procedural means.

Automatic reconstruction. To detect vegetation, we cre-
ated descriptors from 15×15 patches as described in Sec. 4.
We evaluated our detector on five manually-annotated im-
ages (one chosen randomly from each camera direction) us-
ing leave-one-out evaluation and obtained an average pix-
elwise classification accuracy of 96.3%. As seen in Fig. 2,
the most common facade artifacts occur in dark areas with
excessive sensor noise. We tested our reconstruction system
on a PC with a quad-core i7 920 processor @ 2.66GHz and
6 GB RAM. Building reconstruction is run in parallel, with
each building reconstructed in a single thread. Averaged over
200 buildings, a single textured building without occlusion
detection or roof reconstruction required 3.39s; building oc-
clusion detection requires 1.58s, vegetation detection 0.48s,
and roof reconstruction 0.19s, although large buildings may
take significantly longer. Running four threads in parallel,
reconstruction of the entire Florence dataset including build-
ing occlusion detection and roof reconstruction required ap-
proximately 345 minutes, including storing the generated
geometries and textures to disk (which happens in a single
thread).
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Adding detail with procedural methods. Details are
added to the mass model by procedural means. In this ex-
ample, we illustrate the results through the procedural re-
construction of Palazzo Strozzi in Florence. Fig. 5a shows
the textured mass model with occlusions marked in red. A
ground-based picture of the front facade (Fig. 5b) was ana-
lyzed with our facade builder, resulting in a set of CGA rules
describing the structure of the facade (Fig. 5c). The rules add
semantic information such as positions of floors, windows,
doors etc. to the model. Applying the rules to the 2D fa-
cades yields 3D models, because 3D assets such as windows,
can be automatically inserted at the right places (Fig. 5d).
The semiautomatic analysis, including asset modeling, took
a skilled artist about 30 minutes. With access to an existing
3D asset library, the process could be streamlined to 5 to 10
minutes per facade. The actual model generation of the rules
takes about 0.2s. Polycounts (without roof) are 4 in the mass
model and 2721 in the refined model.

(a) (b) (c) (d)

Figure 5: Procedural refinement of Palazzo Strozzi. a) Au-
tomatic reconstruction result; b) Ground-based image; c)
Structural subdivision; d) Refined model with 3D facades.

Multiresolution data generation. We have tested our mul-
tiresolution preprocessing and rendering system on a Intel
Core i7 950 @3.7GHz, 12 GB RAM, NVidia 580 GTX
(1.5GB VRAM). Table 1 shows input size, processing time
and output size of for the two example datasets. The con-
struction time depends both on the distribution of geometry
and on the extension of the domain in meters. In these tests,
we used 1282 BlockMaps resolution and chose the depth
of the tree so that each leaf node covers a square of 8m2,
which means the we have height values at 6.25cm resolution.
Since fully processing the models to generate a complete
BlockMap hierarchy takes a relative long time, the partial
reconstruction introduced in this work has clear advantages.
For instance, regenerating the subsets of BlockMaps associ-
ated to a single building in Florence (Palazzo Strozzi as in
Fig. 5) takes only 75 seconds to regenerate 150 BlockMaps
of the hierarchy affected by the change. Note that, due to
the sampling nature, the size of the BlockMaps may grow
with respect to the original data, especially for procedural
models with repeated texture patterns. However, the sam-
pled BlockMap representation has clear advantages in terms
of streaming performance (see below), since they approxi-
mately require constant per-rendered-pixel bandwidth.

Streaming and rendering. The resulting multiresolution
models can be explored using networked graphics clients.
As illustrated in the accompanying video, the BlockMaps

Model tri tex input time tree out
(M) (G) (GB) (hrs) (GB)

Florence 5.96 2.13 9.22 12 10 11.5
Rome 1.74 2.13 3.5 20 11 7.4

Table 1: Statistics for blockmap construction.

technique provides a smooth rendering with no noticeable
popping artifacts. On average, the frame rate is above 90 f ps
at 1024×1024 resolution. The worst case happens when the
view is almost horizontal but still over the roofs, because
the ray casting algorithm must execute more steps to render
each BlockMap and occlusion culling does not help. How-
ever, even in these conditions the frame rate never drops un-
der 21 f ps for a full HD resolution (1920× 1080). Repre-
sentative snapshots are presented in Fig. 6 and 7. A draw-
back of the approach is that the representation is lossy and
overhangs are not supported. For this reason, our library
supports integration of landmark buildings using alternate
techniques (e.g., multiresolution textured meshes) using a
distance-based switch. See video for more results.

Figure 6: Two representative frames of an interactive navi-
gation sequence over Rome.

Figure 7: Two representative frames of an interactive navi-
gation sequence over Florence.

9. Conclusions

We have presented an integrated pipeline for creating and ex-
ploring large-scale 3D models of urban landscapes by com-
bining state-of-the-art solutions in multimodal reconstruc-
tion, procedural modeling, and multiresolution visualization.
Our solution is meant for integration in larger systems for ur-
ban modeling and visualization.

There is much more to city modeling and rendering
than is covered by our pipeline (e.g., vegetation and interi-
ors). However, in the modeling/rendering context, our work
tackles some of the most critical issues which distinguish

c© The Eurographics Association 2011.
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cities from other scenarios. While there are many compet-
ing solutions for accurate modeling of single shapes and
rendering of interiors and/or large dense meshes, options
are currently available for reconstruction and efficient re-
mote rendering of large cityscapes. Future work will aim
to improve and extend the pipeline, as well as to complete
the integration with a city exploration system (see http:
//vcity.diginext.fr). In particular, we plan to fur-
ther automate and speed-up facade analysis, the most time-
consuming task of the procedural refinement process, by
exploiting computer-vision-based algorithms to detect split
lines automatically. Moreover, we plan to improve seamless
blending of detailed models with BlockMap approximations
by including solutions for remote rendering of detailed tex-
tured geometry.
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