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Abstract

This paper describes the design and the implementation of a distributed object repository that offers cultural her-
itage experts and practitioners a working platform to access, use, share and modify digital content. The principle
of collecting paradata to document each step in a potentially long sequence of processing steps implies a number
of design decisions for the data repository, which are described and explained. Furthermore, we provide a descrip-
tion of the concise API our implementation. Our intention is to provide an easy-to-understand recipe that may be
valuable also for other data repository implementations that incorporate and operationalize the more theoretical
concepts of intellectual transparency, collecting paradata, and compatibility to semantic networks.

Categories and Subject Descriptors (according to ACM CCS): H.2.1 [Database Management]: Data models—
Schema and subschema H.2.7 [Database Management]: Data warehouse and repository—Data models H.3.7 [In-
formation Storage and Retrieval]: Digital Libraries—Dissemination

1. Introduction

The production of high-quality digital assets from cultural
heritage artefacts requires a complex workflow and therefore
faces a number of serious problems. The workflow typically
starts by 3D acquisition, which is a measurement process
producing large-volume raw data. The raw data are subse-
quently refined and undergo a number of processing steps
(cleaning, de-noising, hole filling, etc) until, at some point, a
digital master model is produced. The result is a large num-
ber of semantically connected datasets, which can quickly
become a mess to manage, especially when the work is car-
ried out by different persons at different locations and times.

The master model may then be re-targeted depending
on the intended purpose to produce different sorts of out-
put models. For example, high-quality complex material and
high-resolution geometry are needed for scientific detail in-
spection, for documentation, or for producing photo-realistic
images; a mid-poly version can be used for interactive 3D
environments; and a simple textured low-poly model for in-
ternet dissemination and as ’preview model’. A digital model
may be archived, may be water-marked, chopped into sepa-
rate pieces, marked and drawn upon by conservators, or sent
to a 3D printer for reproduction.

1.1. The difficulty of collecting paradata

From a research and documentation point of view, the great-
est problem is that the resulting output models have no clear
relation to the measured input data. It is almost impossible
to assess the authenticity of some part of a model, since the
input data underwent so many different processing steps that
it is not easy to tell whether a particular part of the surface
stems from measurements, or was ‘invented’ by some algo-
rithm, e.g., a hole filling procedure. This makes output mod-
els, strictly speaking, useless for academic reasoning since
no reliable conclusions can be drawn, e.g., to prove or dis-
prove scientific hypotheses about the artefact at hand. This
leads some researchers with a Cultural Heritage background
to the extreme position of denying the usefulness of 3D digi-
tization and subsequent visualization altogether (“just beau-
tiful misleading images”).

The solution is to track the processing history of each
dataset as completely as possible. The London Charter
[Lon06] defines the notion of intellectual transparency that
enables to distinguish between fact and interpretation. It
is achieved by faithfully collecting paradata that describe
the digital provenance of each dataset. However, collecting
paradata requires a well-structured workflow: Each process-
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Figure 1: 3D reconstruction of a single photo sequence. Today the workflow typically proceeds in six stages: (1) dense matching
produces one depth value for each pixel of each photo in the sequence; (2) the resulting overlapping range maps are cleaned
(noise removal) and (3) merged and resampled (Poisson reconstruction) to produce a closed, single-layered, water-tight mesh.
(4) The superfluous large faces are removed, (5) a 50% simplification removes short edges, and (6) the mesh is vertex colored.
– This workflow was performed for each of the parts in Figure 2.

ing step must be documented, preferrably in a format that is
both human- and computer readable.

1.2. Workflow management problems

From a practical point of view, the 3D reconstruction work-
flow is difficult to manage and structure, and often it is likely
to end up in a huge mess. Note that the workflow performs
successive data fusion over different stages, in which the
separate input data are processed and merged into a single
model. A specific example of a practical workflow that il-
lustrates the problems is the 3D reconstruction from pho-
tographs shown in Figures 1 and 2: Each photo sequence is
processed in six stages to produce one mesh part, and 20
of these parts are fused to obtain the final model. Each tool
that is used provides numerous options and parameters that
are typically not documented. Sometimes the end result is
not satisfactory, so that some of the intermediate process-
ing steps need to be re-done in higher quality. Scheiblauer et
al. [SZW09] have created a master model of the Domitilla
Catacomb with a size of 30 GB - and the intermediate pro-
cessing steps take a multiple of this. And it is easy to see that
versioning is a nightmare when different operators at differ-
ent locations are involved, or the processing stops for a while
and is continued later.

