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Abstract

Working on the computer reconstruction of the Gallo-Roman forum of Bavay, we try to improve the feeling of

immersion in the virtual environment. One way to achieve this is to provide realistic and dynamic light sources.

In this context, we need to model candles, oil lamps, torches or bonfires. We propose in this paper a model that

can handle complex flames in real-time and manage interactivity. The fire is considered as a set of linear flames

whose shapes are defined by the geometry of the combustible and the fuel distribution. Each individual flame

is represented by a textured NURBS surface. Then, combining several real-time effects such as glow and true

transparency, we are able to make the NURBS surfaces merge in a convincing way, and to give the impression of

a real fire.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computing Methodologies]: Computer Graph-

ics Three-Dimensional Graphics and Realism

1. Introduction

Fire is a challenging problem in computer graphics. Describ-

ing flames is of primary interest for movie-making, animated

films and video games. This can also be important for virtual

environments, especially when these are reconstructions of

ancient sites. Indeed, fire was the only source of light until

the end of the 19th century. The lack of fire in such virtual

environments would decrease realism, and would reduce the

possibility of representing scenes in the night or allowing

real-time walkthroughs in dark rooms.

An example of such application is the CyberForum project

which aims to reconstruct and to visualize interactively the

Gallo-Roman forum of Bagacum (Bavay) in the north of

France. This building was built between Flavian (70 A.C.)

and Severian (beginning of 3rd century) periods and its im-

pressive dimensions (240 by 110 meters) make this forum

the largest known in Gaul to this day. Due to the damage

caused over time it is often difficult for any visitor to un-

derstand the architectural design of the site. The virtual re-

construction of the different buildings of the forum was thus

performed two years ago and is extensively used for visi-

tors through a 3D stereo interactive movie (figure 1). It is

also employed by archaeologists as a research tool in order

to understand some parts of the site or to compare some of

their hypotheses. They are therefore interested in visualiz-

ing some parts of the forum lit by flames in order to make

Figure 1: Interactive 3D stereoscopic movie and projection

room (courtesy of musée/site archéologique départemental

de Bavay; A.Solé 2006)

better investigations, as it was done in Knossos [IC03]. For

the visitors, the addition of real-time flames can improve the

feeling of immersion in the virtual site.

In this paper, we introduce an extension of a real-time

flame model [BLLRR06] that can handle complex flames

thanks to the use of multiple NURBS surfaces. We also

present a new intuitive and interactive way to build flames
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with virtual wicks and to model the fuel distribution. Last,

we outline the combination of existing multiple real-time

rendering techniques to get a realistic appearance.

After words the paper is organized as follows. We first

talk about previous work in section 2. Then, section 3 sum-

marizes the mechanism of the flame model we proposed

in [BLLRR06], which is the basis of our method. We de-

scribe extensively our approach to the modeling of complex

flames in section 4, while section 5 presents the techniques

we used for the rendering. Section 6 shows our current re-

sults and we finally give and discuss some perspectives in

section 7.

2. Previous Work

The literature contains many techniques to display flames on

computers, but to our knowledge, none was really suitable

for real-time virtual environments. The first kind of tech-

nique uses physics to describe the combustion process. This

was done first with simple laminar flames, first static [Ina90],

then dynamic [Rac96]. Diffusion equation [SF95] could also

be employed, although it implies a high number of parame-

ters, to describe larger turbulent fire. Nguyen et al. [NFJ02]

use two incompressible Euler equations in addition to a

method known as the level-set equation to build an implicit

surface representing the blue core. Rendering is done ac-

cording to the model of the black-body radiation which leads

to a very realistic simulation. Lamorlette et al. [LF02] also

published a realistic model designed for production environ-

ments. This model is also interesting since it is able to de-

scribe a wide range of flame types, from a simple candle to

a dragon’s breath. The obvious drawback for all these meth-

ods is the computation time, making them unsuitable for our

real-time constraint.

Other methods therefore try to avoid physics and make

approximations in order to obtain a better computation time.

Particle systems [Ree83] are widely used. They make it pos-

sible to describe fuzzy objects with a low computing cost.

Beaudouin et al. [BPP01] use particle chains evolving in

a velocity field and describe a single flame using a poten-

tial equation. Pszczolkowska [Psz04] also applies a similar

method, adding Perlin’s noise [Per85] to model turbulence

effects, and a Gauss function instead of a potential equation.

