
Parsing Architecture within Plan Drawings
with Application to Medieval Castles and Fortresses

A. Willis1†, Y. Sui1 and K. Galor2

1University of North Carolina at Charlotte, Dept. of Electrical and Computer Engineering, Charlotte, NC USA
2Brown University, Dept. of Judaic Studies, Providence, RI USA

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Plan drawings are graphical documents critical to the documentation of architectural features at historic sites.
These drawings include important geometric information such as the location, shape, and size of architectural
features, which, for decaying or collapsed structures, may be the only existing records of the intact structure. This
paper discusses an algorithm that estimates the geometry and semantic interpretation of architectural structures
from a plan drawing. The estimated values are used to automatically generate a 3D structure using the estimated
semantic labels of structural elements in the plan drawing. We demonstrate the utility of this approach by parsing
several plan drawings of medieval castles and fortresses and generating 3D reconstructions of these structures and
detail typical circumstances that prevent the system from generating a valid reconstruction. Since the 3D model is
derived from plan drawings where the architectural contour is well-defined, the approach automatically provides
near-pixel level accuracy at all locations which is very difficult and time-consuming to guarantee when manu-
ally constructing 3D models from the same drawing. Hence, these automatically-produced models can provide
unprecedented accuracy to the in-situ remains not feasible with conventional manual model-building techniques.
While this article represents initial work on this topic with limited scope (castles/fortresses), we envision that
subsequent enhancements to this method will be a valuable tool for efficiently generating accurate 3D models for
many different historic structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

This article proposes prototype software for semi-automatic
estimation of architectural geometry and semantic informa-
tion in a plan drawing; a problem that we refer to as archi-
tectural parsing. Plan drawings are graphical documents that
provide a top-down view of a site or a geographical region
within a site. Plan drawings document the structure and spa-
tial arrangement of objects within a geographic region and
have been used extensively throughout written history for
this purpose.

At large scales, these drawings can incorporate informa-

† This work was supported in part by the National Science Foun-
dation under IIS-0808718. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the National Science
Foundation.

tion that indicates the structure of settlements or perhaps dis-
tricts within settlements. Smaller scale plan drawings often
indicate the structure of just one or two buildings and the
spatial arrangement of rooms within these buildings. This
article proposes a method for extracting architecture from
these small-scale plan drawings and subsequently decom-
posing that architecture into a collection of geometric com-
ponents and assigning semantic labels to one of more of
these components. We cast the estimation as a parsing prob-
lem, typically encountered in computer languages and lin-
guistics, where parsing algorithms extract tokens, e.g., words
or syntax elements, to determine their functional or gram-
matical structure. Our parsing problem seeks to extract geo-
metric tokens, i.e., pieces of architecture, and applies shape
estimation methods to estimate the semantic labels for each
token geometric. Heuristics, motivated by a hand-specified
grammar, is then applied in a bottom-up clustering proce-
dure that groups together tokens to estimate higher-order se-

c© The Eurographics Association 2009.

The 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2009)
K. Debattista, C. Perlingieri, D. Pitzalis, and S. Spina (Editors)

DOI: 10.2312/VAST/VAST09/017-024

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/VAST/VAST09/017-024

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

(a) (b) (c) (d) (e)

Figure 1: A summary of the proposed method for parsing an archaeological plan drawing. (a) original digitized image, (b)
binary image with non-architectural features removed, (c) semantic labels are assigned to portions of the image, (d) a 3D model
is estimated using the semantic labels, (e) an aerial view of the actual in-situ remains of the castle.

mantic labels that are constructed from groups of geometric
tokens.

2. Related Work

This work relates to results from two somewhat distinct ar-
eas. Our model for estimating structures within archaeolog-
ical plan drawings is related to ongoing research in docu-
ment analysis where researchers are performing automated
processing of architectural plan drawings. Our model for es-
timating semantic labels from recognized geometric tokens
relates to shape modeling via shape grammars or, more gen-
erally, procedural modeling which has recently gained pop-
ularity within the graphics modeling community.