Another level of complexity arises from the heterogene-
ity of the tools that are used, and also from the indispensable
ad-hoc workflows: Each type of artefact requires slightly dif-
ferent treatment, even if the general workflow remains basi-
cally the same. The workflow that works well for statues is
not the same as for busts, and it is totally inappropriate for
the 3D-reconstruction of building remains. And with an in-
creasing differentiation and specialization of a commercial
3D reconstruction sector, the range of workflows in practice
will also become much more diverse.

1.3. List of issues to solve

To summarize, the infrastructure and reconstruction work-
flow must resolve and find good answers to these issues:

• Storage: On which machine is enough free disk
space for processing the datasets?

• Location: Which datasets to process are on which
network drive / on which machine?

• Versioning: Which datasets differ just in tool set-
tings, which are for further processing?

• Purpose: Is the goal a high-quality master, an in-
teractive model, or a preview model?

• Soundness: What was the reason for using these
specific tool settings, and not others?

• Retargeting: Could the work be automatically repro-
duced in lower or higher quality?

• Responsibility: Who is to blame for which mistake in
which step, and who did a good job?

• Traceback: Which set of input data were used for a
certain sequence of processing steps?

• Completion: Can missing or low-quality data, or just
parts, still be completed later on?

• Accounting: Which step did take how much time to
complete in which quality?

• Sustainability: Which parts of the whole processing se-
quence need to be preserved?

1.4. Solution approach: Repository-centric process

3D reconstruction has two main ingredients, the infrastruc-
ture (the technical tools), and the process model, the concep-
tual frameork for the organization of the different workflows.
One process model that is very often used is the pipeline.
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Figure 2: Alignment and fusion. 20 sequences were taken for this statue in a very systematic way (upper / lower part), but the
resulting model still has holes under the arm and on top of the head. Such problems become apparent often only with the final
model. So despite careful planning, each reconstruction has exceptions and needs a slightly different workflow.

The idea is to provide a set of tools and to make sure that
the output produced by one tool can be used as input for the
next. The problem of this somewhat naive approach is that
there is no monitoring framework that enforces the consis-
tency of the workflow. Quality standards can not be enforced
and, more seriously, can not be verified a posteriori.

Our approach to solving the aforementioned issues and
problems is to switch to a repository-centric process model.
The idea is to use a centralized (but distributed) data repos-
itory, both for storage and for metadata management. This
approach is based on the observation that any management
unit introduces a certain administrative overhead that is typ-
ically not accepted by users that work under tight time and
cost constraints. So we combine the management unit with a
storage service that has undeniable advantages also for prac-
titioners: Data to be processed can be retrieved from any
location, even large-volume processing results are reliably
stored, and the process information is gathered on a per-file
basis using an as-lightweight-as-possible reporting scheme.
So the semantic context of each processing step, and of each
file, can be faithfully preserved.

A refinement of the overall idea leads to the design deci-
sions explained in section 3, and to the implementation de-
scribed in the following sections. But before that we look at
possible alternative approaches and tools.

2. Related Work

Many solutions exists for managing digital content, ranging
from digital libraries such as Fedora [fed] with MIME-type
based content storage, aggregation and metadata tagging,
over a plethora of content-management-system (CMS), to
3D-PDF [Ado08] as dissemination standard. Such systems
and formats are typically strong on the metadata side, e.g.,
they can enforce the referential integrity of internal links.
Problems are that these are heavy-weight solutions with their

own data management philosophy (like Fedora), they are not
for large-volume datasets (scalability issue), they have no
notion of (ad-hoc) workflows, and they provide only limited
support for reasoning on digital provenance.

Content-based retrieval systems focus on collecting
quality-controlled multimedia datasets, allow markup and
link insertion, and make data accessible via sophisticated re-
trieval engines. Berndt et al. [BKHS09] have presented an
extensible multimedia library for architectural 3D-models
and music. But again, there is no workflow support.

Versioning systems like CVS, GIT [git], and in partic-
ular Subversion (SVN) [SVN] are very convenient to use
and provide data transfer capabilities. However, their meta-
data support is limited and specialized, they also have scal-
ability problems (SVN doubles the space locally required),
and, most importantly, we explicitly deny the possibility of
changing datasets (write-once policy, see sec. 3).

The grid computing community provides great tools
for scalable transmission, e.g., for physics institutions like
CERN to share their huge datasets with other institutions.
Indeed we tried to incorporate one grid system with a large
user base, the Globus Toolkit (GT). But we found that it was
much like breaking a fly on the wheel since it is extremely
complex to install and use, to the point that it became totally
unmanageable with our limited resources. Furthermore, de-
pending on external developments can be a problem (known
as vendor-lock-in anti-pattern in software engineering). GT
has many components we do not need, and from version 5 on
(Jan 2010) the Java API of GT was suddenly discontinued.