Nevertheless, neither of them reach real-time frame rate.

Wei et al. [WLMK02] introduced a GPU implementation

of the Lattice Boltzmann Model to model air flows. They re-

lease particles in the velocity field and then render the fire

with textured splats. This model is fast and is able to achieve

true real-time simulation and animation, however the fire

looks more like a burned gas cluster than real flames.

Rather than simulating the flames, some approaches cap-

ture real flames data. In the context of photo-realistic il-

lumination by flames for virtual heritage, Chalmers et al.

[DC01, Cha02] measure a candle flame illumination using

(a) Velocity field and articles

chains roots

(b) Particles generation

(c) NURBS surface generation (d) Texture mapping

Figure 2: Mechanism of our previous model for a candle

(side view)

a spectroradiometer. A video-captured flame is then incor-

porated into a virtual scene and its illumination is com-

puted by approximating the flame shape with several emit-

ting spheres. Later, Hasinoff and Kutulakos [HK03] devel-

oped an approach to reconstruct a 3D flame from two 2D

orthogonal views. Recently Ihrke and Magnor [IM04] pre-

sented a tomographic method for reconstructing a volumet-

ric model of flames from multiple camera images. Although

these models are of high quality, they are of course restricted

to non interactive animations because they rely on a static set

of real images.

3. A simple model

Considering no existing model fits the needs for virtual en-

vironments, a real-time model for flames was introduced

in our previous work [BLLRR06]. Our goals were to sim-

ulate accurately the dynamic of simple flames and to ren-

der them realistically in real-time. We used a Navier-Stokes

equations solver based on the well-known implementation

of Stam [Sta99, Sta03] to create a velocity field. External

forces were added at the bottom of the grid to simulate the

buoyancy. Particle chains were generated in the velocity field
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from generation points called roots (figure 2(a)). Two kinds

of chains were created : the lead skeletons and the periph-

eral skeletons (figure 2(b)). The former define the vertical

boundaries and the latter the horizontal boundaries of the

flame. The particles from these chains were used as control

points to build a NURBS surface which approximates the

shape of the flame (figure 2(c)). Last, a transparent 2D tex-

ture was mapped onto the surface to render the colors of the

flame (figure 2(d)).

This method was quite fast and yet had several limitations.

Above all, it was restricted to small flames and could not pro-

duce complex flames such as torches or camp fires. Then it

lacked a simple way to handle the buoyancy of the flames.

Forces were defined at the bottom of the flame but there was

no understandable model to describe them, although it is cru-

cial to have one, because in this way a simple interface can

be defined for the potential users of such a technique. Last,

rendering of the flames could be improved.

4. Towards complex flame modeling

We introduce several concepts here. First we consider a vir-

tual wick for a linear flame. Then we associate a Fuel Dis-

tribution Function (FDF) with the wick in order to compute

the buoyancy of the flame. That being done, we generate a

NURBS surface for the wick in the velocity field. Last, to

build a more complex fire such as torches or bonfires, we

consider a set of flames.

4.1. The virtual wick

As observed during our experiments, the shape of the wick

has an impact on the final shape of the flame, that’s why it

is important to represent it. Actually, the wicks we define

should be considered as an interactive tool for the user to

place fire fronts and to draw somehow a flame. Indeed, it

will be shown later that many wicks are employed to define

larger flames although this does not really correspond to re-

ality. Therefore the wicks themselves can be displayed or

not according to the type of fire being rendered. The wicks

we use are generally long cylindrical shapes as seen in fig-

ure 3(a). They can be modeled in any 3D modeler and then

imported in our software to be used as a source of fire.