There have been several approaches provided in the doc-
ument and image analysis literature that seek to parse ob-
jects within images. A generative approach for image pars-
ing using Bayesian models is provided in [TCYZ03]. Here
the authors focus on models that combine structure and ap-
pearance classify specific types of objects within the image;
specifically faces and letters in an image. While this work
is an important example of how Bayesian models apply to
parsing problems, the models and training proposed are pur-
pose built for faces and text letters in images and requires
considerable generalization for parsing of generic images.

[DTASM00] is an early example of a method purpose
built for processing architectural plan drawings. This method
seeks to extract text information, various geometric infor-
mation, and small-scale building substructures such as win-
dows using a sequence of algorithms, each of which are de-
tected and extracted using special purpose algorithms cus-
tomized to each type of drawing annotation. Unfortunately,
this method is geared towards contemporary architectural
drawings that use standardized representations for structures
such as windows, doors, stairways, interior / exterior walls
etc. Archaeological structures often exhibit unique features
or period-specific substructures, e.g., arrow-slits for a castle,
which can vary widely in size and shape. Likewise, drawings
of these structures do not have a standardized representation
and the graphical representation of any given structure or
sub-structure can vary significantly, even for different plan
drawings of the same architecture.

[LMV01] presents a method for matching shapes mod-
eled as a sequence of lines. Each of the regions enclosed by
a collection of lines defines a region and lines are groups by
the regions that they bound. A region adjacency graph is then
constructed where each region is a node in the graph and
adjacent regions share an edge within the graph. Sub-graph
matching techniques are then used to recognize instances
of various shapes within a drawing. The method is applied
to hand-specified drawings including hand-written architec-
tural drawings. We also propose a graph-based model for the
shape and topology of architectural structures. However, our
graph is defined differently and allows for processing lines
and open regions which are shortcomings of this approach.

[DL99] presents a method for vectorization of line draw-
ings via a Space Pixel Vectorization (SPV) algorithm. The
approach seeks to approximate the in terms of the medial
axis of the lines present in the raster image. Much attention
is given to proper preservation of junctions such as right-
angle junctions. The method is applied for line drawings of
mechanical parts. This approach fails to accurately preserve
junctions between lines and arcs especially when the junc-
tion angle between these two contours is particularly small,
i.e., when the two contours are nearly tangential.

[YWR09] provides informative survey on methods pro-
posed for parsing contemporary architectural drawings. In
addition to outlining several popular approaches for this
problem the authors also demonstrate how these methods
can integrate with procedural modeling techniques to gen-
erate 3D models of modern buildings. This work builds
upon their previous work on procedural modeling for build-
ings [MWH∗06] that could automatically generate synthetic
model of realistic looking cities and undamaged, regular an-
cient structures such as a Mayan Puuc palace [MVW∗06].
However, these earlier building models, while having be-
lievable exteriors, were not geometrically consistent with the
actual buildings inside and out. Hence, such models are suit-
able for some visualization contexts but are not suitable for
detailed archaeological analysis.

c© The Eurographics Association 2009.

18

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

3. Motivation and Contribution

There are several important factors that motivate develop-
ment of this system:

1. Many architectural structures no longer exist and plan
drawing represent one of the best available sources for
geometric information regarding these structures. Sys-
tems that respect the exact dimensions (or relative-
dimensions) of the plan drawing provide 3D models that
are highly accurate to the original source data.

2. Often plan drawings can contain errors and ambiguities,
particularly when dealing with ancient documents. Mod-
els constructed from different plan drawings may be in-
teractively compared and contrasted to provide new in-
sights that would otherwise be difficult to gather. Es-
pecially when considering the third dimension, i.e., the
height of structures depicted within the plan drawings.

3. Rigorous research requires careful consideration of all
previous documentation. Much (almost all) of which is
typically in analog, i.e., paper, form be it photographic,
hand drawn, or the written word. Practitioners of digi-
tal archaeology must respect these old data sources while
simultaneously recording new data using contemporary
recording technologies and analysis tools. Software such
as this can facilitate bridging the gap between new pho-
tographic and 3D scan data recorded from historically
important architectural complexes and pre-existing plan
drawings of the same building.