Object repositories specifically tailored for Cultural Her-
itage have received only limited attention in literature.
Sometimes they appear as a side note in processing pipeline
frameworks. Cosmas et al. [CIG∗03] have described a com-
prehensive CH digitalization pipeline ranging from data ac-
quisition over 3D reconstruction to visualisation and data
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Figure 3: The complete repository. Clients communicate via
a central web service, binary transfer is de-centralized via
AFS. This paper describes only the highlighted components.

storage. But during a field campaign, new data can not be
ingested due to the centralized design; little attention was
given to workflows; collecting paradata was not enforced.

Very interesting systematic foundations for so-called dis-
tributed digital object services for CH in general were laid
out by Kahn et al. [KW95]. The central notion in their sem-
inal work is the digital object consisting of two parts, a
(typed) dataset and descriptive metadata that must contain
(at least) a globally unique ID (called handle). They propose
a distributed repository infrastructure consisting of a number
of repository nodes to store data, again each with a unique
ID. Actors (originators) provide data and interact with one
node at a time via a Repository Access Protocol allowing to
store and access digital objects. A globally available handle
service is responsible for registering objects, it knows about
each object in each repository node and is invoked whenever
a digital object is ingested or retrieved.

Our system incorporates many of these ideas and con-
cepts, as well as it introduces new ones, as described next.

3. Repository Design Decisions

This section presents the fundamental design decisions (DD)
of our system, in the order from very general to very specific,
that result from the guiding idea of a repository-centric ap-
proach with enforced paradata collection. Note that our im-
plementation is in fact just one example; we hope that the
concepts we provide serve as guideline also for slightly dif-
ferent systems.

DD1: Repository-centric workflow. All data are ingested
in a centralized storage, the repository. For processing,
data are retrieved, processed, and the processing results
are again ingested.

DD2: No dataset without metadata / paradata. Each file
to be ingested must be accompanied by a metadata file
(in XML) that describes in a formalized way the process

that produced it, and the input data that were used for it.
Both the dataset file and the metadata file are stored.

DD3: All identifiable units are assigned a UUID. Each
object that may be subject to reasoning (facts expressed
in XML), in particular each ingested dataset and metadata
file, is assigned a universally unique identifier (UUID).

DD4: Write-once policy for datasets. Datasets are im-
mutable. Changing a dataset, e.g., editing a triangle mesh,
is considered a processing step that must be documented.
Intellectual transparency requires referential integrity:
When dataset A is processed to produce dataset B,
changing A can make it impossible to produce B from it.

DD5: Datasets can be deleted, metadata can not. It may
be that a very uninteresting 30 GB dataset is not retrieved
for many years. In such cases, garbage collection is al-
lowed to free the storage. However, referential integrity
demands that the (typically small) metadata are preserved
because a link may point to the reference.

DD6: Metadata are versioned. The XML metadata for a
specific dataset may somentimes contain errors, e.g., the
description of the digital provenance was incomplete, or
the standards for describing provenance change, which
requires changing the metadata. The older metadata ver-
sions are kept, e.g., to clean the semantic network reliably.

3.1. Why is using UUIDs so convenient?

The UUID is defined in two ISO standards [ISO96, ISO08]
as 128-bit number with a string representation of 32 hex dig-
its with 4 hyphens. Their generation rule has the important
property that it is extremely improbable that the same UUID
is generated twice (UUID clash). The set of 2128 possible
UUIDs is in fact gigantic: Six billion persons can generate,
over a period of 2000 years, in every nanosecond 500 million
UUIDs before the whole set is used up. Since UUID clashes
are so improbable, a UUID can be generated locally, on the
client side, where the processing is carried out. UUID gener-
ating functions are part of almost all operating systems, e.g.,
the uuidgen commandline tool on Unix. UUIDs have there-
fore the important advantage that reasoning about datasets,
which requires IDs, becomes possible without having to con-
tact a centralized ID generator. An archeologist can acquire
data in the field and already start to process, while each pro-
cessing step is documented: The metadata manager on the
local machine simply assigns a new UUID to each file that
is being generated. It uses it, e.g., to build up the processing
dependency graph that contains a node for each dataset and a
directed edge connecting input(s) and output(s) of each pro-
cessing step. After the field campaign, data and XML meta-
data are batch-ingested, and in the repository it is still com-
pletely clear in which stage of processing each dataset is.