Whereas the roots of the particles chains were placed by

hand in our previous work, we here have to set a method to

place them automatically on the wicks. The wick in bound-

ing boxes is divided according to the number nl of lead

skeletons we want (figure 3(b)). Generally, two or three lead

skeletons are used per flame. Then we compute the barycen-

ter of the vertices in each bounding boxes. This is where

the roots of the lead skeletons are placed (figure 3(c)). In

addition, two extra lead skeletons roots are added on each

extremity of the wick, so that there is a total of Nl = nl + 2

lead skeletons (figures 3(d) and 4(a))). After that, two roots

of peripheral skeletons are placed on each side of a lead

(a) Wick to be processed (b) Cutting into bounding boxes

(c) Adding of lead skeletons

roots

(d) Extra lead skeletons roots

Figure 3: Placement of the roots of the lead skeletons on the

wick (side view)

(a) Previous wick with roots of

lead skeletons

(b) Adding of peripheral skele-

tons roots

(c) Extra peripheral skeletons

roots

Figure 4: Placement of the roots of the peripheral skeletons

on the wick (top view)

skeleton root, on the wick sides (figure 4(b)). Two extra pe-

ripheral skeletons roots are also added at the extremities of

the wick (figure 4(c)). This way, there is therefore a total of

Np = Nl ×2+2 peripheral skeletons.

4.2. Fuel Distribution Function

The shape of the wick is not sufficient to describe the shape

of the flame; fuel is in fact one of the most important factors.

In the real world, wood, oil or wax don’t produce the same

kind of fire. But we can also notice that the fuel is not spread

uniformly on the burning surface. In oil lamps, the capillary

action in the wick is the main factor. However our real-time

constraint does not permit us to perform complex computa-

tions. Therefore, we need a simple process to model the fuel

distribution.

Buoyancy is simulated by adding external forces in the

velocity field of the solver. A simple function F(ui) is used

to describe their distribution. Each root of the lead skeletons

is associated with a value ui in the range [−1;1] or [0;1]
according to the type of function. Considering the wick in

one dimension, the value of the root on the extreme left u0,

is set to −1 or 0 and on the extreme right un−1 is set to 1.

The other values u1...un−2 are linearly interpolated.
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(1)

The fuel distribution function F(ui) itself can be any of

the following : linear, bilinear, exponential, Gaussian, ran-

dom. Of course it can also be any user-defined function.

When we add the forces corresponding to the buoyancy of

the flame, we put a vertical force in the voxel of the solver

grid where each root is placed. The force fi is finally com-

puted as :

fi = F(ui).C +Fext(ui) (2)

where C is a constant factor that makes it possible to scale

the height of the flame. So the flame profile will have a simi-

lar shape to this of the function F . Fext is an additional forces

function that adds a swinging effect. It can be a periodical

function, noise or random function that allows some anima-

tion to be added and emphasizes the fact that this is a dy-

namic light.

4.3. Linear flames

The flame is built in a similar manner to the simple flame

model, using the standard GLU NURBS interface. The con-

trol points matrix of the NURBS surface is composed of all

the particles of the peripheral skeletons and the lowest and

the highest particles of the lead skeletons. There is a line

in the matrix for each peripheral skeleton. Its size is thus

Np × (M + 2) where M is the number of particles in one

skeleton. Each line of this matrix starts with the lowest par-

ticle of the nearest lead skeleton, then takes all particles of

one peripheral skeleton and ends with the highest particle of

the same lead skeleton. Denoting m the index of the particle

in the skeleton, n the index of the skeleton, Lm,n the particles

of the lead skeletons and Pm,n the particles of the peripheral

skeletons, we can write the matrix A as shown in equation 1.

It can be noticed that peripheral skeletons 0,1,Np −1

reference the same lead skeleton because it is the

nearest one for all of them. Peripheral skeletons

Np/2−2,Np/2−1,Np/2 also do so for the same rea-

son. Figure 5 shows different flame profiles generated by

different FDFs.

4.4. Complex flames

To build complex flames with NURBS surfaces, we assumed

that any fire is a set of several independent flames. Indeed it

seemed very difficult to represent a whole fire with a single

animated NURBS surface. It’s easier to achieve that with

many smaller flames. Therefore any fire is defined by several

linear flames.

An important point to understand is that we are not going

to do anything on the geometry to merge the flames. That

would be hard to do and above all very time-consuming.

Thus any linear flame is built and rendered independently,

and we will deal with their merging in a post-rendering phase

described in the next section. Thus the wicks can be placed

arbitrarily, and it will look even better if they are overlap-

ping. Figure 6(a) shows a typical layout for the bottom of a

torch and figure 6(b) for a campfire.