Factors (1) and (3) are of concern mainly to archaeologists
and practitioners of digital archaeology while factor (2) is a
problem generic to estimating 3D structure from plan draw-
ings and applies to both contemporary plan drawings and
those made in antiquity. The proposed software is a tool
that address these issues by greatly expediting the time-
consuming process of converting pre-existing analog pen-
and-paper data into digital data that can be efficiently stored,
transmitted, and analyzed. While our initial approach pro-
posed in this paper is limited in scope, we envision that these
tools will become indispensable for accurately digitizing ar-
chitecture in cultural heritage.

Since the model is derived from plan drawings, accuracy
of the 3D structure is comparable to that of the original draw-
ing, i.e., our 3D model is an accurate geometric reproduc-
tion of the apparent contour of the structure as indicated in
the plan drawing. Our approach automatically provides near-
pixel level accuracy at all locations which is very difficult
and time-consuming to guarantee when manually construct-
ing 3D models from similar (or the same) drawings. Hence,
these automatically-produces models can provide unprece-
dented accuracy to the in-situ remains not feasible with con-
ventional manual model-building techniques.

4. Methodology

Our approach consists of seven steps:

1. Digitize the manuscript of interest with a digital camera
or scanner.

2. Pre-process the image to remove text and line-drawing
annotations.

3. Estimate a skeleton shape model for architectural ele-
ments present in the processed image.

4. Vectorize the estimated skeleton into simple, i.e., non-
intersecting, curve fragments connected at a collection of
special (x,y) locations denoted nodes.

5. Estimate a shape model for each of the curve fragments.
6. Using the estimated values from steps 1-5 and hand-

specified heuristics, each pixel in the binary image is as-
signed a semantic label.

7. Based on the label for each curve fragment, we construct
a 3D model over the extent of the curve fragment.

Steps 1-5 are generic to the problem of estimating architec-
tural features from a plan drawing. However, steps 6 and 7
must utilize a-priori knowledge regarding the structure and
geometric patterns typical to the architectural style being
processed. For our examples, we incorporate a-priori knowl-
edge regarding the structure and layout of a typical medieval
castle.

4.1. Digitize the manuscript

The method used for the digitization of a plan drawing typ-
ically involves either (1) taking an aerial photograph of the
document (non-contact) or (2) scanning the document. As
in any analog-to-digital process noise is generated in the
conversion and aliasing may occur especially for sharply
varying structures and small-scale variations in the draw-
ing. Geometrically accurate recordings of the printed doc-
ument is the goal during the capture process and this topic
has received considerable attention over the past two decades
[HZ04] and we refer the reader to these references for de-
tails. For our experimentation, we used a flatbed document
scanner set to a data capture resolution of 300 dpi (Figure
6(a)-top row), and we retrieved publicly available images
from the web (Figures 6(a)-middle and bottom rows). As
pointed out in § 4.7, the automatic parsing algorithm can
generate incorrect results due to the high degree of variabil-
ity present in plan diagrams (see Figure 2). We also assume
that the plan drawing contains an indication of the enclos-
ing castle walls, i.e., the castle walls form a closed contour
within the image.

4.2. Pre-Processing the digitized manuscript

The goal of this step is to remove all information that does
not relate to the architectural complex from the digitized
drawing. We assume the drawing is a greyscale scan of a
black and white drawing and proceed by estimating a binary
image, I, from the digitized greyscale image using a simple
threshold. Connected components, i.e., groups of contigu-
ous 1s and 0s in the binary image are grouped together and
assigned distinct region labels. The connected components
computes a disjoint set of regions that covers the scanned
image.

At this point we adopt mathematical notation to refer to

c© The Eurographics Association 2009.

19

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

(a) (b)

Figure 2: (a) An original plan drawing of Caerlaverock Cas-
tle. (b) A binary version of the image in (a). Note that some
content has been manually removed before processing such
as the inset gate detail in the top left corner and the front
arrow-slit detail on the lower left side. Typically these mod-
ifications can be done quickly (< 5mins.) by filling-in or re-
moving the problematic drawing components.

each of the connected image regions. Black regions and
white regions are given distinct symbols. White image re-
gions in plans typically denote an open space, i.e., locations
not occupied by architectural building elements. For rea-
sons that will become clear later, we refer to these regions
as faces, and assign each such region a face index denoted
Fi. Black image regions that remain after processing are as-
sumed to be due to architectural features in the plan drawing
and are the focus of processing for subsequent steps.