3.2. Object repository and metadata repository

3D datasets and metadata are in fact two very different kinds
of information: 3D data allow spatial or geometric reason-
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ing, but have no attached semantics. The notion of ’spatial
semantics’ is slightly problematic for 3D datasets, as was ex-
plained by Havemann et al. in [HF07]. We account for this
by distinguishing between two types of repositories (Fig. 3):

DD7: RI = MR + OR. The core of our repository infras-
tructure consists of a metadata repository (MR) and an
object repository (OR). Neither of them is directly acces-
sible from outside; all requests go to the (thin) RI layer,
which dispatches them to the MR and the OR.

DD8: The MR contains a semantic network. In the XML
metadata files, facts are expressed as RDF triplets, basi-
cally as declarative sentences (subject-verb-object) such
as Dataset A - was measured by - Device X. The whole of
such facts makes up a network of so-called entities con-
nected by properties (the verbs).

DD9: OR = ORDB + ORFS. The ORDB is a (relational,
see sec. 4.2) database with tables for datasets, groups,
users, UUIDs etc. The file store (ORFS) is basically a very
large, flat list of files. Any part-of relations (virtual direc-
tories) are stored in the ORDB.

In our case, paradata and processing information is ex-
pressed as RDF facts in the semantic network. It uses an
extension of the CIDOC-CRM [CDG∗05], an ISO-standard
for cultural information modeling, that is capable of describ-
ing measurement events, processing events, actor roles, dig-
ital derivations, etc. The principles of information modeling
in the MR are described in a separate publication.

A potential problem with semantic networks is network
pollution: Wrong facts (RDF triplets) can lead to false rea-
soning. But the effects can be subtle, and pollution is some-
times difficult to detect. The OR can help here.

DD10: All changes to the MR are ingested in the OR.
Since it is very difficult to undo modifications of a
semantic network, especially after further modifications,
it was decided to store all modifications also as XML
metadata files in the OR. This way, the MR can be rebuilt
from scratch when it is messed up.

DD11: The MR refers to OR datasets via their UUID.
UUIDs provide the link between both parts of the reposi-
tory. A semantic query can yield, for example, all datasets
that were produced using a particular sort of device, since
the identifiers A and X in the example above are UUIDs.

3.3. Privacy considerations and requirements

The great vision for the future is that 3D reconstructions
are no longer carried out by research organization in pi-
lot projects, but by professionals in a commercial, quasi-
industrial setting on a mass scale. 3D digitization offers
great opportunities since digital assets have undeniable ad-
vantages, only to mention: They are much easier to inspect,
manipulate, disseminate, archive, compare, and reproduce –
which in turn leads to a much better maintenance and pro-
tection of the real artefacts.

Figure 4: Layered Component Architecture. Higher lay-
ers build on top of lower layers and add functionality for
domain-specific tasks: end-user application domain with
tools for e.g. data aquisition and processing (AP), visual
querying and browsing (VSB), presentation and modeling
(PM). Below, the web service layer, finally the core dis-
tributed repository infrastructure (RI) from Fig. 3.

This level of professionalization, however, requires a re-
liable exchange platform. 3D digitization of valuable arte-
facts, e.g., pieces of art, is a delicate issue since the digi-
tal replica must be considered equally valuable. Especially
museums have very high demands in terms of security. The
Louvre database, for instance, has no direct Internet connec-
tion, and in France, museum data are treated using security
classifications from military [oral communication]. Such a
setting is a serious obstacle since, e.g., commercial compa-
nies doing contract work on 3D reconstruction have difficul-
ties to access the data. To some extent, we are faced with
a paradoxical situation: A centralized repository is the only
way to solve the problem, but none of the affected institu-
tions are willing to share their data.

DD12: ORFS is distributed, but ORDB is centralized.
Each institution may run its own ORFS node. The central
ORDB knows about the existence of the files in all ORFS
nodes. This is a prerequisite for gathering paradata, since
files from one instituition may be processed in another.

DD13: Institution have full control over datasets they own.
Every transfer of a dataset from one node to another, or
to a client, is faithfully recorded, and explictly stored in
the ORDB. This is possible since all transfer request go
through the RI. In particular, the owner of a dataset can
trigger its physical deletion on all repository nodes.

DD14: Each dataset can have any number of replicas.
A dataset has no unique or preferred storage position. The
actual file can reside on any number > 0 of repository
nodes, each such instance is called a replica. Deleting
the last replica means deleting the dataset (but not its
metadata, see DD5).
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3.4. Poly-hierarchical grouping

One complication is that each dataset may be used for differ-
ent purposes. It may be that only a subset of the raw data is
used for a particular reconstruction, and a different subset for
another one. It may be that a master model is produced, but
it turns out to be of insufficient quality, so that some inter-
mediate processing steps have to be re-done in with different
tool settings. So it is very convenient if it is possible to flexi-
bly create groups of files needed for a particular purpose; but
each file can be part of different of such groups.