5. Rendering

We cannot rely only on 2D texture mapping to render multi-

ple NURBS surfaces. As we said previously, the flames over-

lap, so the first thing to do is to deal with their transparency.

Moreover we want a smooth appearance as far as possible,

and most of all overlapping flames should visually merge to-

gether. Also, an important effect is the glow of the flame,

because it is the only way to distinguish bright sources of

light [NKON90].
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(a) Linear (b) Bilinear (c) Gauss (d) Exponential

Figure 5: Various linear flame profiles according to different FDFs with three lead skeletons

(a) Torch model (b) Campfire model

Figure 6: Top view of typical placements of the wicks

5.1. True transparency

In the standard rendering pipeline of GPUs, we have to use

alpha blending and sort the objects according to their depth

from the back to the front if we want to see all the flames

with transparency. Nevertheless this becomes quite tricky

with our flames because they overlap and it is therefore often

difficult to choose the first flame to be rendered.

That’s why we implemented the method called Depth

Peeling, which makes it possible to render objects with true

transparency regardless of the order in n-passes. This was

first realized using Virtual Pixel Maps [Mam89] and Dual

Depth Buffers [Die96]. Later, graphics hardware function-

alities allowed the technique [Eve02] to be accelerated. To

display n transparency layers, the method uses n passes. The

first pass retrieves the first depth layer with the usual depth

test. The following passes extract the next layers using the

depth from the previous pass to eliminate the previous depth

layers.

The simplest way to explain its GPU implementation is

to consider two depth buffers and two depth tests. The first

depth test is the usual GL_LESS or GL_LEQUAL testing

which keeps the current fragment if it is the nearest to the

viewer. The second depth test rejects the active fragment if it

is nearer than the depth of the pixel rendered at the previous

pass. The first pass consists in rendering the scene with only

the first test enabled, while the first depth buffer is saved in

the second depth buffer. The next passes render the scene

with both depth tests enabled. Each depth layer is rendered

using additive blending.

With current graphics hardware, this can be done quite

easily. We have used ARB_fragment_shadow extension to

perform the second depth test quickly as well as the Frame

Buffer Object (FBO) extension to avoid read-backs of the

depth buffer, by attaching FBOs to depth textures. As we

have now to render the flames many times for each frame, the

cost of their rendering must be reduced. A straightforward

way is to generate an OpenGL display list while rendering

the NURBS surfaces in the first pass. Then this list can be

used to render them in later passes.

However, our first results were slow because OpenGL

kept doing the tessellation of the NURBS when us-

ing the display list. Indeed to really avoid tessella-

tion, the NURBS surface must not be generated in

GLU_NURBS_RENDERER mode. This has to be done in

GLU_NURBS_TESSELLATOR mode, because that way

we can define our own callback functions which will call

the standard OpenGL functions to generate the vertices, nor-

mals and texture coordinates. That being done, the display

list contains glVertex, glNormal, glTexCoord calls instead

of the gluNurbsSurface calls. Thanks to that the frame rate

drastically improved, for instance by a factor of four with

four layers.

Last, the depth peeling algorithm has been slightly modi-

fied. Indeed, it assumes that all the scene is rendered in full

transparency. But this is not exactly what we want, since we

only want to apply it to the flames. Furthermore, rendering

the whole scene would obviously slow down the process.

Yet if the standard depth peeling algorithm is only applied

to the flames, we will miss the occlusions of the other scene

objects. When multiple flames are rendered, particular cases

can even occur where an object in the scene is placed be-

tween two flames. That means that each pass of the depth

peeling must perform a third depth test. We therefore pre-
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Figure 7: Depth peeling process for flames

render the scene without the flames in a FBO with color

buffer writing disabled and depth buffer attached to a sec-

ond depth texture. Thus a fragment is only displayed if it

passes the two depth tests from the depth peeling and the

depth test with this new depth texture. Figure 7 summarizes

our implementation.

5.2. Glow

To render the glow of the flame, we implemented the tech-

nique described in [JO04]. It consists in a post-processing

of the 2D rendering of the scene. Glowing objects are ren-

dered separately. The frame buffer is rendered in a 2D tex-

ture at a lower resolution than the viewport. This texture is

then filtered to produce a blur effect using a separable func-

tion, typically Gaussian. Thanks to this property, the blur can

be performed in two passes. It is first performed in the x di-

rection with n pixels and then in y with n pixels instead of

n×n pixels in one pass. This makes it possible to do this on

the GPU because this implies few texture lookups. Last the

scene is rendered normally and the blurred texture is applied

on top of it using additive alpha blending.