Architectural plan drawings often contain information
that indicates the location small-scale architectural building
elements within the larger complex. Common structures in-
clude staircases, windows, and doorways. However, for the
purposes of estimating the general building shape, we re-
move these structures by replacing them with black pixels.
Let card(Fi) denote the number of pixels within the ith white
region. Our replacement procedure fills in all faces that oc-
cupy less than 0.05% of the total image are replaced by black
pixels.

There is often a large amount of additional, i.e., non-
structural, information contained in plan drawings. These of-
ten include line-drawing annotations, i.e., thin lines within
the image, examples of these lines include topographical
lines, geographical grid lines, excavation grid lines etc.
These thin-line features in the plan drawing are removed by
a sequence of open and close morphological operations us-
ing a 3x3 structure element S:

Inew = I◦S•S

where◦ denotes the open morphological operation and • de-
notes the close morphological operation.

Apart from line-drawing annotations, there are often text
annotations, and other small graphical markings, e.g., spe-
cial features indicated by a legend, commonly included on
plan drawings. These annotations are detected as small iso-
lated black regions and removed using the same criterion as

Figure 3: Skeletonization and vectorization

that used for the faces earlier, i.e., all connected black re-
gions that occupy less than 0.05% of the total image are re-
places with white pixels.

In summary, our processing of the image consists of five
steps: (1) convert the image to a binary image; (2) group to-
gether contiguous sets of pixels having identical values in the
binary image; (3) fill-in small white regions with black pix-
els; (4) perform morphological operations to remove lines in
the image; (5) fill-in small isolated black regions with white
pixels. Note that the order of this procedure is important
given the non-linearity present in the morphological oper-
ations of step (4).

4.3. Extracting a skeleton from the processed image

The goal of this step is to convert each of the black regions
associated with an architectural structure from a volumet-
ric, i.e., pixel-based, representation to a curve, i.e., vector-
based, form. Typical models applied for this are the edge
thinning [LS92], skeleton computation [Soi03], and the me-
dial axis [Ley08]. While researchers have indicated that the
medial axis is a more accurate and stable representation, we
opt to use the skeleton representation. This decision has both
a pragmatic and theoretical motivation. Pragmatically, we
wish to use each pixel within the plan drawings as a grid
upon which we can place volumetric elements, i.e., build-
ing blocks. Hence, we only require assignment of labels to
each pixel location. Additional accuracy afforded beyond
this grid is wasted computation given this model. Theoreti-
cally, the skeleton provides us with a result that has the same
form as the original data, i.e., the skeleton consists of a se-
quence of pixels in the image. Curve-based representations
such as the medial axis require careful conversion between
their continuous representation and the discrete manifesta-
tion of that shape model in the digital image. While these
challenges have been tackled by researchers, we feel that the
shape representation provided by a skeleton model is suf-
ficient for this application due to: (a) the simplicity typical
of large-scale ancient structures and (b) the algorithmic and
computational complexity associated with using continuous
shape models.

c© The Eurographics Association 2009.

20

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

Our skeleton extraction process follows the method de-
scribed in [Soi03] and uses a sequence of eight different
morphological hit-or-miss operations that thin black image
regions. The morphological elements are applied iteratively
on the image until there are no changes in the image. This
approach iteratively thins black image regions, i.e., regions
indicating the presence of architectural structure, to a skele-
ton that is 4-connected almost anywhere (exceptions occur
in black pixel regions similar to a disk).

4.4. Vectorizing the skeleton

This step converts the skeleton from a collection of (x,y)
pixel locations to a sequence of curve fragments. Curve frag-
ments are delimited at each end by vertices which corre-
spond to special points on skeleton. Specifically, a node is
located at each (x,y) pixel location where a skeletal curve
ends or where three or more skeletal curves meet. Pairs of
vertices serve as delimiters, i.e., end points, where skeletal
curve fragments start and end. We then model the connec-
tivity (topology) of the architectural structures using a graph
model G(V,E) where V denotes a set of vertices and E de-
notes a set of edges. For our graph, each vertex is an (x,y)
vertex position extracted from the skeleton and denotes ei-
ther: (a) a location where a wall ends or (b) a location where
a wall junction occurs. Each of the skeletal curves extracted
in the vectorization process corresponds to an edge in the
graph and indicates the presence of a wall in-between these
two vertices.