DD15: Virtual directories by poly-hierarchical grouping.
The ORDB supports a grouping facility; each group has
a UUID to enable reasoning about it in the MR. Groups
can contain datasets as well as other groups. Each group
has metadata attached that describe its purpose.

3.5. Area tables as link anchors in datasets

Sometimes it is necessary to express facts not about a whole
model, but only about some part of it. All busts show a face;
all faces have mouth, ear, and eyes; and so on. To make it in
principle possible to retrieve, e.g., all noses of all statues in
the repository, the ORDB supports the notion of area tables.

DD16: Each dataset can have an area table attached.
An area table is a special kind of XML file with a list
of media dependent area definitions: The partition of an
image, e.g., into fore- and background (segmenation); a
bounding box around a set of triangles; a curve in space
describing a feature line; and so on.

DD17: Area tables are versioned. At any given moment,
there is only one specific table of areas for a dataset.
However, unlike datasets, area tables contain interpreta-
tions and can, thus, be changed. Area tables typically only
grow; an area can only be deleted if it is certain that it is
no longer referenced anywhere.

3.6. ONI datasets: Objects Not Ingested

In order to maintain the paradata consistent, it may be neces-
sary to perform reasoning about digital assets without an as-
sociated dataset. This may be, for instance, inaccessible data,
very large volume data, or data that are simply not stored on
a location that is part of the repository.

DD18: ONI-datasets have no binary file Objects not in-
gested are incomplete datasets. They behave like normal
datasets, i.e., can be reasoned about, added to groups, etc.
But when retrieved, a file of size 0 bytes is created. The
binary file can be ingested anytime later, thus turning an
ONI dataset into a normal dataset.

4. Implementation

The purpose of this section is to describe our example im-
plementation of the concepts and design decisions from the

previous sections. It shall convey a very concrete idea of how
the design decisions can be put into practice. According to
DD9, the two parts of the OR are described in two sections.

4.1. ORFS: The OR File Store uses AFS

The Andrew File System (AFS) [MSC∗86, HKM∗88] is a
distributed file system with user management, access con-
trol lists, Kerberos-5-based user- and service-authentication,
efficient caching to reduce bandwith usage and, as an op-
tion, encrypted network traffic. AFS is conceptually mature
and reliable in practice. The OpenAFS [AFS] implementa-
tion is available under free IBM Public License, clients exist
for Linux, MacOS X, Windows, BSD and Solaris.

The highest logical level are AFS cells spanning a name
space for files and directories, consisting of one or more file
servers and several administrative database servers. There
is usually one cell per institution, e.g., per museum, per
archive, public office or enterprise. AFS stores its data in
volumes that can be mounted anywhere in the cell. A so-
phisticated caching scheme makes sure that often used data
reside on a computer close to the user that needs it.

How AFS is used as ORFS. Normally, the AFS client is
installed on end user computers. It gives access to the AFS
network file system, AFS drives are mounted and mapped
to a local device name. Repository users, however, never
get in direct contact with AFS. No AFS client is installed
on their client machines. The system overview in Figure 3
shows the main repository server in the center. There is one
AFS cell for the whole repository. Each participating orga-
nization running a repository node has one AFS file server
running on their node computer (right).

End users typically belong to an institution and have an
account on the respective node. The node computer holds a
hidden AFS ticket for each user that is logged in, to retrieve
datasets from this or other nodes. Access to files is granted
based on the access rights stored in the ORDB, not the AFS.

4.2. ORDB: Relational DB, not semantic network

The OR works closely together with the semantic network of
the MR (DD7-9). Since all information about OR datasets
could in principle be stored in the network, the question
arises why the OR needs a separate, relational DB. One rea-
son is performance: Searching in a relational DB with its
known structure is much, much faster than traversing the se-
mantic network. Second, it is easier to actually enforce a cer-
tain structure in a relational DB; and the same basic informa-
tion (size, date, etc) must be available for all datasets.

Still, the OR is incomplete without the MR, since the
ORDB is very schematic and can definitely not represent
the kind of provenance detail that a RDF-based database can
store. The OR keeps only a backup (in XML metadata files).
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Figure 5: The database schema of the ORDB. The purpose is color-coded: the central File table (red), information about the files
(green), link tables (blue), dataset grouping (violet), revision management (orange), user management (yellow), miscellaneous
(white). Arrows indicate references explained in the text, “PK” is primary key and “FK” foreign key.