Our application of the algorithm is somehow similar. The

following kernel is used to perform the blur in one direction :

K =
e−x2

σ
2

(3)

where σ is equal to 1.5. These settings have proved to give

good results. It is indeed important that the bandwidth is not

too large, because it will produce too blurry a flame, and we

would lose details in its texture.

However a blur at the same resolution as the viewport pro-

duced an interesting anti-aliasing effect, making the edges of

the flame fairly smooth. We thus perform two different blurs.

A first one is performed at the same resolution and a second

at a lower resolution, generally four times smaller. The nor-

mal rendering of the flame is not used at all, we only render

Figure 8: Glow process for flames

Figure 9: Rendering process for flames

the two blurred ones. Note that to make the glow process

efficient, it is crucial to render the flames only once, espe-

cially in this context because we use depth peeling which

requires n passes for each rendering. That’s why the render-

ing is stored in a texture which is the input of both blur pro-

cesses. Figure 8 summarizes the glow process while figure 9

shows the whole rendering process.

6. Results

The same parameters as in [BLLRR06] are used for the

solver. A resolution of 15× 15× 15 for the grid is indeed

enough and allows us to keep real-time frame rates. We can

employ as many skeletons as we want for each flame. The

larger they are, the more skeletons we need, but of course

the more time consuming it is. Between ten and sixteen

skeletons per flame is a good compromise. The skeletons

themselves have a height of less than nine particles. The

benchmarks were performed on a Pentium-M 2 Ghz with

a NVIDIA GeForce Go 6600 graphics card and the screen

resolution is 1024×768 pixels.

Figure 11 compares the rendering with and without the

post-rendering processes. This highlights that the normal

texture of the flame is not very bright. Indeed, as additive al-

pha blending is used in the depth peeling and the glow pro-

cess, we must avoid saturation. Nonetheless, by managing

this accumulation of intensities carefully, we can create the

merging effect we were looking for. Although the assump-

tion of a set of linear flames is not physically correct, we can

see that it is finally visually convincing.

On the contrary to our previous paper, we did not con-

sider the spatial distribution of the light. Indeed, it is harder

to capture a photometric solid for the flames described
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Figure 10: A Roman draper shop illuminated by an oil lamp

and a candle (67752 polygons, 2 independent flames, 25 fps)

here than for candles. Thus we used a standard per-pixel

lighting, using the spectral properties of a real flame. Fig-

ures 13 shows a campfire and figure 12 a torch in the baker

shop of the forum. Both models produce 45 fps. Without

the post-rendering processes, they reach 57 fps. The glow

costs around 3 fps and the depth peeling with four layers

9 fps. Small flames can also benefit from this new render-

ing process (figure 10). The appearance of flames is however

much better when animated, videos are available on our web

site http://www-lil.univ-littoral.fr/~bridault.

7. Conclusion

We have presented a model that can handle complex flame

rendering and animation in real time. The use of virtual

wicks allows the user to put and merge flames onto any ob-

ject easily. Far from here we have used our own software,

but the NURBS surfaces used for modeling are available in

standard graphics APIs. Thus our model can be integrated

into any real-time application. The careful use of depth peel-

ing and glow techniques helps to improve the realism of the

flame rendering considerably, especially for complex flames

like camp fires or torches that may appear in ancient illumi-

nation sources.

Future work will focus on different topics arising from

flame simulation. Firstly we will study the problem of man-

aging several flame-based sources. Indeed the fluid dynamic

solver is still a bottleneck due to its high computational re-

quirement. As soon as several independent sources are used,

several independent solvers will have to be run, accordingly

reducing the frame rate. We didn’t deal with shadows ren-

dering here yet, but as we stated in our previous paper, our

model is compatible with common techniques. Smoke sim-

ulation involves finding a way to render its main curls and to

consider participating media in order to simulate its propaga-

tion through the scene. Finally fire propagation could be sim-

ulated by adding a temporal dimension to our virtual wicks

allowing them to be animated.
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