Let Vi = {p} denote the ith vertex location within
the computed graph containing the pixel location, p =
(x,y)t , where the skeletal curve junction occurs. Let E j ={
(i0, i1)

∣
∣p1,p2, . . . ,pNj

}
denote the skeletal curve fragment

that joins the pair of vertices having indices (i0, i1) in the
graph via a sequence of Nj pixel locations. It is important
to note that multiple edges may exist between any pair of
graph vertices which makes our graph representation some-
what different from those typically encountered in graph the-
ory. Such situations tend to occur in drawings of highly sym-
metric structures which, due to noise in the drawing digitiza-
tion and skeleton estimation processes, seem to occur rarely
in practice. Our approach deals with these situations without
need for special treatment. We express the vectorized skele-
ton in terms of the computed graph G(V,E) where V = ∪iVi
and E = ∪ jE j.

G(V,E) is a simply-connected planar graph by virtue
of the source data and our definitions for nodes and
edges. Hence, we augment our graph with the definition of
faces, i.e., regions bounded by edges, including the outer,
infinitely-large region. Since edges correspond to skeletal
curve fragments in the image, faces cover all of the open
spaces in the image, i.e., every white pixel in the binary im-
age will lie within some unique graph face. For notational
purposes, let Fk =

{∪ jE j |p1,p2, . . . ,pNk

}
denote the kth

region of white pixels bounded by the set of edges ∪ jE j
and containing a set of Nk pixel locations that denote white
pixels lying inside the region covered by the kth face. Our

Figure 4: Fitting shape models to graph edges, i.e., skele-
tal curve fragments. Circular arcs are shown as dashed blue
lines and linear segments are shown as solid blue lines. Black
lines indicate points lying on the vectorized skeleton. Some
edges have not been classified due to large fitting error for
both of the fit shape models such as the room on the top left
side (in black). Many leaf edges present in the original skele-
ton have also been pruned, as they do not affect the topology
of the graph.

augmented graph is then G(V,E,F) where F = ∪kFk and
each face contains references only to those white pixels ly-
ing within the region delimited by the face edges. The graph
faces are computed using the classical wall-following algo-
rithm which is capable of identifying all simple loops within
graphs of this type.

4.5. Fitting Curve Fragment Shape Models

Using the computed graph model, we then estimate shape
models for each graph edge, i.e., skeletal curve fragment.
Towards this end, we fit a linear curve model and a circular
arc curve model to the sequence of points. Fitting solutions
are quickly computed using the method specified in [Tau91]
which provides an explicit solution for fitting generic alge-
braic curves to 2D data. We then compute the Euclidean er-
ror between the fit model and the curve fragment data as
indicated in equations (1) and (2).

εcircle(E j) =
1

Nj

Nj

∑
j=1

∥∥p j − c
∥∥− r (1)

εline(E j) =
1

Nj

Nj

∑
j=1

∣
∣p j · (a,b)t + c

∣
∣

√
a2 +b2

(2)

where c, r from equation (1) denote the (x,y) location and
radius, respectively, of a circle fit to the sequence of curve
fragment points and (a,b,c) from equation (2) denote the
coefficients of the fit algebraic line f (x,y) = ax+by+c. The
parameters of the shape model having smallest fitting error
are associated with each edge. These classifications are then

c© The Eurographics Association 2009.

21

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

utilized by the procedural model to determine the style and
type of masonry used to construct the wall.

4.6. Estimating Semantic Labels

The final estimation step seeks to assign semantic labels to
each pixel within the binary image. These labels are divided
into two groups: face labels; semantic information associ-
ated with white pixel regions in the binary image and edge
labels; semantic information associated with black pixel re-
gions in the binary image. Specific labels associated with
faces and edges depend largely on the type of architectural
structures included within the drawing. Our approach con-
centrates on drawings of medieval castles and fortresses and
uses a set of semantic labels appropriate for these structures.