4.3. ORDB: The OR DataBase

The OR database scheme shown in Fig. 5 maybe gives the
best and most concrete idea of the implementation; therefore
we present it in some detail. For better overview, the tables
are color-coded according to their purpose. The blue group
has a special role, as its purpose is interlinking, so it is dis-
cussed within the other groups.

The File section (red, green). The OR can store three types
of files (green tables): Datasets, Metadata and AreaTables.
Each of them is associated with exactly one File, so arrows
8, 9, 11 represent 1:1 relations. While the latter two are
XML files, Datasets are binary files. As DD2 specifies, each
Dataset is tied to exactly one Metadata file (arrow 18) and
(DD17) at most one AreaTable file (16). Each File can re-
side on many different repository nodes, which is accounted
for in the File2Location table. The Location table contains
exactly one entry for each repository node (with AFS file
server) so both arrows 10 and 23 are 1:n.

Versioning information (orange). DD6 and DD17 require
Metadata and Areatables to be subject to versioning: While
the Dataset references only the most recent version, the Ver-
sion tables realize a doubly linked list that makes it possible
to revert to previous information in case of errors. Accord-
ingly, the arrow pairs 12/13, 14/15 are 1:1 relations (except
for the first and the last).

Poly-hierarchical grouping (violet). A group acts like a
virtual directory (DD15). The members of a group are stored
in the tables Group2Dataset and Group2Group. Concerning
the latter, note that a Group can have any number of par-

ents. The Group structure resembles more a general graph
than a directory tree; in principle, it can even have cycles, al-
though there is no real use for them. So unlike with file sys-
tem directories, the parent directory (“..”) depends on the
context. Navigation always requires maintaining a full path,
and any Group can be used as entry point (root node) of the
path. The purpose of forming this particular group structure
is motivated by the Group2Metadata relation.

Groups are lightweight and can be used as labeling mech-
anism: There can be groups for all statues, for the Gothic
period, for lengthy objects, etc. The group label is described
in detail by the metadata attached to each group. - Note
that grouping can also help dealing with, e.g., ZIP-archives,
which are files containing a set of other files. It is possible to
create a Group of datasets that all point to the same archive
file, the group metadata containing the zipfile information.
So the grouping functionality can potentially overlap with
purpose of the semantic network. Yet again, the argument is
that searching in a relational DB is faster.

User and rights management (yellow). A design decision
on the implementation level is that only Files are subject
to user rights management, simply not to overcomplicate it.
Access rights must be checked once at ingest time and then
later on for each and every retrieval (i.e., file download). For
simplicity, the UserData table can stand both for individ-
ual persons and for user groups. Similar to Group2Group,
the UserGroup table can express a poly-hierarchy; usually it
should reflect the hierarchy of a participating organization.

The Status table. As prescribed by DD2, dataset and meta-
data must be ingested together. However, in case of transmis-
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sion errors it may occur that File fields like Checksum and
Size, or information in the metadata, is inconsistent with the
dataset. The type of detected inconsistency is described in
the Status table. Since the integrity of a group depends on
that of its members, the Group also refers to a status.

5. Communication API

The OR is implemented in Java. Despite the complexity of
maintaining the database and the distributed storage consis-
tent, the whole OR system can be operated using only a very
small set of ≈ 19 functions (plus a few administrative func-
tions needed for technical reasons), the so-called OR-API.
They are issued using SOAP calls to the OR webservice. For
simplicity, all functions have the return value Result contain-
ing a flag for success or error, and a Java Object reference as
a hook to return any collection of objects.

User identification (login/passwort) and session manage-
ment are handled centrally by the RI webservice. The fol-
lowing functions are members of a class ORSession that
is instantiated in the OR service for each user session. The
ORSession constructor receives a session ticket, containing
the user ID and a session UUID. The session ticket is sent for
identification whenever the RI calls the OR (using SOAP);
within the OR it is used to identify the right ORSession ob-
ject. So the session ticket is not part of the signatures of the
ORSession functions. Functions for user and access rights
management are omitted here, they are straightforward.