Prior to estimation of the semantic labels, we simplify the
computed graph by pruning, i.e., removing, leaf edges, i.e.,
edges that connect isolated vertices into the graph. These
edges represent buttresses that stabilize and fortify the struc-
ture, extensions to the existing structure, or areas where a
portion of the original wall has collapsed leaving a void in
the plan drawing. While important for a holistic interpreta-
tion of the drawing, the structures associated with leaf edges
in the graph are not used for semantic interpretation and we
remove these edges before performing our semantic analysis
of the graph structure. We also make a subsequent pass over
the graph vertices to identify vertices that, after removing the
leaf edges, have only two edges. These vertices are removed
from the graph and the edges connected to these vertices are
merged into a single graph edge. As an example, Figure 3
shows several leaf edges that have been pruned in Figure 4.

Semantic labels are assigned using a sequence of heuris-
tics that assume the architectural complexes present in the
image is a castle. We have a top-down approach for as-
signing face and edge labels that starts with large regions
and iteratively decreases in scale until all of the edges and
faces within the graph have been assigned a semantic label.
This approach assumes that the drawing includes the entire
castle complex and is based on observations of >150 castle
plan drawings from a variety of sources (e.g., [Kau04]). The
heuristics are stated as an ordered sequence of steps where,
at each step, semantic labels for graph faces or edges are as-
signed. In our listing italics denote a semantic label associ-
ated with bold elements that come from the estimated graph
G(V,E,F) :

1. The castle surroundings label (dark blue) is assigned to
all faces, Fk, that include the boundary of the image.

2. The castle outer walls label (yellow) is assigned to all un-
classified edges, E j, that bound the faces found in (1) as
part of the castle surroundings.

3. The courtyard label (blue) is assigned to the un-classified
face, Fk, having largest area.

4. The tower wall label (orange) is assigned to un-classified
edges, E j, that are part of the castle outer walls class and
extend significantly towards the exterior of the castle. De-
tecting towers is accomplished by comparing the curve
fragment associated with the tower edge to a straight-line

(a)

Figure 5: The original archaeological plan drawing for the
Crusader fortress at Apollonia-Arsuf in Israel. Results for
this image are shown in Figure 6 (top row). The proposed
method does not use information from some annotations
such as the topographical lines in this plan drawing.

curve fragment that connects the vertices spanned by the
edge and applying Jensen’s inequality; a test for convex-
ity.

5. The tower face label (green) is assigned to un-classified
faces, Fk, that include at least one tower wall as a bound-
ing edge as specified in (4).

6. The great hall label (light blue) is assigned to the un-
classified face, Fk, having largest area.

7. The great hall wall label (light red) is assigned to un-
classified edges, E j, that bound the great hall specified
in (6).

8. If more than three faces remain unclassified, we assume
the castle contains a chapel. The chapel label (cyan) is
assigned to the face, Fk, having largest area from the list
of un-classified faces.

9. If a chapel was found, the chapel wall label (red) is
assigned to the un-classified edges, E j, that bound the
chapel specified in (8).

10. Remaining faces are classified as unknown (light green)
and likewise for edges (white).

We also note that, in some cases there exist long thin white in
plan drawings often associated with passageways and typi-
cally occurring in the gate area. As a pre-processing step,
these faces are eliminated from the list of faces and marked
as unknown regions (white).

4.7. Shortcomings of our Approach

While our initial system performs well for a number of Me-
dieval castles, there are a number of potential sources of er-
ror which may occur:

c© The Eurographics Association 2009.

22

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

(a) (b) (c) (d) (e)

Figure 6: Results for two castles are provided as separate rows: (top) A Crusader fortress at Apollonia-Arsuf in Israel (bottom)
Harlech castle in Northern Wales (see Figure 1) for a similar set of results computed for Caerlaverock castle in Southern
Scotland. Colors shown in column (c) indicate the semantic parsing of the architecture (see § 4.6 1-10).

• Potential problems with the input image data,
• Errors in classification, i.e., limits to the generality of our

heuristic rules,
• Errors in geometric accuracy

Typically a user will need to dedicate a short period of time
(<5mins) to “clean up” the input image for our system (see
§ 4.1). Typical problems due to the input image data occur
when:

1. the size of the castle within the image is either too small
(< 10% of the image) or too big (extends off the image
boundary).

2. the image includes other structures apart from the castle,
e.g., the image contains a building separated the castle.

3. the castle is surrounded by another structure / fortification
in the image, e.g., if present, the outer-bailey/enceinte of
the castle must be manually removed.

4. the castle boundary is not a closed, thick contour in the
image, i.e., the boundary is not distinguishable from other
annotations in the image such as topographical lines,
grid-lines, etc (see § 4.2 for details).

Note that issue (1) is a resolution-related problem and issues
(2,3,4) are issues that relate to the topological structure of
the graph extracted from the image (see § 4.4).

While our proposed method is completely new and works
well for a number of castles it may incorrectly identify some
parts of the castle. The generality of the heuristics applied in
§ 4.6 is also limited and applies generically only to fortresses
and castles constructed within the Medieval period. While
castles from other periods generally share the same struc-
ture, heuristics for internal structural complexes as specified
in rules 6-10 are more likely to generate incorrect classifica-
tions for castles built before or after the Medieval period.

At the moment, no efforts are placed to extract topolog-
ical, i.e., height information with respect to the “ground

plane,” which are present in some archaeological drawings
(see Figure 5). Hence geometric errors may exist in the
model due to two sources: (1) the exact topography of the
ground in the vicinity of the castle is assumed flat and (2)
the height of the castle structures is not available from the
plan drawings, our approach assumes pre-defined heights
and proportions for classified structures based in their class-
label.

4.8. Generating the 3D Model

At the moment we generate the 3D model using a volumetric
extrusion of the semantic labels estimated in the previous
step. Semantically distinct regions are extruded to a different
z-value with towers having the highest extruded offset, tower
rooms having the second highest offset, followed by outer
walls, great hall walls, great hall room, chapel walls, chapel
room, unknown walls, unknown rooms, the courtyard and
finally the castle surroundings which are placed in the z = 0
plane. More sophisticated models can exploit the semantic
labels to generate detailed geometry using methods such as
[MWH∗06] to fill-in missing information procedurally in a
manner appropriate to the identified semantic type.

5. Results

The parsing and recognition results are shown in Figures 1
and 6. In general, we are pleased with these results which re-
liably classify the castle surroundings face, the castle outer
walls, the castle towers, tower rooms, and the courtyards for
each of the shown examples. As demonstrated by comparing
the actual buildings to those reconstructed automatically, the
semantic labels provide important information that provide
a good coarse estimate of the structure. Note that, at present,
existing photographic information is not leveraged to aug-
ment the 3D model which is an area of interest for future
investigation.

c© The Eurographics Association 2009.

23

A. Willis & Y. Sui & K. Galor / Parsing Architecture within Plan Drawingswith Application to Medieval Castles and Fortresses

6. Conclusion

We have presented software that processes archaeological
plan drawings for the purpose of identifying significant se-
mantic sub-structures present within the drawing. While
other methods exist for processing architectural documents,
our approach differs from previous approaches in both goal
and methodology. Our goal is to be able to process docu-
ments, old and new, that describe historic sites. Our approach
generates semantic labels from scanned manuscripts using a
process that is fully-automatic in most tested cases and in
some cases requires a modest amount of user interaction.
The shape-and-topology model afforded by using a skele-
ton model for shape and a graph model for topology allows
heuristics to be defined that can identify important seman-
tic structures within the plan drawing. Effective heuristics
for medieval castles and fortresses were discussed that led
to satisfactory classification of semantic labels for architec-
ture of these structures and the rooms within these structures.
The process results in several useful products including the
final parse of the plan drawing into semantic labels. These
products include:

• Software that provides fully-automatic methods for ex-
tracting architectural structures from digitized documents.
If necessary, this process can be controlled interactively to
efficiently extract structural data from plan drawings.

• A combined shape-and-topology model for building com-
plexes. The shape component of the model represents the
complex as a connected group of curve-elements where
each curve element corresponds to areas where the walls
are linear or cylindrical in shape which are shapes typical
to medieval castle construction. The topological compo-
nent of the model uses a simple planar graph having edges
associated with each wall, vertices at wall junctions and
faces for open spaces that bound the complex (including
the castle exterior).