Ingestion of datasets and metadata

Result createDataset (GUID datasetID, Dataset struct);
Result setMetadata (GUID datasetID, Metadata struct);
Result ingestDataset (GUID datasetID, File path);
Result ingestMetadata (GUID datasetID, File path);

Ingestion is a two-stage process: First the database entries
are created (Fig. 5), then the files are transmitted. Unlike
createDataset, the setMetadata function can be called more
than once, to update the metadata attached to a dataset. The
ingest functions initiate the actual file transfer from client to
server. The built-in CRC mechanism verifies the success of
the transmission, which is vital to maintain consistency. To
some extent, the MD5 sum can be used to detect duplicate
binary datasets. Once the dataset is ingested, it is immutable
(DD4), so calling ingestDataset again makes no sense. The
path of ingestMetadata points to the XML file.

Retrieval: Accessing datasets and metadata

Result queryField (GUID datasetID, String field );
Result retrieveDataset (GUID datasetID, File path);
Result retrieveMetadata (GUID datasetID, File path);

These functions retrieve information about repository
datasets. The field string parameter describes the database

field relative to the chosen Dataset using a path ex-
pression: FileID returns the FileID of the Dataset, while
MetaFileID.FileID that of the (current) metadata file. Using
AreaTableID.FileID.CreationUser the person is identified who
added the last area. retrieveDataset is the central routine to
retrieve complete datasets with data file, metadata, areatable.
It operates asynchronously, i.e., a callback is triggered when
the files are available on the client side. The path must be a
directory. Metadata can also be retrieved separately.

Poly-hierarchical grouping

Result createGroup (GUID groupID, GroupNode struct);
Result addToGroup (GUID nodeID, GUID groupID);
Result removeFromGroup (GUID nodeID, GUID groupID);

Any user can create a new empty dataset group (DD15) and
add to it any number of datasets and sub-groups, e.g., se-
quences of RAW photos of a statue. This powerful feature is
the key to structuring workflows, and to a lightweight para-
data reporting scheme. Note that a nodeID can equally refer
to a Dataset or a Group. Group metadata are set using the
same setMetadata function as for datasets.

Queries

Result query (SQLStatement sql);
Result setAccess (GUID fileID, Location id ,

GUID userID, String right );
Result checkAccess (GUID fileID, Location id ,

GUID userID, String right );

As any other relational DB the ORDB can be queried us-
ing SQL statements. The Result typically contains a Table
(list of records), e.g., a list of UUID(s) of queried Files or
Datasets. Note that the RI does not provide any function
to change the database directly; this can only be done by
database administrators (using the ORSession service func-
tions that are not listed here). Four rights exist: Ingest, Re-
trieve, Update, Delete. Since binary datasets are never up-
dated (DD4) the UPDATE right just means the user is al-
lowed to update metadata.

Replica management

Result createReplica (GUID datasetID, GUID locationID);
Result deleteReplica (GUID datasetID, GUID locationID);
Result eraseDataFile (GUID datasetID);

Creating a replica triggers the creation of a physical copy
in a remote location (provided the user has the right to do
so). The user and date of a replica creation are logged in
File2Location. Note that it may well be the case that no
user in the target location has the right to access the file
(backup scenario). On the other hand, even if a user in an-
other location has the right to access a file, it remains inac-
cessible unless he has also access to the node (i.e., he be-
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Figure 6: Use case diagram for ingestion, retrieve and
query. The ovals represent operations, the rectangle symbol-
izes the OR system

longs to the node UserGroup). Deletion of the last remain-
ing replica using deleteReplica will fail. Authorized users,
however, can erase a binary dataset completely from the
whole ORFS; only its metadata are not removed (DD5). The
dataset is physically removed from all repository nodes, and
the File2Location table (replica list) is cleared for it. The
Status of the File is set to deleted, the DeletionDate and
DeletionUser are set appropriately. Replica deletion may be
logged as well, if necessary (future work).

Area tables

Result setAreaTable (GUID datasetID, File path);
Result getAreaTable (GUID datasetID, File path);

As specified by DD15 and DD16, areas in a dataset can be
defined by any user with Retrieve permission. For simplic-
ity, they are stored as a single file (also in XML). Users typ-
ically retrieve the area table, add an area, and ingest it again.
The XML file is structured such that it permits conflict-free
merging of areas defined by different users. This merging
is done transparently by setAreaTable, so it may be that the
XML file given as parameter is not identical to the one that
will be entered into the ORFS.

6. Use Cases

The functionality of the OR system is illustrated by the use
case diagram in Fig. 6. The OR is designed as a component
of an integrated repository infrastructure and can be entirely
operated with the concise API from the previous section.
The obvious main use cases are uploading/ingesting digi-
tal artefacts, downloading/retrieving the digital artefacts, and
querying the database to obtain meta information.