• Heuristics are used to assign semantic labels to each ar-
chitectural curve-element and each open space within the
image.

• A virtual 3D model of the architecture is estimated using
the estimated semantic labels and the estimated binary im-
age.

• An explicit list is provided that details issues that may
cause erroneous outputs and issues that relate to the ac-
curacy of the generated 3D model.

Since the 3D model is derived from plan drawings where
the architectural contour is well-defined, the approach au-
tomatically provides near-pixel level accuracy at all loca-
tions which is very difficult and time-consuming to guar-
antee when manually constructing 3D models from the
same drawing. Hence, these automatically-produced models
can provide unprecedented accuracy to the in-situ remains
not feasible with conventional manual model-building tech-
niques.

While this article represents initial work on this topic with
limited scope (castles/fortresses), we envision that subse-
quent enhancements to this method will be a valuable tool

for efficiently generating accurate 3D models for many dif-
ferent historic structures. This work represents a novel fu-
sion of digital document analysis, semantic parsing of im-
ages and 3D reconstruction techniques as they apply in a
cultural heritage context. There are several avenues for en-
hancement of the approach that include, interpreting other
annotations available in typical plan drawings, using a pro-
cedural model to automatically generate local building de-
tails based on the generated semantic labels, integrating in-
formation from vertical cross-section drawings and extract-
ing information from other archaeological annotations that
are currently removed as image noise. We are also interested
in examining how the heuristic aspect of this approach can
be generalized to include different structures or possibly ex-
changed for a more sophisticated approach that involves pat-
tern recognition.

References

[DL99] DORI D., LIU W.: Sparse pixel vectorization: An algo-
rithm and its performance evaluation. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence 21, 3 (1999), 202–215.

[DTASM00] DOSCH P., TOMBRE K., AH-SOON C., MASINI
G.: A complete system for the analysis of architectural drawings.
International Journal on Document Analysis and Recognition 3
(2000), 102–116.

[HZ04] HARTLEY R. I., ZISSERMAN A.: Multiple View Geome-
try in Computer Vision, second ed. Cambridge University Press,
2004.

[Kau04] The Medieval Fortress. Da Capo Press, 2004.

[Ley08] Applications of Medial Symmetry Representations of
Shape, vol. 37. Springer Netherlands, 2008, ch. From the In-
finitely Large to the Infinitely Small, pp. 327–351.

[LMV01] LIADOS J., MARTI E., VILLANUEVA J. J.: Symbol
recognition by error-tolerant subgraph matching between region
adjacency graphs. IEEE Transaction on Pattern Analysis and
Machine Intelligence 23, 10 (2001), 1137–1143.

[LS92] LAM L. S.-W. L., SUEN C. Y.: Thinning methodologies-
a comprehensive survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 14, 9 (1992), 869–885.

[MVW∗06] MULLER P., VEREENOOGHE T., WONKA P., PAAP
I., GOOL L. V.: 3d reconstruction of puuc buildings in xkipche.
In The 7th International Symposium on Virtual Reality, Archae-
ology and Cultural Heritage (2006), pp. 139–146.

[MWH∗06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. In Proceedings
of ACM SIGGRAPH (2006), pp. 614–623.

[Soi03] SOILLE P.: Morphological Image Analysis: Principles
and Applications, 2nd ed. Springer-Verlag, 2003.

[Tau91] TAUBIN G.: Estimation of planar curves, surfaces and
nonplanar space curves defined by implicit equations, with ap-
plications to edge and range image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 13, 11 (1991),
1115–1138.

[TCYZ03] TU Z., CHEN X., YUILLE A. L., ZHU S. C.: Im-
age parsing: Unifying segmentation, detection, and recognition.
In Ninth IEEE International Conference on Computer Vision
(2003), pp. 18–25.

[YWR09] YIN X., WONKA P., RAZDAN A.: Generating 3d
building models from architectural drawings: A survey. Com-
puter Graphics and Applications 29, 1 (2009), 20–30.

c© The Eurographics Association 2009.

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