6.1. Ingestion of datasets

Suppose the user has a number of valuable data files like
raw measurement data, semi-finished models, or a finished

master model. Each file (e.g., seq-12_22.jpg) on the hard-
disk is complemented by an XML provenance metadata
file that complies to the CIDOC-CRM [CDG∗05] with a
similar filename residing in an invisible sub-directory, e.g.,
.metadata/seq-12_22.jpg.metadata.

The user connects to the RI through stand-alone client
software, identifies with username and password, and ob-
tains a session ticket from the repository server. The user also
needs to have rights for a location, i.e., a repository node.
On this node, a (hidden) AFS/Kerberos ticket is obtained to
access the AFS server. The AFS ticket is also stored in the
ORSession class on the OR (middle red box in Fig. 3).

The client software has an integrated browser for the lo-
cal file system to select all the files to ingest. When ingestion
is started, a SOAP call triggers the data transmission (meta-
data and dataset) directly to the chosen node (Data Transfer
in Fig. 3). Data are stored on the node in a temporary folder
where they are checked for integrity (CRC, MD5), and the
metadata are sent to the MR for validation. If positive, the
metadata is processed and entered into the central semantic
network (MR), and the datasets are transferred from the tem-
porary folder to the node’s AFS by calling the ingestDataset
and ingestMetadata functions of the OR webservice (called
OR-DT-API in Fig. 3) of the node. Finally, the central ORDB
is updated by calling createDataset and setMetadata, here
the OR-DT-API webservice of the node calls the OR-API.
In case the transfer process was not finished properly, the
process will be reset and the ORDB remains unchanged; the
user receives a notification to re-send the corrupted datasets,
or to repair the metadata.

6.2. Retrieval processing flow

From the user perspective, the retrieval process starts in a
similar way as ingestion. The main difference is that now
the browser shows the Group hierarchy of the ORDB server
instead of the local file system. Both the ORDB and the se-
mantic network can be queried (using SQL and SPARQL,
respectively) to obtain the list of data to be processed. The
user may also choose to create groups to collect datasets ac-
cording to his requirements.

When the user decides to download the chosen data to the
local harddisk, first the access rights are validated; retrieval
is denied if either the user does not have sufficient access
rights, or if no replica is on a node accessible to the user. If
neither applies, the client software triggers the server func-
tion retrieveDataset using SOAP. When the transfer is fin-
ished the built-in transfer integrity check verifies the transfer
process. In case of failure, the user will get notice.

6.3. Query processing flow

There are two main query scenarios: (1) The user has a list of
dataset UUIDs and wishes to obtain further information and
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metadata. Then he can use the client software to obtain file
size, ingestion date etc. by issuing the queryField function on
the node’s OR webservice. (2) The user does not know the
UUID but has some attributes of the desired datasets. If this
is the case, the user again communicates first with the RI to
obtain a session ticket, and then triggers through the RI the
query() function of the OR-API. The known attribute values
are converted to a conditional clause in an SQL SELECT
statement. As a result of the query the ORDB returns the
dataset IDs to the user who can then retrieve the binary data
for local processing according to the chosen workflow.

7. Conclusion and Future Work

We believe we have laid out sound foundations for a reliable
and useful object repository for Cultural Heritage. To our
experience, almost all archeologists, curators, conservators
etc. share the same grief about chaotic and hardly manage-
able digital content creation workflows. Our project could be
a step forward for creating better models in shorter time. So,
much has been achieved, but also much remains to be done.
Many question are not yet answered.

We are very eager to provide our system to practitioners
for obtaining qualified feedback on whether its usefulness
really outweights the administrative overhead. Also open is
whether the architecture scales up to very large user bases;
we anticipate a slight bottleneck when too many users con-
tact the central repository server. We have not yet carried out
any stress tests with many parallel requests for large volume
data, or for a large number of DB queries per second.

More fundamental is the question to what extent paradata
needs to be captured in order to be useful. Although our sys-
tem does not prescribe any particular granularity of storing
intermediate results, we anticipate that many of them are in
fact redundant, even if they are obtained by manual work.

Also challenging will be to define the details of the
lightweight reporting scheme. Even though many data re-
main the same (same author, same device, etc) over the du-
ration of an acquisition campaign, it may still be that the ex-
ceptions that occur with almost every acquisition may be too
tedious to describe in practice. We have to explore genera-
tive approaches for creating flexible, parameterized metadata
templates that can be instantiated procedurally.

And finally, we would like to know whether our system
can easily be used with other more domain specific seman-
tic databases. Although the OR design does not depend on
CIDOC-CRM, it was developed with the CRM in mind. If
our system can be re-targeted to work with different meta-
data repositories, this would be a strong clue that we have
found a sufficiently general object repository infrastructure.
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